4ех тактный бензиновый двигатель внутреннего сгорания
4ех тактный бензиновый двигатель стал основной рабочей «лошадкой» во многих сферах жизни человека, особенно в транспортной.
История 4ех тактного ДВС началась с французского инженер Этьена Ленуара. Он создал первый надёжно работавший двигатель в 1860 году. Двигатель Ленуара работал на газовом топливе. Спустя 16 лет немецкий конструктор Николас Отто создал более совершенный 4-тактный газовый двигатель. Двигатель Отто и стал основой поршневого двигателестроения. А закрепил его на рынке автомобилестроения Генри Форд и его знаменитая массовая модель Форд Т, выпускавшийся с 1908 года.
Столь успешным двигатель стал благодаря своей простой и в тоже время работоспособной конструкцией. Физика работы двигателя основана на термобарических процессах газов.
Соединение горючего и воздуха приводит к образованию смеси. Сгорающая смесь воздуха и горючего способствует образованию давления. Оно направляется на поршень. Который в свою очередь вращает коленчатый вал через кривошипно-шатунный механизм. В свою очередь с вала уже снимается полезная работа. Отмечается цикличность работы механизма в целом.
Процесс работы двигателя.
Такт 1– Впуск.
Вначале впуска поршень находится в верхнем положении, так называемая верхняя мертвая точка (ВМТ) и должен опуститься в крайнее нижнее положение – нижняя мертвая точка (НМТ). При этом впускной клапан открыт свежая порция топливной смеси засасывается внутрь цилиндра. Впускной клапан открывается деталями распределительного вала — кулачками.
Такт 2 – Сжатие.
Поршень двигается в обратном направлении. Рабочая смесь постепенно сжимается. Она становится намного горячее. Степенью сжатия можно называть отношение объемов цилиндра в НМТ и камеры сгорания в ВМТ. Если используется инжекторная система смесеобразования, то на данном этапе в цилиндр еще подается порция топлива, которое распыляется через форсунку.
Такт 3 – Рабочий такт.
Рабочий ход поршня обеспечивает сгорание топлива с дальнейшим расширением. После полного сжатия горючего свеча дает искру, которая в свою очередь, воспламеняет смесь. Воздушно-топливная смесь сгорая расширяется, создавая повышенное давление на поршень. Происходит выталкивание поршня с ускорением.
Такт 4 – Выпуск.
Когда поршень попадает в крайнее нижнее положение, выпускной клапан открыт. Поршень движется вверх и выталкивает из цилиндра уже отработанные газы. При дохождения поршня до ВМТ, выпускной клапан закрывается. С этого момента рабочий цикл из 4 тактов повторяется.
Основные параметры ДВС
Мощность и крутящий момент двигателя
Изменяется в лошадиных силах или в Ваттах. Мощность — основной параметр двигателя. Мощность двигателя показывает то количество энергии который можно «снять» с вала двигателя при оптимальном режиме работы двигателя. Показывает, какую работу двигатель может выполнить за промежуток времени, а более точнее, сколько энергии успеет передать сгорающее топливо кривошип — шатунной системе через поршень за временной промежуток рабочего такта. Мощность находится в прямой зависимости от крутящего момента.
Диаграмма зависимость мощности и крутящего момента от числа оборотов коленчатого вала двигателя Audi 4,2 л V8 FSI.
Объем двигателя
Объем цилиндра — это закрытый объем, в котором рабочее тело (сгорающая топливно-воздушная смесь) действует на часть замкнутого пространства — поршень Объем двигателя складывается из всех объемов всех цилиндров.
Сложив объем углубления в головке над поршнем и объем полости цилиндра, получают объем камеры сгорания.
Полный объем равен сумме рабочего объема и объема камеры сгорания.
Литраж определяют сложением всех рабочих объемов цилиндров.
Количество цилиндров
В современных моторах количество цилиндров варьируется в широких диапазонах. Теоретически их может быть от 1 до не ограниченного количества. Но на практике в основном применяют в 4ех тактных двигателях компоновку от 4 до 12 цилиндров. Количество цилиндров зависит от мощности, степени сжатия и скорости оборота коленчатого вала. Огромную мощность, высокие обороты и высокую степень сжатия очень сложно организовать в цилиндре большого диаметра.
Мощность. Она зависит от количества и энергии рабочего тела (сгорающей газовой смеси), рабочее тело сильно нагревает поршень и цилиндр, чем больше поршень по диаметру, тем больше вероятность его нагрева и прогорания в центре. Именно с центра поршня тяжело снять излишки тепла.
Обороты коленчатого вала. Чем больше обороты, тем выше линейные и осевые скорости в кривошип-шатунном механизме и тем больше инертные силы, тем выше нагрузки действующие на поршень, шатун, вал, цилиндр. Поэтому тихоходные живут дольше своих «оборотистых собратья».
Степень сжатия. Чем больше нужно сжимать газ, тем большие нагрузки испытывает поршень и кривошип-шатунный механизм.
С выше сказанным вывод один — чем меньше диаметр цилиндра тем меньшие нагрузки испытывают элементы кривошип-шатунной группы. Но для создания большой мощности нужен больший объем камеры сгорания. Многоцилиндровость — это техническое решения, которое позволило решить главную задачу — увеличить мощность двигателя, не увеличивая при этом линейные и осевые инерционные силы и как итог механические нагрузки, а также поддержания в разумных пределах тепловых нагрузок, действующие на двигатель.
Степень сжатия
Степень сжатия очень сильно влияет на то, какое топливо следует применять для бензинового двигателя.
Степень сжатия определяют следующим способом, если разделить полный объем цилиндра на объем камеры сгорания. Она показывает уменьшение объема во время движения поршня. Степень сжатия сильно влияет на экономичность, экологичность и КПД двигателя.
Свежий заряд подаеться в цилиндры двигатели двумя способами:
• Без наддува: воздух или смесь всасывается в цилиндре под дествием разряжения и наполняет цилиндр с атмосферным давление.
• С наддувом: процесс протекает под давлением, в цилиндры подается газовая смесь с давлением в несколько раз выше атмосферного.
Дополнительные параметры ДВС
На выбор двигателя для механических средств также влияют дополнительные параметры, которые в одних системах могут прижиться, а в других создадут ряд проблем.
Способы смесеобразования
• Внешний: горючая смесь образуется за пределами цилиндров. К таким относятся карбюраторные и газовые двигатели.
• Внутренний: горючее впрыскивается непосредственно внутри цилиндров. Инжекторный тип смесеобразования.
Способы охлаждения
1. Жидкостный.
2. Воздушный.
Способ смазки
• Смешанный (масло смешивают со смесью горючих материалов).
• Раздельный (масло уже сразу заливают в картер).
Частота вращения
• Двигатели на тихом ходу.
• Двигатели, имеющие повышенную частоту вращения.
• Быстроходные двигатели.
Материал двигателя
Изготовление современных двигателей возможно из 3-х типов материалов:
• алюминия и его сплавов. Вес небольшой, прочность средняя.
• магниевых сплавов. По весу они самые маленькие, а вот прочностью они наделены высокой. Но цена таких двигателей огромна.
Компоновка ДВС
1. Рядный.
Все цилиндры располагаются в ряд. Такая конструкция двигателей самая простая, детали к ним имеют несложную технологию производства.
2. V- образный двигатель.
Цилиндры в таком двигателе расставлены в форме буквы V, в двух плоскостях, двумя рядами под углом 600 или 900. Образовавшийся между ними угол – это угол развала. Плюсом такого двигателя является мощность. Его габариты могут быть уменьшены за счет смещения в развал других важных компонентов. Его длина меньше, а ширина больше. Но из-за сложности таких конструкций бывает непросто определить центр их тяжести.
3. Оппозитные двигатели (маркировка В).
Они относительно уравновешены, для уменьшения вибрации все элементы располагают симметрично. Их конструктивная особенность – центральное крепление вала на жестком блоке. Это так же влияет на степень вибрации. Угол развала составляет 1800.
4. Рядно-смещенные агрегаты (маркировки VR).
Данную компоновку отличает малый угол развала (150) V-образного двигателя в содружестве с рядным аналогом. Это позволяет уменьшить размеры продольного и поперечного агрегатов. Маркировка VR расшифровывается как V – образный, R — рядный.
5. W (или дубль V) — образный.
Самый сложный двигатель. Известен двумя видами компоновки.
1) Три ряда, угол развала большой.
2) Две компоновки VR. Они компактны, несмотря на большое количество цилиндров.
6. Радиальный (звездообразный) поршневой двигатель.
Имеет небольшой размер длины с плотным размещение нескольких штук цилиндров. Они располагаются вокруг коленчатого вала радиальными лучами с равными углами. Ее отличает от других наличие кривошипно-шатунного механизма. В данной конструкции один цилиндр выступает главным, остальные – прицепные – крепятся к первому по периферии. Недостаток: в состоянии покоя нижние цилиндры могут пострадать от протекания масла. Рекомендуют до начала запуска двигателя проверить, что в нижних цилиндрах масло отсутствует. В противном случае возможны гидроудар и поломка. Чтобы увеличить размер и мощность двигателя, достаточно удлинить коленчатый вал образованием нескольких рядов – звезд.
Дополнительные системы двигателя внутреннего сгорания.
Запуск двигателя — Стартер
Для устойчивой работы ДВС требуются минимальные обороты 800 обр/мин. Запуск двигателя и вывод оборотов коленчатого вала, механизмов и агрегатов на нужные параметры для устойчивой и самоподдерживающей работы осуществляется стартером. Это электродвигатель для проворачивания коленчатого вала. Реже запуск двигателя осуществляется посредством подачи в цилиндры сжатого воздуха под давлением.
Топливная система
Топливная система для двигателя внутреннего сгорания состоит из следующих элементов:
— топливный бак (хранения запаса топлива, баллон, для хранения сжатого газа). Топливом для бензиновых ДВС является бензин или газ.
— топливный насос (подача и прокачка топлива по топливной системе).
— топливопровод (магистраль из стальных трубок для соединения топливного бака с системой смесеобразования).
— фильтры грубой и тонкой очистки топлива (очистка топлива от инородных частиц, которые могут засорить конструктивные элементы топливной системы).
— системя для образования газо-воздушной системы. Для образования рабочей газовой смеси из топлива и воздуха используются 2 вида систем.
Карбюраторная система
Карбюратор – один из узлов, входящих в систему питания двигателя. В нем как раз и готовится такая смесь из воздуха и горючего. Карбюратор также регулирует, сколько ее поступит в камеры сгорания. Известно несколько его видов: барботажные, мембранно-игольчатые и поплавковые.
Принцип действия основан на гидродинамических силах, создаваемых в карбюраторе конструктивно. Бензин, подаваясь в карбюратор и под действие движущегося атмосферного воздуха, принудительно испаряясь, смешивается с воздухом, образуя паровоздушную смесь. Далее смесь поступает во впускной коллектор двигателя, откуда далее в цилиндры. Пассивный принцип смесеобразования.
Инжекторная система
Инжекторные системы — это уже активная система смесеобразования. Инжекторная система состоит из управляющего электронного блока и форсунок. Форсунке подают заряд топлива (распыляя его) в засасываемый атмосферный воздух, подчиняясь командам электронного блока управления. Топливная смесь образуется либо во впускном коллекторе, либо же непосредственно в цилиндре, перед тактом сжатия смеси. Система осуществляют непосредственную дозировку нужного количества топлива.
Система смазки
Данный вид системы предназначен для смазки трущихся поверхностей двигателя во время работы. Смазка снижает коэффициент трения, что уменьшает потери энергии, снижает быстрый износ деталей двигателя, а также происходит удаление продуктов нагара и охлаждение поверхности деталей. Система смазки двигателя включает в себя следующие элементы:
— поддон картера двигателя с маслозаборником (предназначен для хранения масла).
— масляный насос (предназначен для перекачки масла и создания давления в системе).
— масляный фильтр (очистка масла от посторонних механических примесей).
— масляный радиатор (для охлаждения забираемого из картера масла перед подачей его в смазываемые детали).
— соединительные магистрали и каналы элементов системы смазки.
Система охлаждения
Система охлаждения нужна для отвода тепла от «горячих» элементов двигателя. При работе двигателя выделяется тепловая энергия от сгорающей рабочей смеси, только 40% данной энергии расходуется на полезную работу хода поршня, вся остальная энергия или в виде лучистой энергии оседает на стенках камеры сгорания или в виде горячих газов выходит через выхлопную систему в атмосферу.
Если не снимать эти «излишки» энергии, то в конечном итоге это приведет к выводу двигателя из строя, прогорание поршней, головы блока цилиндров, клапанов, заклинивание поршня в цилиндре. Для отвода энергии от двигателя используют теплоноситель — специальную охлаждающую жидкость, которая принудительно прокачивается через рубашку охлаждения блока цилиндров и головки цилиндров, снимая «излишки тепла», а далее по патрубкам поступает в радиатор, где часть ненужной энергии отдает окружающей атмосфере. После охлаждения жидкость вновь прокачивается через «рубашку охлаждения» двигателя. Охлаждающая система состоит:
— «рубашка охлаждения» (служит для обеспечения контакта охлаждающей жидкости с горячими элементами двигателя для снятия «излишков тепла»).
— центробежный насос (помпа) (служит для создания давления в системе и прокачки через систему жидкости).
— термостат (служит для разделения системы охлаждения на 2 контура, контур с радиатор и контур без радиатора).
— радиаторы охлаждающей жидкости и отопителя (предназначены для теплообмена между охлаждающей жидкости и окружающей средой).
— расширительный бачок (предназначен для хранения дополнительного количества охлаждающей жидкости).
— соединительные патрубки элементов системы охлаждения.
Система электропитания
Система электропитания имеет два основных источника электричества — это генератор и аккумулятор. Система электропитания предназначена для бесперебойного обеспечения электроэнергией потребителей. В первую очередь электрическая система питает элементы двигателя — это система зажигания, генератор при старте, электронную систему управления двигателя, электробензонасос, инжекторную систему. Так же в электрической энергии нуждается ряд автомобильных систем, это система освещения, габаритов, систем удобств пассажиров, электронные системы.
Аккумулятор
Аккумулятор — это первичный источник энергии в автомобили. Именно благодаря той энергии, которая запасена в нем и начинается работа всего автомобиля и двигателя в частности. Чтобы завести двигатель, стартер берет энергию именно от аккумулятора. Аккумуляторы бывают разной емкости, но напряжение, которое они выдают стандартное — 6, 12 Вольт, для мототехники и транспортных средств соответственно. Основная характеристика аккумулятора — это емкость и пусковой ток. Емкость у аккумуляторов бывает от 18 до 200 А/ч. Значение емкости показывает, сколько ампер и за какое время способен выдать аккумулятор. Пусковой ток измеряется в амперах и показывает пиковое значение по току, которое может выдать аккумулятор за короткое время, порядка 30 секунд. Важная характеристика для запуска двигателя стартером.
Генератор
Генератор — это электротехническое устройство, преобразующее механическую энергию в электрическую. При работающем двигателе генератор генератор является основным источником электрического тока, а аккумулятор вспомогательным. Генератор питает всю электрическую систему как двигателя, так и машины в целом, также от работающего генератора вырабатываемый ток заряжает аккумулятор. Генератор вырабатывает переменный ток, который в с вою очередь через диодный мост преобразуется в постоянный. Именно постоянный ток нужен в электрической системе автомобиля. Основные характеристики генератора — это напряжение и сила тока вырабатываемая им. Генераторы бывают 12 и 24 вольтные. Сила тока, вырабатываемая генератором колеблется в широких диапазонах, т.к. зависит от частоты вращения ротора.
Система зажигания
Предназначена для воспламенения горючей смеси топлива и воздуха в цилиндре от электрической искры. В зависимости от способа управления процессом зажигания различают следующие типы систем зажигания: контактная, бесконтактная (транзисторная) и электронная (микропроцессорная). Контактный способ — перераспределение электрической энергии происходит механическим путем, через прерыватель — распределитель. В бесконтактной системе прерыватель транзисторный, распределитель — механический. В электронной системе и прерыватель и распределитель — это микропроцессорный блок в котором и осуществляются процессы прерывания и распределения с помощью полупроводниковых устройств. Принцип работы системы зажигания заключается в накоплении и преобразовании катушкой зажигания низкого напряжения (12В) электрической сети автомобиля в высокое напряжение (до 30000В), распределении и передаче высокого напряжения к соответствующей свече зажигания и образовании в нужный момент искры на свече зажигания.
Система контроля и управления работы двигателя
Контроль и управление двигателем бывает 2 видов — механический и электронный. В первом случае человек управляет работой двигателя полностью и полностью ведет контроль за его работой, подбирая нужные условия работы, непосредственно воздействуя на элементы двигателя через рычаги и тросики. Во втором случае за всем следит электроника, она подбирает оптимальные условия для работы двигателя и следит за работой двигателя. Управление работой двигателя полностью ведется электроникой. человек лишь вносит управляющий сигнал в электронную система, а та в свою очередь обрабатывая сигнал, подбирает нужные условия работы двигателя. Электронная система управления контролирует работу двигателя с помощью множества датчиков, которые измеряя физические величины выдают, преобразуют их значения в электрический сигнал. Например: давления топлива, частоты вращения коленчатого вала, положения педали акселератора, расходомер воздуха (при наличии), детонации, температуры охлаждающей жидкости, температуры масла, температуры воздуха на впуске, положения дроссельной заслонки, давления во впускном коллекторе, кислородные датчики и др. Информация, получаемая от датчиков, является основой управления двигателем.
Новый двигатель оправдал себя на автомобилях Mazda – Автомобили – Коммерсантъ
Новый двигатель оправдал себя на автомобилях Mazda
Журнал «Коммерсантъ Автопилот» №9 от , стр. 12
 Новый двигатель оправдал себя на автомобилях Mazda
Двигатели бывают 2-тактные, 4-тактные, а в особый период — 3-тактные. Этот анекдот приписывают преподавателям военной кафедры одного из московских автомобильных вузов. А действительно, сколько тактов может быть в двигателе? Первый — впуск порции смеси в цилиндр, второй — сжатие смеси, третий — воспламенение сжатой смеси и рабочий ход, четвертый — выпуск отработавших газов. И так практически у всех двигателей, как бензиновых, так и дизельных. В немногих оставшихся двигателях тактов 2 («Автопилот» #3 1994 г.).
Mazda, назло планете всей выпускающая автомобили с роторным двигателем Ванкеля (Felix Wankel), год назад вновь поразила всех, внедрив в серию 5-тактный двигатель американца Ральфа Миллера (Ralpf H. Miller). Он в конце 40-х годов развил принцип Отто (Nicolaus Otto), автора 4-тактного цикла. Mazda Xedos 9 (или Eunos 800 на японском рынке, или Millenia S — на американском) высшего среднего класса — стилистическое развитие моделей 626 и Xedox 6. Кстати, аэродинамический лидер в своем классе — CD=0,29.
Как работает двигатель? При первом такте поршень движется вниз от верхней мертвой точки (ВМТ), открывается впускной клапан и в цилиндр поступает топливо-воздушная смесь. Второй такт. Поршень двигается к ВМТ. Если в 4-тактном двигателе в этот момент впускной клапан уже закрыт, то здесь он остается открытым еще на протяжении 1/5 хода поршня, но смесь продолжает поступать в цилиндры под небольшим давлением, которое обеспечивает спиральный нагнетатель Lysholm. Давление поршня дополнительно способствует равномерности заполнения цилиндра. Третий такт — сжатие — начинается со 2/5 хода. Впускной клапан закрыт. Дальше все обычно — поршень достигает ВМТ, сжатую смесь воспламеняют… Четвертый такт рабочий. Газы воздействуют на поршень на протяжении всего его хода от ВМТ к нижней мертвой точке. Пятый такт: через выпускной клапан выходят отработавшие газы, поджимаемые вновь поднимающимся поршнем. От хода поршня, как известно, зависит рабочий объем цилиндра и степень сжатия (отношение рабочего объема цилиндра к объему камеры сгорания). Чем больше степень сжатия, тем больше мощность. Но растут рабочая температура и выбросы NOx. И приходится использовать дорогое высокооктановое топливо. Словом, сложно, неэкологично, расточительно. Стоит в обычном двигателе укоротить ход поршня, как ухудшаются характеристики, поскольку газы, выделившиеся после воспламенения, действуют на поршень на меньшем расстоянии. Миллер, «растянув» цикл Отто, добился того, что ход поршня при сжатии меньше рабочего хода поршня. То есть, не проиграв в характеристике, он понизил рабочую температуру двигателя, уменьшил максимальные обороты и за счет этого увеличил ресурс. А также очистил выхлоп от NOx. И получил возможность использовать топливо с октановым числом 91.
Двигатель V6 рабочим объемом 2255 куб. см имеет алюминиевые блок и головку цилиндров, 4 клапана на цилиндр, 2 распредвала в каждой головке, электронный многоточечный впрыск, степень сжатия 8,0, мощность 210 л. с. при 5500 об./мин., крутящий момент 194 Нм при 4500 об./мин., причем высокий момент держится в более широком диапазоне оборотов, чем у обычных двигателей. Кстати, еще один важный показатель эффективности двигателя, литровая мощность — едва ли не самая высокая среди всех Mazda: 97,6 л. с. с каждого литра. Остается ждать, что нечто подобное сделают с 2-тактным двигателем и появится… 3-тактный.
Четырехтактный двигатель: описание,фото. | НЕМЕЦКИЕ АВТОМАШИНЫ
Цилиндр двигателя закрыт крышкой, в которой располагаются клапаны для впуска свежего заряда и клапаны выпуска газов. Клапаны удерживаются в закрытом состоянии пружинами и давлением в цилиндре при процессах сжатия, сгорания и расширения. Открытие клапанов в нужные моменты производится газораспределительным механизмом.
Газораспределительный механизм состоит из рычагов, штанг и толкателей, на которые воздействуют кулачки распределительного вала.
Распределительный вал приводится в движение от коленчатого вала двигателя и имеет вдвое меньшую частоту вращения, чем коленчатый вал, вследствие чего каждый клапан открывается один раз за два оборота коленчатого вала. Взаимосвязь газораспределительного механизма с коленчатым валом находится в определенной механической зависимости. Эта зависимость устанавливается заводом—изготовителем двигателя и изображается диаграммой фаз (углов) газораспределения.
Термодинамический процесс рабочего цикла в четырехтактном двигателе (рис. 23).
Фаза ф;_2 — это угол, описываемый коленом коленчатого вала, при котором клапан впуска открыт. На индикаторной диаграмме этот процесс изображен линией 1—2 — процесс всасывания свежего заряда.
Фаза ф2-3 — это угол, описываемый коленом коленчатого вала, при котором оба клапана закрыты.
На индиикаторной диаграмме наблюдается процесс сжатия свежего заряда, при этом температура его достигает 500… 700 °С. Фаза у3_4 — это угол, описываемый коленом коленчатого вала при закрытых клапанах впуска и выпуска. Точка 3 находится вблизи ВМТ. С этого момента в цилиндр двигателя подается топливо в мелкораспыленном виде, которое активно (при 7 = 500…700°С) испаряется, воспламеняется и сгорает. Этот процесс длится тысячные доли секунды. В цилиндре резко возрастают температура (1700°С) и давление (Р образовавшихся газов, вследствие чего колено коленчатого вала успевает пройти ВМТ, и сила, равная произведению давления газов на площадь поршня, раскручивает коленчатый вал. Этот процесс расширения газов называют рабочим ходом поршня, и он заканчивается при положении колена коленчатого вала в точке 4. Фаза ц>4_5 — это угол, описываемый коленом коленчатого вала, при котором открыт клапан выпуска. На индикаторной диаграмме этот процесс — выпуск отработавших газов — изображен линией 4—5. В позиции колена коленчатого вала 5 клапан выпуска закрывается, а клапан впуска открывается. Этим завершается рабочий цикл и начинается следующий. Весь рабочий цикл совершился за четыре такта, поэтому такой двигатель называют четырехтактным.
Рис. 23. Схема работы четырехтактного двигателя и индикаторные диаграммы: 1— начало открытия впускного клапана; 2 — закрытие впускного клапана; 3 — начало подачи топлива; 4 — начало открытия выпускного клапана; 5 — закрытие выпускного клапана; а—г — такты рабочего цикла; Р0 — атмосферное давление; I — точка максимального давления газов в цилиндре.
Создание комбинированных двигателей явилось новым этапом в развитии ДВС.
Цель создания комбинированных двигателей — получение более экономичного и мощного двигателя при малых его габаритах. Потребность в таких двигателях особенно велика на железнодорожном транспорте. Увеличение мощности двигателя при тех же габаритах осуществляется за счет компрессорного наддува.В комбинированном двигателе в качестве компрессорных машин используются почти все виды компрессоров, а в качестве расширительной машины применяется только газовая турбина. Благодаря наддуву в цилиндры подается на каждый рабочий цикл больше воздуха, чем при всасывании, что дает возможность сжигать большее количество топлива. Это позволяет получать при одинаковых с обычным дизелем размерах цилиндров и той же частоте вращения вала большую мощность.
При сжатии в нагнетателе воздух нагревается, его удельный объем возрастает, что значительно уменьшает воздушный заряд в цилиндре; поэтому в дизелях со средним и высоким наддувом обязательно применяют охлаждение наддувочного воздуха перед поступлением его в цилиндры.
Охлаждение воздуха на каждые 10 °С дает увеличение мощности дизеля на 3…4% и снижение удельного расхода топлива примерно на 1,5…2,0 г/(кВт-ч). Экономичность комбинированного двигателя с наддувом повышается также вследствие увеличения механического КПД и дополнительного использования теплоты отработавших газов.
Эксплуатационные и конструктивные отличия двухтактных и четырехтактных бензиновых двигателей
Основное отличие двухтактного двигателя от четырехтактного обусловлено различием механизмов их газообмена — т.е. подачи воздушно-топливной смеси в цилиндр и удалении отработавших газов. В четырехтактном двигателе процессы очистки и заполнения цилиндра производятся с помощью специального газораспределительного механизма, который открывает и закрывает в определенное время рабочего цикла впускной и выпускной клапана.
В двухтактном двигателе заполнение и очистка цилиндра выполняются одновременно с тактами сжатия и расширения — в то время, когда поршень находится вблизи нижней мертвой точки. Для этого в стенках цилиндра имеются два отверстия — впускное или продувочное и выпускное, через которые производится впуск топливной смеси и выпуск отработанных газа. Газораспределительный механизм с клапанами у двухтактного двигателя отсутствует, что делает его значительно проще и легче.
Литровая мощность.
В отличие от четырехтактного двигателя, в котором один рабочий ход приходится на два оборота коленчатого вала, в двухтактном рабочий ход совершается при каждом обороте коленвала. Это означает, что 2-х тактный двигатель должен иметь (теоретически) вдвое большую литровую мощность (отношение мощности к литражу двигателя), чем 4-х тактный. На практике, однако, превышение составляет всего 1,5-1,8 раза. Это происходит из-за неполного использования хода поршня при расширении, худшего механизма освобождения цилиндра от отработавших газов, траты части мощности на продувку и прочих явлений, связанных с особенностями газообмена 2-х тактных двигателей.
Потребление топлива.
Превосходя четырехтактный двигатель в литровой и удельной мощности, двухтактный двигатель уступает ему в экономичности. Вытеснение отработавших газов осуществляется в нем воздушно-топливной смесью, поступающей в цилиндр из кривошипно-шатунной камеры. При этом часть топливной смеси попадает в выхлопные каналы, удаляясь вместе с отработавшими газами и не производя полезной работы.
Смазка.
Двухтактные и четырехтактные двигатели имеют различный принцип смазки двигателя. В 2-х тактных моделях она осуществляется смешиванием в определенных пропорциях (обычно 1:25-1:50) моторного масла с бензином. Воздушно-топливно-масляная смесь, циркулируя в кривошипной и поршневой камерах, смазывает подшипники шатуна и коленчатого вала, а также зеркало цилиндра. При возгорании топливной смеси масло, существующее в виде мельчайших капель, сгорает вместе с бензином. Продукты его сгорания удаляются вместе с отработанными газами.
Применяются два способа смешивания масла с бензином. Простое перемешивание перед заливкой топлива в бак и раздельная подача, при которой топливно-масляная смесь образуется во впускном патрубке, находящемся между карбюратором и цилиндром.
Раздельная система смазки двухтактного двигателя: 1 — масляный бак; 2 — карбюратор; 3 -разделитель троса газа; 4 — ручка газа; 5 — трос управления подачей масла; 6 — плунжерный насос-дозатор; 7 — шланг, подводящий масло во впускной патрубок.
В последнем случае двигатель имеет масляный бачок, трубопровод которого соединен с плунжерным насосом, подающим масло во впускной патрубок ровно в том количестве, которое требуется в зависимости от количества воздушно-бензиновой смеси. Производительность насоса зависит от положения ручки подачи «газа». Чем больше подается топлива, тем больше поступает масла, и наоборот. Раздельная система смазки двухтактных двигателей является более совершенной. При ней отношение масла к бензину при малых нагрузках может достигать 1:200, что приводит к уменьшению дымности, снижению образования нагара и расхода масла. Эта система используется, например, на современных скутерах с двухтактными двигателями.
В четырехтактном двигателе масло не смешивается с бензином, а подается отдельно. Для этого двигатели оснащены классической системой смазки, состоящей из масляного насоса, фильтра, клапанов, трубопроводной магистрали. Роль масляного бачка может выполнять картер двигателя (система смазки с «мокрым» картером) или отдельный бачок (система с «сухим» картером).
Система смазки четырехтактного двигателя с мокрым и сухим картером: 1 — поддон картера; 2 — маслозаборник; 3 — масляный насос; 4 — масляный фильтр; 5 — предохранительный клапан.
При смазке с «мокрым» картером насос 3 всасывает масло из поддона, нагнетает его в выходную полость и далее по каналам подает к подшипникам коленвала, деталям кривошипно-шатунной группы и газораспределительного механизма.
При смазке с «сухим» картером масло заливается в бачок, откуда с помощью насоса подается к трущимся поверхностям. Та часть масла, которая стекает в картер, откачивается дополнительным насосом, возвращающем ее в бачок.
Для очистки масла от продуктов износа деталей двигателя имеется фильтр. При необходимости устанавливается и охлаждающий радиатор, так как в процессе работы температура масла может подниматься до высоких температур.
Поскольку в двухтактных двигателях масло сгорает, а в четырехтактных нет, требования к его свойствам сильно разнятся. Масло, используемое в двухтактных двигателях, должно оставлять минимум нагара в виде золы и сажи, в то время как масло для четырехтактных двигателей должно обеспечивать стабильность характеристик в течение как можно более длительного времени.
Сравнение основных параметров двухтактных и четырехтактных двигателей:
- Литровая мощность. У 2-х тактных двигателей выше в 1,5-1,8 раза, чем у 4-х тактных.
- Удельная мощность (отношение мощности к массе двигателя). Также выше у 2-х тактных.
- Обеспечение подачи топлива и очистки цилиндра. 4-х тактные двигатели оснащены газораспределительным механизмом, который отсутствует у 2-х тактных двигателей.
- Экономичность. Выше у 4-х тактных, расход топлива у которых примерно на 20-30 % ниже, чем у 2-х тактных.
Двигатель | Количество тактов | Мощность, л.с. | Расход топлива (бензина), кг/час |
Briggs&Stratton | 4 | 3,5 | 0,9 |
Minarelli | 2 | 3,5 | 1,5 |
Tecumzeh | 4 | 3,7 | 0,9 |
Briggs&Stratton | 4 | 5,0 | 1,0 |
Tecumzeh | 4 | 5,0 | 1,0 |
Briggs&Stratton | 4 | 6,0 | 1,1 |
Lombardini | 4 | 7,0 | 1,6 |
Minsel | 2 | 7,0 | 2,1 |
- Система смазки. Масло для 2-х тактных двигателей разводится в бензине или (значительно реже) подается из масляного бака во впускной коллектор и сгорает вместе с топливом в поршневой камере. У 4-х тактных двигателей реализована полноценная система, обеспечивающая качественную смазку двигателя и длительное использование масла.
- Экологичность. У 4-х тактных выше. Выхлоп 2-х тактных двигателей обладает большей токсичностью.
- Шумность работы. 4-х тактные двигатели менее шумные.
- Сложность конструкции. 2-х тактные двигатели значительно проще 4-х тактных.
- Ресурс работы. Выше у 4-х тактных из-за более совершенной системы смазки и меньшей частоты вращения коленвала.
- Скорость набора оборотов. 2-х тактные двигатели набирают обороты быстрее.
- Обслуживание. Сложнее у 4-х тактных из-за наличия газораспределительного механизма и более сложной системы смазки.
- Вес. 2-х тактные значительно легче.
- Цена. 2-х тактные дешевле.
Благодаря своей высокой удельной мощности, небольшому весу, простоте обслуживания двухтактные двигатели имеют достаточно широкую область применения. В отношении некоторой бензотехники вопрос, какой двигатель использовать — двухтактный или четырехтактный — даже не возникает. В бензопилах, например, двухтактный двигатель благодаря своему небольшому весу и высокой удельной мощности находится вне конкуренции по сравнению с четырехтактным. Широко используются 2-х тактные двигатели также в скутерах, мототехнике, авиамоделестроении.
И все же из-за токсичности выхлопа и шумности 2-х тактные двигатели сдают свои позиции перед 4-х тактными. Большая их конкурентоспособность возможна при использовании новых технологических решений. Таких, например, как идея компаний Aprilia и Orbital использовать для продувки двухтактного двигателя чистый воздух. Топливо в их модели подается через форсунку, расположенную в головке двигателя, а масло добавляется в продувочный воздух. Такой двигатель по экономичности даже превосходит четырехтактный, его экологичность также соответствует современным требованиям. Вот только главное достоинство 2-х тактных двигателей — простота их конструкции — несколько страдает от нововведения.
ПОХОЖИЕ СТАТЬИ:
- BMW 2 SERIES — ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
- Opel Agila: описание,характеристики,фото,видео,комплектация.
- Бмв е65 описание,технические характеристики,отзывы,фото,видео,комплектация.
- Бмв е39: обзор,описание,фото,видео,комплектация,характеристики
- Бмв е30 технические характеристики обзор описание фото видео комплектация.
- Системы охлаждения двигателя проблемы и неисправности фото описание
- Mercedes-Benz 190E 1986 года — стоимостью 55 500 $
- Бмв е28 обзор,история,характеристики,тюнинг,цена,фото,видео,габариты.
- Мерседес официально представил новый x-класса пикап.
- бмв е23: обзор,технические характеристики,модификации,фото,видео.
- Рама и тягово-сцепное устройство: описание,устройство,фото.
- Инструменты, аксессуары и запасные части для автомобиля
- Надежная и стабильная работа системы охлаждения двигателя
- Бмв f30 обзор,технические характеристики,отзывы,фото,видео,салон.
- Audi rs6 описание модели характеристики модификации фото видео
Чем отличается двухтактный двигатель от четырехтактного
При покупке нового скутера люди часто задаются вопросом типа «Какой лучше 2 тактный или 4 тактный«. Однозначного ответа на этот вопрос нету. Каждый мотолюбитель найдет для себя как недостатки так и преимущества в обоих типах двигателей. Чтобы разобратся для себя, какой скутер лучше 2 тактный или 4 тактный, прежде всего следует узнать чем отличается 2 тактный от 4 тактного двигателя.
Отличие двухтактного от четырехтактного
Главное различия двухтактных и четырехтактных двигателей обуславливается отличием устройств их газообмена — подачи топливно-воздушной смеси в цилиндр и удалении отработаных газов. В двигателе 4т процессы очищения и наполнения цилиндра выполнялняются с помощью особого газораспределительного механизма (ГРМ), какой закрывает и открывает в конкретное время рабочего цикла впускной и выпускной клапаны. В двигателе 2т заполнение и очистка цилиндра производятся параллельно с тактами сжатия и расширения — в то время, когда поршень располагаться поблизости НМТ (нижняя мертвая точка). Для этого в стенках цилиндра есть два отверстия — впускное (продувочное) и выпускное, через какие выполняется подача топливной смеси и выпуск отработанных газов. Распределительный механизм с клапанами у двухтактного двигателя отсутствует, что делает его существенно легче и проще.
Работа двигателя 2т | Работа 4т двигателя |
Какой двигатель мощнее 2 тактный или 4 тактный
В отличие от 4 т двигателя, в котором один рабочий ход приходится на два оборота коленвала, в 2 т моторе рабочий ход совершается при каждом обороте коленчастого вала. Это значит, что двухтактный двигатель обязан иметь (в теории) в два раза большую литровую мощность (отношение мощности к объему мотора), чем четырехтактный. Но практически преобладание составляет только 1,5 — 1,8 раза. Это случается из-за неполноценного применения хода поршня при расширении, худшего механизма избавления цилиндра от отработавших газов, затраты доли мощности на продувку и остальных явлений, связанных с отличительными чертами газообмена 2 тактных двигателей.
Расход топлива 2т и 4т
Превосходя четырехтактный мотор в литровой и удельной мощности, двухтактный двигатель уступает ему в экономичности. Выталкивание отработавших газов исполняется в нем топливно-воздушной смесью, прибывающей в цилиндр из кривошипно-шатунной камеры. При этом часть топливной смеси оказывается в выхлопных каналах, удаляясь совместно с отработавшими газами и не вырабатывая полезной работы.
Смазка 4 т и 2 т
Двухтактные и четырехтактные двигатели обладают различной по конструкции и принципу действия системой смазки двигателя. В 2-х тактных скутерах она осуществляется смешиванием в установленных пропорциях (обычно 1:25 … 1:50) моторного масла с топливом. Топливно-воздушно-масляная смесь, циркулируя в кривошипной и поршневой камерах, смазывает подшипники шатуна и коленвала, а также зеркало цилиндра. При возгорании топливной смеси масло, сгорает совместно с бензином. Продукты его сгорания удаляются вместе с отработанными газами.
Используются 2 метода смешивания масла с бензином. Обычное смешивание перед заливкой горючего в бак и отдельная подача, при которой топливно-масляная смесь сформируется во впускном патрубке, находящемся между карбюратором и цилиндром.
Раздельная система смазки двухтактного двигателя
- масляный бак
- карбюратор
- разделитель троса газа
- ручка газа
- трос управления подачей масла
- плунжерный насос-дозатор
- шланг, подводящий масло во впускной патрубок
Во всех современных скутерах 2т используется отдельная подача масла (мы заливаем масло 2т отдельно от бензина). В двухтактном скутере двигатель имеет масляный бак, трубопровод какого связан с маслонасосом, подающим масло во впускной патрубок в том количестве, какое необходимо в зависимости от количества воздушно-бензинной смеси. Продуктивность насоса находится в зависимости от положения ручки «газа». Чем больше подается горючего, тем больше поступает масла, и напротив. Отдельная система смазки двухтактных движков считается более безупречной. При ней отношение масла к бензину при небольших нагрузках может досягать 1:200, что приводит к сокращению дымности, уменьшению образования нагара и расхода масла. Эта конструкция применяется, на современных скутерах с двухтактными моторами.
В четырехтактном двигателе масло не смешивается с топливом, а подается раздельно. Для этого двигатели обустроены традиционной системой смазки, складывающейся из масляного насоса, фильтра, клапанов, трубопроводов. Роль масляного бачка может выполнять картер двигателя (система смазки с мокрым картером) или отдельный бачок (система с сухим картером).
Система смазки четырехтактного двигателя с мокрым и сухим картером
- поддон картера
- маслозаборник
- масляный насос
- масляный фильтр
- предохранительный клапан
При смазке с «мокрым» картером насос 3 вбирает масло из поддона, нагнетает его в выходящую полость и дальше по каналам подает к подшипникам коленчастого вала, деталям КШМ и ГРМ. При смазке с «сухим» картером масло заливается в бак, откуда насосом подается к трущимся плоскостям. Та часть масла, которая стекает в картер, откачивается вспомогательным насосом, отдающем ее назад в бачок. Для очищения масла от продуктов износа деталей мотора имеется фильтр. При потребности устанавливается и охлаждающий радиатор, так как в процессе работы температура масла может подыматься до больших температур.
Чем отличается двухтактное масло от четырехтактного
Так как в 2т двигателях масло сгорает, а в 4т нет, требования к его свойствам очень разнятся. Масло, применяемое в 2 тактных двигателях, обязано оставлять минимальное колличество нагара в виде золы и сажи, в то время как масло для 4т двигателей должно гарантировать стабильность характеристик в течение как можно более долгого времени.
Принцип работы двухтактного и четырехтактного двигателя
Изобретение двигателя внутреннего сгорания, а также применение его в разных сферах, в том числе и мото — и автотранспорте, позволило значительно упростить жизнь человеку.
Конечно, двигатели внутреннего сгорания, такими какие они есть сейчас, появились не сразу, с момента появления он постоянно совершенствуется.
Хотя на данный момент у этих двигателей лишь модернизируются те или иные составляющие, основная же концепция их остается неизменной.
Цикл работы двигателя, рабочие такты
Появившиеся очень давно двигателя внутреннего сгорания как работающие на бензине, так и дизельном топливе, и применяемые сейчас, делятся на два вида:
- Двухтактные;
- Четырехтактные.
Как видено из названия сводится различие принципа функционирования двигателя в количестве тактов – движений поршня, за которые он выполняет определенный цикл работ.
Для четырехтактного двигателя определено 4 такта в результате которых один поршень выполняет полный цикл – впуск, сжатие, рабочий ход и выпуск.
В каждом из этих циклов в цилиндре двигателя выполняются определенные процессы. Все они направлены на достижение одной цели – обеспечение преобразования энергии сгорания топлива во вращение коленчатого вала.
Так, при такте впуска в цилиндр подается горючая смесь, состоящая из топлива и воздуха, без которого процесс горения невозможен. Причем образование и подача этой смеси у бензинового и дизельного двигателя отличаются.
Далее идет такт сжатия, при котором поступившая смесь сжимается в объеме. Делается это для того, чтобы в меньшем объеме образовалось больше горючей смеси.
Уменьшение объема позволяет при следующем такте обеспечить более высокое КПД при сгорании топлива.
Рабочий ход – единственный из всех тактов, при нем энергия отдается, а не забирается и для него существуют все остальные такты.
После сжатия происходит воспламенение смеси, у бензиновых двигателей – за счет искры, проскакиваемой между электродами свечи накаливания, у дизелей – за счет высокого давления, при котором смесь нагревается настолько, что воспламеняется.
При воспламенении смеси выделяется энергия, которая воздействует на поршень, заставляя его двигаться вниз, при этом выделенная от сгорания энергия передается поршнем на коленвал посредством шатуна.
Выпуск – такт, направленный на очистку полости цилиндра от продуктов горения. После очистки цикл повторяется вновь.
Из всего вышесказанного выходит, что один цикл движения поршня в цилиндре направлен только на получение одного такта – рабочего хода, все остальные такты только помогают получить его, причем для их выполнения задействуется часть энергии, которую отдает такт рабочего хода.
Каждый такт двигателя соответствует определенному движению поршня в цилиндре.
Существуют две крайние точки положения поршня, получивших название мертвых точек.
Одна из них верхняя – выше поршень уже подняться в цилиндре не может, а вторая – нижняя, при которой он ниже не опускается.
Обеспечиваются эти точки кривошипом коленчатого вала, к которому поршень присоединен шатуном.
При движении поршня от одной точки к другой, а затем наоборот, и выполняются такты. То есть, при движении поршня от нижней точки (НМТ) к верхней (ВМТ) могут выполняться два такта – сжатие и выпуск, а при движении наоборот – впуск и рабочий ход.
Имея представление о тактах, можно говорить и о типах двигателей, а их два – 2-тактный и 4-тактный.
У каждого из этих двигателей цикл производится по-разному, что влияет на их конструкцию и многие другие параметры и характеристики.
Конструкция и принцип работы 2-тактного двигателя
2-тактный двигатель нашел наибольшее распространение на малой технике (бензопилы, мотокосы), мотоциклах.
Когда-то существовали даже дизельные 2-х тактные двигатели, устанавливаемые на грузовики, к примеру, МАЗ-200.
Интересно, что описанные выше такты у любого двухтактного двигателя никуда не делись, просто они были совмещены.
В итоге это позволяет сократить полный цикл всего в один оборот колен. вала.
Так, при движении поршня от НМТ производится сразу два такта – выпуск и сжатие, а при движении от ВМТ – впуск и рабочий ход.
Достигнуть этого всего возможно при использовании окон в цилиндрах, через которые производится засасывание и перекачивание топливной смеси, а также отвод продуктов горения.
Открытие и закрытие этих окон обеспечивается самим поршнем. Чтобы соблюдалась правильность работы механизма, окна располагаются на разных уровнях в стенках цилиндра.
Чтобы было более понятно, возьмем двигатель мотоцикла «ИЖ Планета 5».
Данный мотоцикл укомплектован одноцилиндровым двухтактным мотором.
Цилиндр располагается поверх корпуса двигателя, охлаждение его воздушное, поэтому у него по окружности располагаются ребра охлаждения.
С одной стороны, к цилиндру прикреплен патрубок, идущий от карбюратора, по нему в цилиндр поступает горючая смесь.
Напротив, этого патрубка устанавливается труба отвода отработанных газов.
Вверху цилиндр прикрывает головка, в которой размещена свеча накаливания.
Внутри цилиндра располагается поршень, связанный с кривошипом коленчатого вала через шатун. Далее уже он связан со сцеплением и трансмиссией, но это пока неважно.
Для подачи топлива в надпоршневое пространство в двухтактном двигателе задействовано и подпоршневое пространство.
При движении поршня вверх в подпоршневом пространстве создается разряжение, в которое засасывается топливовоздушная смесь через впускное окно.
Подача же из подпоршневого пространства в надпоршневое производится от избыточного давления, которое возникает при движении поршня вниз.
Подача топлива производится через перепускное окно. Выпуск продуктов горения проходит через выпускное окно.
Теперь как все это работает.
Начнем с движения поршня к ВМТ. Находясь в НМТ, поршень обеспечивает открытие перепускного и выпускного окон. Избыточное давление в подпоршневом пространстве выталкивает горючую смесь в надпоршневое пространство.
Двигаясь вверх, поршень перекрывает открытые окна, в результате чего камера сгорания становится герметичной.
Доходя до ВМТ, поршень сжимает смесь далее подается искра от свечи накаливания, которая установлена в головке цилиндра.
В это время, поршень двигаясь вверх, открывает впускное окно, через которое смесь поступает в подпоршневое пространство. То есть получается, что в одном такте – движении поршня от НМТ к ВМТ происходит два действия: вначале впуск топлива, затем – сжатие.
После воспламенения топлива, выделенная при этом энергия толкает поршень вниз.
Двигаясь вниз он от ВМТ, поршень открывает сначала выпускное окно. При сгорании объем продуктов горения значительно увеличивается, поэтому они сразу начинают вырываться через это окно.
Получается, что при движении поршня вниз вначале выполняется рабочий ход, а после открытия выпускного окна – еще и такт выпуска.
Дальше при движении поршня вниз, он открывает перепускное окно и топливо начинает поступать в надпоршневое пространство – цикл начинает повторяться, при этом на выполнение всего цикла понадобилось только движение поршня сначала вверх, а затем вниз, что соответствует одному обороту колен. вала.
Принцип работы 4-тактного двигателя
Теперь о принципе работы 4-тактных двигателей. Опять же возьмем одноцилиндровый двигатель мотоцикла, но на этот раз «Honda CB 125E».
У этого мотора тоже цилиндр расположен над картером и имеет воздушное охлаждение.
Внутри цилиндра установлен поршень, связанный с коленвалом посредством шатуна. Сверху цилиндр закрыт головкой.
Конструктивной особенностью этого двигателя является наличие механизма, который обеспечивает подачу смеси и отвод продуктов горения – газораспределительный механизм.
Установлен у этого мотора он в головке блока. Суть работы этого механизма – своевременное открытие впускного и выпускного окон, которые закрыты клапанами.
Работает все по такому принципу. Вначале – такт впуска. Чтобы обеспечить этот такт, поршень должен двигаться от ВМТ вниз. При этом клапан открывает впускное окно, через которое разрежением засасывается топливо в цилиндр.
После достижения НМТ впускное окно клапаном закрывается, поршень в это время начинает двигаться вверх, начинается такт сжатия.
При этом такте оба окна закрыты, цилиндр полностью герметичен, а поршень при движении вверх сжимает горючую смесь, поступившую ранее.
При подходе поршня к ВМТ, когда смесь по максимуму сжата, производится ее воспламенение от искры свечи.
Избыточное давление при сгорании заставляет двигаться поршню вниз – происходит рабочий ход, при котором окна тоже остаются закрытыми.
После достижения НМТ, поршень начинает движение вверх, в этот момент клапан открывает выпускное окно и поршень выталкивает через него продукты горения.
В результате получается, что для выполнения тактов впуска и сжатия нужен один оборот колен. вала, а для рабочего хода и выпуска – еще один оборот.
Это были принципы работ 2-тактного и 4-тактного двигателей на примере мотоциклов.
Эти принципы используются на всех двигателях внутреннего сгорания – от моторчика авиамодели до мощного 12-цилиндрового мотора танка.
Конструктивные особенности
Помимо различий в принципе работы у этих моторов еще и существуют конструктивные особенности.
2-тактный двигатель конструктивно проще. Механизм газораспределения – это дополнительное оснащение мотора, которое усложняет конструкцию.
У 2-тактного мотора этот механизм отсутствует и его роль выполняет поршень, открывая и закрывая те или иные окна.
Помимо этого, данный двигатель не нуждается в системе смазки. Обусловлено это тем, что в процессе работы задействовано и подпоршневое пространство, где располагается колен. вал.
Но поскольку кривошипно-шатунный механизм требует смазки, то у этого двигателя она производится вместе с топливом, то есть моторное масло добавляет в топливо, и при поступлении топлива в это пространство, имеющееся масло смазывает механизм.
У 4-тактных двигателей конструкция включает и механизм газораспределения, и отдельную систему смазки.
Это значительно усложняет конструкцию, однако эти двигателя являются более приоритетными, чем двухтактные из-за ряда эксплуатационных недостатков последних.
Эксплуатационные показатели
Теперь об эксплуатационных показателях.
Литровая мощность.
Во многом 2-тактные двигатели по этим показателям лучше. Сказывается затраченная и полученная энергия на осуществление одного рабочего цикла.
У 2-тактного двигателя каждый оборот – это один полный цикл, что обеспечивает больший показатель литровой мощности – отношению объема цилиндра к выходной мощности. В среднем литровая мощность 2-тактного мотора выше, чем у 4-тактного в 1,5 раза.
Удельная мощность.
Еще один показатель, по которому 2-тактный мотор превосходит 4-тактный – это удельная мощность.
Данный показатель характеризует отношение выходной мощности к общей массе двигателя.
Проигрывая в мощностных показателях, 4-тактный двигатель лучше по показателям расхода топлива.
У него подача смеси происходит дозировано, через впускное окно, при этом выпускное – закрыто.
У 2-тактного же мотора существует момент, когда выпускное и перепускное окна оказываются открытыми, при этом поступающее топливо частично выходит через выпускное окно вместе с продуктами горения, то есть, часть топлива не участвует в процессе, а просто вылетает в атмосферу.
Смазка двигателя.
У 4-тактного мотора имеется система смазки, обеспечивающей смазку всех узлов, но при этом масло циркулирует по закрытой системе, потери его незначительны и в основном из-за износа двигателя.
Смазка 2-тактного мотора производится вместе с топливом, а значит, выполнив свою функцию масло попадает в цилиндр, где и сгорает.
Надежность моторов.
По поводу надежности конструкции этих моторов, то здесь довольно интересная ситуация.
Конструктивно 2-тактный мотор проще, а значит и надежнее. Но у 4-тактного мотора есть более совершенная система смазки, которая обеспечивает больший ресурс мотору.
Вот и получается, что оба мотора надежны, но каждый по-своему. А вот по ремонтопригодности 2-тактный мотор все-таки лучше.
Та же совместная смазка вместе с топливом у 2-тактных двигателей сказывается и на экологичности этого мотора. Сгорание масла в большей степени обеспечивает загрязнение атмосферы.
Совмещение рабочих тактов у 2-тактного двигателя сказывается на шумности работы установки, она несколько выше, чем у 4-тактного агрегата.
Зато отсутствие дополнительных систем и механизмов обеспечивает более легкую и менее металлоемкую конструкцию, что сказывается на общей массе установки.
Более сложная конструкция 4-тактной установки играет и положительную роль.
У этих моторов существует возможность модернизации системы питания, применение инжекторных систем с раздельной подачей топлива и воздуха в цилиндры, повышающих мощность и экономичность двигателей.
У 2-тактных моторов возможность совершенствования ограничена все той же смазкой вместе с топливом. Хотя попытки улучшить показатели этих моторов осуществляются постоянно.
Итог
В целом, применение до сих пор имеют оба этих мотора и вряд ли когда-либо откажутся от использования одного из них, оскольку у каждого из них имеются свои преимущества, востребованные в тех или иных условиях.
Оцените статью