Устройство электродвигателя: типы, устройство, принцип работы, параметры, производители

Содержание

устройство, принцип работы, виды, способы пуска

Способы пуска и схемы подключения

Асинхронный электродвигатель с короткозамкнутым ротором обладает низкой себестоимостью, большими пусковыми токами и низким усилием на старте. Поэтому для различных целей могут применять различные способы пуска, снижающие бросок тока в обмотках и улучшающие рабочие характеристики:

  • прямой – напряжение на электродвигатель подается через пускатели или контакторы;
  • переключение схемы соединения обмоток электродвигателя со звезды на треугольник;
  • понижение напряжения;
  • плавный пуск;
  •  изменение частоты питающего напряжения.

Однофазного асинхронного двигателя.

Для асинхронного однофазного электродвигателя могут использоваться три основных способа пуска:

  • С расщеплением полюсов – используется в электродвигателях особой конструкции, но недостатком методы является постоянная потеря мощности.
  • С конденсаторным пуском – вводит пусковой конденсатор в момент запуска асинхронного двигателя и убирает его со схемы через несколько секунд после начала работы. Обладает максимальным вращательным моментом.
  • С резисторным пуском электродвигателя – обеспечивает начальный сдвиг между векторами ЭДС обмоток для скольжения в асинхронной машине.

Трехфазного асинхронного двигателя.

Трехфазные асинхронные агрегаты могут подключаться такими способами:

  • Напрямую в цепь через пускатель или контактор, что обеспечивает простоту процесса, но формирует максимальные токи. Этот способ не подходит в случае больших механических нагрузок на вал.
  • Переключением схемы со звезды на треугольник – применяется для снижения токов в обмотках электродвигателя за счет уменьшения питающего напряжения с линейного на фазное.
  • Путем подключения через преобразователь напряжения, реостаты или автотрансформатор для снижения разности потенциалов. Также используется изменение числа пар полюсов, частоты питающего напряжения и прочие.

Помимо этого трехфазные асинхронные двигатели могут использовать прямую и реверсивную схему включения в цепь. Первый вариант применяется только для вращения вала электродвигателя в одном направлении. В реверсивной схеме можно переключать движение рабочего органа в прямом и обратном направлении.

Рис. 9: прямая схема без возможности реверсирования

Рассмотрим нереверсивную схему пуска асинхронного электродвигателя (рисунок 9). Здесь, через трехполюсный автомат QF1 питание подается на пускатель KM1. При нажатии кнопки SB2 произойдет подача напряжения на обмотки электродвигателя, его остановка осуществляется кнопкой SB1. Тепловое реле KK1 применяется для контроля температуры нагрева, а лампочка HL1 сигнализирует о включенном состоянии контактора.

Рисунок 10: схема прямого включения с реверсом

Реверсивная схема (смотрите рисунок 10) устроена аналогичным образом, но в ней используются два пускателя KM1 и KM2. Прямое включение асинхронного электродвигателя производиться кнопкой SB2, а обратное SB3.

Устройство и принцип работы электроинструмента

Содержание:

  1. 1. Коллекторный электродвигатель постоянного тока
    1. 1.1. Принцип действия
    2. 1.2. Недостатки
  2. 2. Бесколлекторный двигатель
  3. 3. Редуктор
    1. 3.1. Особенности редукторов
  4. 4. Устройства управления
  5. 5. Для безопасной работы

Двигатель, редуктор, устройства управления и детали для безопасной работы — вот основные узлы каждого электроинструмента. Для ручной машины важно, что бы она была как можно легче и меньше. Кроме того, от нее требуется высокая скорость, которую можно регулировать. Этим условиям отвечают двигатели постоянного тока. Они подразделяются на коллекторные и вентильные.

Коллекторный электродвигатель постоянного тока

Что бы понять, как электрическая энергия превращается в механическую, познакомимся с устройством двигателя. Его основные узлы: статор (индуктор), ротор (якорь) и примыкающий к нему щеточноколлекторный узел.

Статор — неподвижная стальная деталь, к которой прикрепляются главные и добавочные полюсы. Обмотка главных полюсов создает магнитное поле, а добавочная улучшает работу коллектора.

Вращающийся ротор устанавливается на валу. Он состоит из сердечника и обмотки. Ее концы соединяются с пластинами коллектора, к которому, в свою очередь, примыкают щетки — через них обмотка якоря соединяется с внешней цепью. Щетки занимают определенное положение по отношению к полюсам двигателя. В некоторых электроинструментах имеется поворотный щеткодержатель-траверса, благодаря ему положение щеток можно изменять. Это позволяет сохранить мощность при работе в режиме реверса. В остальных случаях вращение в обратном режиме включают электронные магнитные пускатели.

Принцип действия

Двигатель работает за счет электромагнитной индукции. При подаче напряжения на графитовые щетки, они замыкаются с ротором. По его обмотке проходит электрический ток. Так как ротор находится внутри магнитного поля статора, на него начинают действовать силы Ампера. На концах якоря они направлены в противоположные стороны, что создает крутящий момент. Ротор поворачивается на 180°. В этот момент крутящий момент становится равным нулю. Что бы вращение продолжалось необходимо переключить направление тока — провести коммутацию. По коллектору, который начал вращаться вместе с ротором, скользят щетки, в нужный момент они переходят с одной пластины на другую, меняя направление тока в обмотках ротора.

Частота вращения двигателя регулируется за счет изменения магнитного поля статора, которое в свою очередь генерируется током возбуждения двигателя. На этот ток можно повлиять реостатом, транзистором, т. е. любым устройством с активным сопротивлением. Таким образом, осуществляется электронная регулировка скорости.

Недостатки

Слабое место коллекторного двигателя — графитовые щетки, в процессе эксплуатации они истираются.

При интенсивной нагрузке их приходится часто заменять. Кроме того, такой двигатель шумит и вибрирует во время работы, особенно на больших скоростях. Бороться с этими недостатками помогает использование в конструкциях качественных деталей и внешних антивибрационных элементов.

Бесколлекторный двигатель

Существует вид двигателей постоянного тока, в которых отсутствует щеточно-коллекторный узел. Ток в них изменяется с помощью электронных переключателей, что избавляет конструкцию от наличия щеток. Такие моторы называют вентильными. Принцип их работы аналогичен описанному выше. От коллекторных их отличает конструкция: магниты размещены на роторе, а обмотка на статоре.

Датчик углового положения ротора указывает электронному блоку, когда нужно менять направление тока. Единственный недостаток вентильного двигателя — дорогостоящие детали. По этой причине в ручных электроинструментах в основном используются коллекторные двигатели, с вентильным — лишь единичные модели: компании Makita и Hitachi предлагают аккумуляторные ударные шуруповерты, называя их инструментами будущего.

Редуктор

Механическую энергию, которую вырабатывает двигатель, нужно передать на рабочий орган машины (шпиндель). Эту функцию выполняет редуктор. Часто его называют понижающим. Скорость вращения входного вала высокая, механическая передача (одна или несколько) преобразует ее так, что на выходном валу получается меньшее число оборотов, но высокий крутящий момент.

В ручных машинах применяют разнообразные виды механических передач: зубчатая, ременная, цепная, планетарная. В большинстве случаев на выходе получается вращение. Но есть инструменты, в которых этот вид движения преобразуется в другой.

Ударный механизм перфоратора работает следующим образом. На валу установлен «пьяный» подшипник — качающийся привод, которой преобразует вращательное движение от двигателя в поступательное — цилиндра. В пространстве между цилиндром, поршнем и бойком, находится воздух. Он сжимается и заставляет поршень перемещаться сначала вперед к бойку, а затем возвращает его в исходное положение.

Редуктор электролобзика преобразует вращение вала двигателя в возвратно-поступательное движение ползуна. Расположенный вертикально ползун перемещает пилку вниз и вверх. Пилка опирается на опорный ролик. Наличие функции маятникового хода означает, что опорный ролик и вилка, на которой он держится, могут отклоняться назад. В результате пилка, кроме основного, совершает движение вперед и назад. Это увеличивает скорость прямолинейного реза. Ступени маятникового хода задаются степенью отклонения ролика.

В вибрационных шлифмашинах эксцентрик, установленный на валу, так преобразует вращательное движение, что подошва всего лишь колеблется с маленькой амплитудой. В эксцентриковых шлифовальных машинах вращательное движение рабочего органа сохраняется, но эксцентрик добавляет ему колебания. Такие преобразования позволяют выполнять с помощью этих инструментов тонкую шлифовку.

Особенности редукторов

Для пользователя имеет значение, из каких деталей изготовлен редуктор, от этого зависит его надежность и срок службы всего электроинструмента. В моделях бытового класса часто используются шестерни из пластмассы, в профессиональных — редуктор полностью металлический. Преимуществом считается, если и корпус то же выполнен из металла. В этом случае инструмент лучше выдерживает большие нагрузки и удары.

Важной функцией, которую может выполнять редуктор, является ступенчатое изменение частоты вращения выходного вала. Она доступна на отдельных моделях дрелей, шуруповертов. Механическое переключение скоростей позволяет работать с меньшей скоростью и большим крутящим моментом на первой передаче и с более высоким числом оборотов — на второй. Если сравнить технические характеристики в цифрах, то можно сразу заметить, что инструменты с двухскоростным (трехскоростные встречаются редко) редуктором отличаются большим числом оборотов по сравнению с обычными моделями, в которых обороты регулируются только электроникой. Эта особенность обеспечивает высокую производительность и оптимальный подбор режима работы.

Устройства управления

Для питания двигателя в электроинструментах используются различные схемы, в том числе микропроцессорные электроприводы. Обязательным элементом любой системы является выпрямитель. Он преобразует переменный ток сети в постоянный, который подается на электродвигатель. В аккумуляторных инструментах, которые питаются от батарей, выпрямитель не требуется.

Скорость вращения регулирует преобразователь частоты. Самый простой его вариант — это несколько реле, с помощью которых число оборотов можно установить вручную. В систему так же могут входить магнитные пускатели с кнопкой для изменения направления вращения двигателя (функция реверса). Устройство управления двигателем размещают под рукояткой или вблизи нее, где на корпус выводятся курок-выключатель, колесико регулировки скорости, кнопка реверса.

Для безопасной работы

К ручным инструментам предъявляются особые требования, связанные с безопасностью работы. Электропроводящие детали покрывают специальным материалом для защиты пользователя от поражения током. Многие производители, кроме основной изоляции, на случай ее повреждения, применяют дополнительную, получая, таким образом, двойную. Остальные защитные устройства, такие как муфты, фиксаторы применяются в зависимости от вида инструмента.

Асинхронные электродвигатели: схема, принцип работы и устройство

Асинхронный электродвигатель – это электрический агрегат с вращающимся ротором. Скорость вращения ротора отличается от скорости, с которой вращается магнитное поле статора. Это – одна из важных особенностей работы агрегата, так как если скорости выровняются, то магнитное поле не будет наводить в роторе ток и действие силы на роторную часть прекратится. Именно поэтому двигатель называется асинхронным (у синхронного показатели скоростного вращения совпадают). 

В данной статье мы сфокусируемся на том, что представляет собой схема работы такого двигателя и – самое главное, насколько она эффективна при его эксплуатации.

Устройство и принцип действия

Ток в обмотках статора создает вращающееся магнитное поле. Это поле наводит в роторе ток, который начинает взаимодействовать с магнитным полем таким образом, что ротор начинает вращаться в ту же сторону, что и магнитное поле.

Относительная разность скоростей вращения ротора и частоты переменного магнитного поля называется скольжением. В установившемся режиме скольжение невелико: 1-8% в зависимости от мощности.

Асинхронный двигатель

Подробнее о принципах работы асинхронного электродвигателя – в частности, на примере агрегата трехфазного тока, вы можете прочесть здесь, на сайте, в одном из наших материалов. Далее же мы разберем, какие бывают разновидности асинхронных электрических машин.

Виды асинхронных двигателей

Можно выделить 3 базовых типа асинхронных электродвигателей:

  • 1-фазный – с короткозамкнутым ротором
  • 3-х фазный – с короткозамкнутым ротором
  • 3-х фазный – с фазным ротором

Схема устройства асинхронного двигателя с короткозамкнутым ротором

То есть, двигатели классифицируются по количеству фаз (1 и 3) и по типу ротора – с короткозамкнутым и с фазным. При этом число фаз с установленным типом ротора никак не взаимосвязано.

Ещё одна разновидность – асинхронный двигатель с массивным ротором. Ротор сделан целиком из ферромагнитного материала и фактически представляет собой стальной цилиндр, играющий роль как магнитопровода, так и проводника (вместо обмотки). Такой вид двигателя очень прочный и обладает высоким пусковым моментом, однако в роторе могут возникать большие потери энергии, а сам он может сильно нагреваться.

Какой ротор лучше, фазный или короткозамкнутый?

Преимущества короткозамкнутого:

  • Более-менее постоянная скорость вне зависимости от разных нагрузок
  • Допустимость кратковременных механических перегрузок
  • Простая конструкция, легкость пуска и автоматизации
  • Более высокие cos φ (коэффициент мощности) и КПД, чем у электродвигателей с фазным ротором

Недостатки:

  • Трудности в регулировании скорости вращения
  • Большой пусковой ток
  • Низкий мощностной коэффициент при недогрузках

Преимущества фазного:

  • Высокий начальный вращающий момент
  • Допустимость кратковременных механических перегрузок
  • Более-менее постоянная скорость при разных перегрузках
  • Меньший пусковой ток, чем у двигателей с короткозамкнутым ротором
  • Возможность использования автоматических пусковых устройств

Недостатки:

  • Большие габариты
  • Коэффициент мощности и КПД ниже, чем у электродвигателей с короткозамкнутым ротором

Какой двигатель лучше выбрать?

Асинхронный или коллекторный? Синхронный или асинхронный? Сказать однозначно, что определенный тип двигателя лучше, точно нельзя. В пользу асинхронных моделей говорят их следующие преимущества.

  • Относительно небольшая стоимость
  • Низкие эксплуатационные затраты
  • Отсутствие необходимости в преобразователях при включении в сеть (только для нагрузок, не нуждающихся в регулировании скорости)
  • Отсутствие потребности в дополнительном источнике питания – в отличие от синхронных аналогов

Тем не менее, у асинхроников есть недостатки. А именно:

  • Малый пусковой момент
  • Высокий пусковой ток
  • Отсутствие возможности регулировки скорости при подключении к сети
  • Ограничение максимальной скорости частотой сети
  • Высокая зависимость электромагнитного момента от напряжения питающей сети
  • Низкий мощностной коэффициент – в отличие от синхронных агрегатов

Тем не менее, все перечисленные недостатки можно устранить, если питать асинхронный двигатель от статического частотного преобразователя. Кроме того, если соблюдать правила эксплуатации и не перегружать агрегаты, то они исправно прослужат длительный срок.

Но даже несмотря на то, что синхронные машины обладают довольно конкурентными преимуществами, большинство двигателей сегодня – именно асинхронные. Промышленность, сельское хозяйство, ЖКХ и многие другие отрасли используют именно их за счет высокого КПД. Но коэффициент полезного действия может значительно снижаться за счет таких параметров, как:

  • Высокий пусковой ток
  • Слабый пусковой момент
  • Рассинхрон между механическим моментом на валу привода и механической нагрузкой (это провоцирует высокий рост силы тока и избыточные нагрузки при запуске, а также снижение КПД при пониженной нагрузке)
  • Невозможность точной регулировки скорости работы прибора

Другими факторами, от которых зависит КПД асинхронного электродвигателя, являются:

  • степень загрузки двигателя по отношению к номинальной
  • конструкция и модель
  • степень износа
  • отклонение напряжения в сети от номинального.

Как избежать снижения КПД?

  • Обеспечение стабильного уровня загрузки – не ниже 75%
  • Увеличение мощностного коэффициента
  • Регулировать напряжение и частоту подаваемого тока

Для этого используются:

  • Частотные преобразователи – они плавно изменяют скорость вращения двигателя путем изменения частоты питающего напряжения
  • Устройства плавного пуска – они ограничивают скорость нарастания пускового тока и его предельное значение, как одни из факторов, из-за которых падает КПД

Итак, асинхронный двигатель имеет довольно широкую область использования и применяется во многих хозяйственных и производственных сферах деятельности. У нас, в компании РУСЭЛТ, представлен широкий выбор электродвигателей данного типа, приобрести который вы можете по ценам, которые ощутимо выгоднее, чем у конкурентов.


Двигатель электромобиля — принцип работы, устройство, виды

По планам многих автоконцернов – именно за тяговым двигателем для электромобиля – будущее. Так известно, что в плане развития известного гиганта Bentley Motors значится, что к 2030-му году компания полностью трансформируется в производителя электроавтомобилей. На электродвигатели ставки также делают такие известные на весь мир компании, как Nissan, Volvo, Aston Martin. 

Тенденции таковы, что в массовом производстве сейчас больше представлены легковые электромобили и городской электротранспорт (согласно планам, в ряде таких стран как, к примеру, Франция и Норвегия в 2025-2030-м гг. автобусы в городах будут полностью заменены на электротранспорт).

Но чувствуется интерес и к установке электромоторов на грузовой транспорт. Особенно электродвигатели интересны производителям городских развозных фургонов, терминальных тягачей и коммунальных грузовиков.

На весь мир уже хорошо известен седельный тягач капотного типа Tesla Semi, в коммунальном хозяйстве США активно не первый год используют мусоровозы PETERBILT на электротяге, в Евросоюзе возрастает интерес к седельному тягачу с электродвигателем Emoss Mobile Systems B.V. и Renault Trucks –развозному автомобилю для продуктов.

На постсоветском пространстве свой коммерческий электротранспорт пока только начинает появляться, но уже активно говорят про грузовик МАЗ-4381Е0 (на грузовике установлен асинхронный тяговый электродвигатель мощностью 70 кВт (95 л.с.), ориентированный на транспортировку грузов в черте города, и электрогрузовик Moskva опытно-конструкторского бюро Drive Electro (главное назначение — доставка товаров в магазины). Не за горами время, когда этот коммерческий транспорт с электромоторами будет активно востребован автопарками, логистическими центрами, предприятиями.

Также, безусловно, давно, как данность мы принимаем, что на электродвигателе работают трамваи, троллейбусы, погрузчики на складах и локомотивы. Трёхфазный асинхронный двигатель помогает двигаться на давно полюбившихся поездах «Ласточка» и «Сапсан».

Принцип работы

Принцип работы двигателя электромобиля основан на преобразовании электроэнергии в механическую энергию вращения. Главные участники преобразования энергии – статор и ротор.

Как работает традиционный электромотор?

  1. Магнитное поле статора действует на обмотку ротора.
  2. Возникает вращающий момент.
  3. Ротор начинает двигаться.

Наглядная схема двигателя электромобиля в системе электропривода представлена ниже:

Важная особенность классического электрокара – отсутствие дифференциала, коробки передач, передаточных устройств с шестеренками. Энергия от электромотора поступает прямо на колеса.

Без коробки передач – и большинство «гибридов» с электродвигателем и ДВС. Исключение – «гибриды» с параллельной схемой передачи на колёса крутящего момента. К ней мы ещё вернёмся в этой статье в разделе, посвящённом гибридным автомобилям.

Принцип работы любого электродвигателя базируется на процессах взаимного притяжения и отталкивания полюсов магнитов на роторе и статоре. Движение осуществляется под действием самого магнитного поля и инерции.


Устройство

Как устроен двигатель электромобиля?

При описании принципа работы электродвигателя, уже было упомянуто, что главные компоненты двигателя электромобиля– ротор и статор.

  1. Ротор – это вращающийся компонент двигателя.
  2. Статор находится в неподвижном состоянии. Он ответственен за создание неподвижного магнитного поля.

Ротор

Классический ротор автомобиля состоит из сердечника, обмотки и вала. У некоторых электродвигателей в состав ротора также входит коллектор.
  • Сердечник – это металлический стержень, на периферии которого располагается обмотка. Непосредственно через сердечник происходит замыкание магнитной цепи электродвигателя. Сердечник изготавливается из стальных пластин круглой формы. По структуре похож на слоёный пирог. При производстве сердечников используют изолированные листы стали с присадками кремния. В этом случае обеспечены увеличение КПД электродвигателя, наименьшие удельные потери в металле на единицу массы, снижение величины размагничивающих вихревых токов Фуко, которые возникают из-за перемагничивания сердечника. На поверхности сердечника есть продольные пазы. Через них прокладывается обмотка.
  • Вал – металлический стержень, который непосредственно передаёт вращающий момент. Также изготавливается из электротехнической стали. Служит основой для насаживания сердечника. На концах вала есть резьба, выемки под шестерёнки, подшипники качения, шкивы.
  • Коллектор – блок, крепящийся на валу. Представляет собой систему медных пластин. Изолирован от вала. Служит выпрямителем переменного тока, переключателем-автоматом направления тока (в зависимости от вида электродвигателя).

Статор (индуктор)

Статор состоит из станины, сердечника и обмотки:
  • Станина статора – корпус статора. Как правило, корпус бывает алюминиевым или чугунным. Алюминиевые станины популярны у электродвигателей легковых авто, чугунные – у спецтехники, которая вынуждена работать в условиях высокой вибрации. Станина служит базой крепления основных и добавочных полюсов.
  • Сердечник статора – цилиндр из профилированных стальных листов. Фиксируется винтами внутри станины. Снабжён пазами для обмотки.
  • Обмотка. Создаёт магнитный поток. При пересечении проводников ротора наводит в них электродвижущую силу.

Виды

Электродвигатели классифицируют по типу питания привода, конструкции щеточно-коллекторного узла, количеству фаз для запитывания:
  • По типу питания привода. Устройства делятся на моторы переменного и постоянного тока. Двигатели постоянного тока способны обеспечить более точную и плавную регулировку оборотов, высокий КПД. Двигатели переменного тока выручают, когда важна высокая перегрузочная способность. Это удачный вариант для подъёмно-транспортных машин. Впрочем, существуют и универсальные моторы, которые функционируют от переменного и постоянного тока.
  • По конструкции щеточно-коллекторного узла. Выпускаются бесколлекторные и коллекторные моторы. Бесколлекторный мотор работает за счёт движения ротора с постоянным магнитом. У конструкции нет щеточно-коллекторного узла. Решение обеспечивает достойный крутящий момент, широкий диапазон скоростей и высокий КПД. Важные преимущества бесколлекторного мотора – надёжность, способность к самосинхронизации, возможность подпитываться при переменном напряжении. Ресурс бесколлекторного мотора ограничен исключительно ресурсом подшипников. У коллекторных моторов присутствует щелочно-коллекторный узел. Удобство решения связано с тем, что он может использоваться и в качестве переключателя тока в обмотках, и как извещатель положения ротора, нет необходимости в контролле. Проблема коллекторных моделей – в том, что они зависимы от постоянных магнитов, которые, как известно, со временем, к огромному сожалению, теряют свои свойства.
  • По количеству фаз для запитывания. В зависимости от того, как запитывается обмотка, электродвигатели бывают однофазными и трёхфазными. В автомобилестроении широкое распространение получили трёхфазные решения, это связано с рядом технических характеристик (мощность, перегрузочная способность, частота вращения на холостом ходу).
Обратите внимание! Работать трёхфазные моторы могут синхронно и асинхронно, а в качестве ротора используются как короткозамкнутые, так и фазные модели. Самый популярный вариант – трехфазные асинхронные моторы с короткозамкнутым ротором. Они стоят на большинстве современных электрокаров.

Асинхронные и синхронные двигатели

Синхронные моторы – двигатели переменного тока, у которых частота вращения ротора идентична частоте вращения магнитного поля (измерение производится в воздушном зазоре). В автомобилестроении синхронные моторы встретить можно нечасто (хотя в мире техники – это, в целом, очень популярное решение – особенно в климатотехнике, насосных системах).

Но есть производители авто, которые при производстве электрокаров предпочитают устанавливать на свои машины именно синхронные двигатели. Яркий пример – концерн Renault. Синхронными двигателями на электромагнитах он оснастил электрокар Renault Zoe. На электромагниты подаётся постоянный ток. Полярность магнитов ротора стабильна. Полярность магнитов статора при этом изменяется и обеспечивает бесперебойное вращение.

Преимущество синхронных двигателей на электромагнитах у авто – максимальная оптимизация рекуперации энергии торможения. И главный «конёк» авто с таким типом электродвигателя – полная безопасность при буксировке.

Гораздо более популярный вариант – асинхронные двигатели. Это двигатели переменного тока, у которых потенциал напряжения – магнитного поля не совпадает с частотой вращения ротора. Типичным 3-фазным асинхронным двигателем оснащены, например, хорошо известные автомобили Tesla S и Tesla Х.

Иногда асинхронные моторы называют индукционными, так как в роторе в соответствие с законом Ленца у них индуцируется электромагнитная сила.

Двигатель-колесо

Обособленно среди электромоторов стоит двигатель-колесо. Особенность двигателя- колеса – ориентир крутящего момента и силы напряжения на конкретное колесо.

Такие решения можно встретить в плагин-гибридных автомобилях («гибридах» с параллельной схемой, при описании устройства гибридных авто ниже по тексту мы остановимся на них подробнее). Работает двигатель-колесо в паре с ДВС.

У первых плагин-гибридных автомобилей с двигателем-колесом агрегат был монтирован в ступицу колеса, а работа осуществлялась исключительно в паре с внутренним зубчатым редуктором.

Некоторые же современные модели моторов, монтируемые внутри колёс, вполне могут работать без зубчатого редуктора. Это увеличивает управляемость, позволяет избежать увеличения удельного веса шасси, уменьшить риски, повышает КПД.

Преимущества и недостатки электродвигателей

Преимуществ у электродвигателей существенно больше, нежели недостатков. Более того, за счёт усовершенствования и конструктивных особенностей самих электроприводов, и инфраструктуры, связанной с зарядкой, многие вещи, которые вчера ещё казались критичными, сегодня теряют свою актуальность.

Преимущества

  • Не требуется «раскачка». Крутящий момент достигает максимума непосредственно при включении. Именно по этой причине электрический двигатель электромобиля не требует наличия стартеров и сцеплений – неотъемлемых спутников ДВС.
  • Удобство. Для включения заднего хода (то есть коррекции со стороны вращения мотора) достаточно поменять полярность, сложная коробка передач не требуется.
  • Высокий КПД. У машин с электродвигателями он достигает 95 %.
  • Независимость. На любой отметке скорости достигается максимальный показатель крутящего момента.
  • У мотора – малый вес. Производители могут себе легко позволить создавать компактные автомобили.
  • Есть все возможности для рекуперации энергии торможения. Если у авто с ДВС кинетическая энергия просто уходит в колодки (и стирает их), то у электромобиля в режиме рекуперации мотор может функционировать как генератор. В режиме генерации электроэнергия просто трансформируется в другую форму и быстро накапливается в АКБ. Особенно решение эффективно для транспортных средств с длинным тормозным путем. На объём генерируемой и накопленной энергии существенно влияет маршрут (рельеф, в частности наличие холмистых участков на дороге и уклон дороги).
  • Снижение расходов на эксплуатацию машины. Зарядку можно производить от электросети. Это существенно дешевле, нежели использование дизеля, бензина. Выгода очевидна даже по сравнению с бензиновыми авто эконом-класса.
  • Малый уровень шума.
  • В большинстве случаев для мотора не требуется принудительное охлаждение.
  • Экологичность. Использование транспорта с электродвигателем снижает количество выхлопных газов в воздухе.

Недостатки

Долгое время считалось, что самый большой минус использования электродвигателя – его зависимость от аккумуляторов, которые быстро выходят из строя. Теперь это неактуально. Современные батареи электрокаров, представленных в массовом выпуске, гарантируют пробег автомобиля 150-200 тыс. км. Потерял актуальность и тот фактор, что машины с электродвигателем существенно уступают бензиновым по мощности. Электротяга современных электромоторов уже не уступает ДВС.

Поэтому недостатки электродвигателей сейчас правильно свести не к недостаткам конструкции, а к плохо развитой инфраструктуре для того, чтобы подзаряжать электромобили. Если в США, Скандинавии подзарядить электрокар легко, то до недавнего момента даже в Западной и Центральной Европе с инфраструктурой для подзарядки таких машин были проблемы.

В России, Беларуси, Украине, Казахстане, пока, увы, с инфраструктурой ситуация ещё хуже. Хотя, например, в России число заправок для электрокаров с 2018 по 2020 год возросло в 3 раза, но полотно покрытия площадками для зарядки очень неоднородное. В Москве – более плотное, в регионах – слабое. Даже разрыв с такими городами-гигантами как Санкт-Петербург и Челябинск — колоссальный.

Устройство электромобиля

Рассматривая электродвигатель, важно остановиться на устройстве электромобиля в целом, изучение электродвигателя не самого по себе, а как части системы электропривода, где электродвигатель – один из его базовых компонентов, его «сердце». Но «организм», функционирует только тогда, когда в порядке все другие «органы» – части электропривода:
  • Аккумуляторная батарея.
  • Бортовое зарядное устройство. Его функция – обеспечение возможности заряжать аккумуляторную батарею от бытовой электрической сети.
  • Трансмиссия. Распространены трансмиссия с одноступенчатым зубчатым редуктором (чаще всего встречающийся и наиболее простой вариант) и бесступенчатая трансмиссия с гидротрансформатором (для старта с места), плавно изменяющие отношение скоростей вращения и вращающих моментов мотора и ведущих колес транспортного средства во всём рабочем диапазоне скоростей и тяговых усилий.
  • Инвертор. Назначение инвертора – трансформирование высокого напряжения постоянного тока аккумулятора в трехфазное напряжение переменного тока.
  • Преобразователь постоянного тока. Функция – зарядка дополнительной батареи, которая используется для системы освещения, кондиционирования, аудиосистемы.
  • Электронная система управления (блок управления). Отвечает за управление функциями, связанными с энергосбережением, безопасностью комфортом. В её «подчинении» – оценка заряда АКБ, оптимизация режимов движения, регулирование тяги, контроль за использованной энергией и за напряжением, управлением ускорением и рекуперативным торможением.

Аккумуляторная батарея

Аккумуляторная батарея (аккумулятор) – один из наиболее дорогих компонентов системы. По своей значимости играет такую же роль, как бензобак для ДВС. Электромобиль движется за счёт электричества, полученного от электросети во время зарядки и хранящегося в АКБ.

При этом важно помнить, что у большинства электромобилей устанавливаются одновременно два аккумулятора: один тяговой – он питает именно мотор и стартерный (как и в машинах с ДВС, он помогает системе освещения, системе подогрева). Эти аккумуляторы разные не только по назначению, но и техническим характеристикам.
Тяговый аккумулятор электрического двигателя электромобиля предназначен для питания мотора, запуска двигателя. У него нет высокого пускового тока, но он заточен на длительную работу, выдерживает большое количество циклов заряда-разряда.

Типичная тяговая АКБ – моноблочная секционная конструкция. Тяговая АКБ состоит из толстых электронных пластин – пористых сепараторов и электролитного вещества.
Самые распространенные аккумуляторы – литий-ионные. У них – наиболее высокая энергетическая плотность, не требуется обслуживание, достаточно низкий саморазряд.

Устройство и особенности гибридных систем


Свои особенности – у гибридных систем. В гибридных системах электродвигатель может рассматриваться и как «партнёр» ДВС, и как допэлемент, помогающий добиться экономии топлива и при этом повышения мощности.

Устройство «гибрида» отличается в зависимости от реализованной схемы передачи на колёса крутящего момента.

  • Параллельная. Аккумуляторы передают энергию электромотору, бак – топливо для ДВС. Оба агрегата равноправны и способны создать условия для перемещения авто. Но работает такая схема только при наличии коробки передач. Параллельная схема успешно реализована у автомобиля Honda Civic. Нередко гибриды с параллельной схемой выделяют в отдельную группу и называют плагин-гибридными.

  • Последовательная. Любое действие начинается с включения ДВС. Он же отвечает за последующие действия: поворот генератора для запуска электромотора, зарядку аккумуляторов.


  • Последовательно-параллельная. Через планетарный редуктор соединены ДВС, электродвигатель и генератор. В зависимости от условий движения может использоваться тяга электродвигателя или ДВС. Режим выбирается программно системой управления транспортного средства. Среди хорошо известных последовательно-параллельных «гибридов» – Toyota Prius, Lexus-RX 400h.

Классический гибридный автомобиль использует интегрированный в трансмиссию электрический мотор-генератор.

При этом для получения электрической тяги у гибридных систем задействованы четыре базовых компонента:

  • Мотор-генератор. Является обратимой силовой установкой. Может работать в двух режимах: непосредственно тягового мотора и генератора для зарядки высоковольтной аккумуляторной батареи. При работе в режиме мотора возможно создание крутящего момента и мощности, которых хватит для старта и движения автомобиля с выключенным ДВС, при работе устройства в режиме генератора продуцируется высоковольтная электроэнергия.
  • Высоковольтные силовые кабели. Изолированные электрические кабели большого сечения. Важны для переноса энергии между компонентами высоковольтных электроцепей.
  • Высоковольтные аккумуляторные батареи. Включенные в последовательную цепь аккумуляторные элементы. Позволяют накопить в батарее большой объём электроэнергии.
  • Высоковольтный силовой модуль управления для управления потоком электроэнергии для движения транспортного средства на электрической тяге.

Гибридные авто открывают новые эксплуатационные возможности, с одной стороны можно быть максимально экологичным, радоваться комфортной езде и сэкономить на топливе, а с другой стороны, при разряде аккумулятора владелец авто не попадёт впросак, если невозможно подзарядить мотор: в работу вступит ДВС.

Перспективы применения электродвигателей в автомобилях

Перспективы применения электродвигателей в автомобилях напрямую связаны с тем, насколько активно будет развиваться инфраструктура. Там, где она не обеспечена, использование электрокаров действительно ограничено. Ведь без подзарядки у многих авто – малая дальность пробега.

Впрочем, даже последняя проблема активно решаемая. Немецкие и японские разработчики (компании DBM Energy, Lekker Energie, Japan Electric Vehicle Club) сумели доказать миру: потенциал у электродвигателей, аккумуляторов без подзарядки может достигать 500 -1000 тысяч километров пробега. Правда, пока что 1 000 тысяч км пробега без подзарядки возможны только в теории, а 500-600 уже на практике.

На данный момент доступность такого транспорта – на уровне инженерно-конструкторской работы, экспериментальных выпусков, но есть перспективы что их подхватят автогиганты, и не за горизонтом – серийное производство.

Перспективы применения электродвигателей в автомобилях очень тесно связаны и с политикой отдельных государств. Например, в Норвегии обладатели электромобилей освобождены от уплаты ежегодного налога на транспорт, пользования платными дорогами, паромными переправами и даже большинством парковок. С учётом того, что налоги и тарифы в Скандинавии одни из самых высоких, мотивация приобрести именно авто с электродвигателем, а не ДВС – очень высокая.

Обратите внимание, что на базе LCMS ELECTUDE есть специальный раздел “Электрический привод”, в нём подробно разбираются электродвигатели, виды электропривода, системы зарядки, особенности обслуживания транспорта с электромотором. Кроме комплексных теоретических знаний в обучающих модулях приводятся многочисленные практические примеры.

Устройство плавного пуска электродвигателя мощностью 18.5 кВт

Данная политика конфиденциальности относится к сайту под доменным именем instart-info.ru. Эта страница содержит сведения о том, какую информацию мы (администрация сайта) или третьи лица могут получать, когда вы пользуетесь нашим сайтом.

Данные, собираемые при посещении сайта

Персональные данные

Персональные данные при посещении сайта передаются пользователем добровольно, к ним могут относиться: имя, фамилия, отчество, номера телефонов, адреса электронной почты, адреса для доставки товаров или оказания услуг, реквизиты компании, которую представляет пользователь, должность в компании, которую представляет пользователь, аккаунты в социальных сетях; поля форм могут запрашивать и иные данные.

Эти данные собираются в целях оказания услуг или продажи товаров, связи с пользователем или иной активности пользователя на сайте, а также, чтобы отправлять пользователям информацию, которую они согласились получать.

Мы не проверяем достоверность оставляемых данных, однако не гарантируем качественного исполнения заказов или обратной связи с нами при некорректных данных.

Данные собираются имеющимися на сайте формами для заполнения (например, регистрации, оформления заказа, подписки, оставления отзыва, обратной связи и иными).

Формы, установленные на сайте, могут передавать данные как напрямую на сайт, так и на сайты сторонних организаций (скрипты сервисов сторонних организаций).

Также данные могут собираться через технологию cookies (куки) как непосредственно сайтом, так и скриптами сервисов сторонних организаций. Эти данные собираются автоматически, отправку этих данных можно запретить, отключив cookies (куки) в браузере, в котором открывается сайт.

Не персональные данные

Кроме персональных данных при посещении сайта собираются не персональные данные, их сбор происходит автоматически веб-сервером, на котором расположен сайт, средствами CMS (системы управления сайтом), скриптами сторонних организаций, установленными на сайте. К данным, собираемым автоматически, относятся: IP адрес и страна его регистрации, имя домена, с которого вы к нам пришли, переходы посетителей с одной страницы сайта на другую, информация, которую ваш браузер предоставляет добровольно при посещении сайта, cookies (куки), фиксируются посещения, иные данные, собираемые счетчиками аналитики сторонних организаций, установленными на сайте.

Эти данные носят неперсонифицированный характер и направлены на улучшение обслуживания клиентов, улучшения удобства использования сайта, анализа посещаемости.

Предоставление данных третьим лицам

Мы не раскрываем личную информацию пользователей компаниям, организациям и частным лицам, не связанным с нами. Исключение составляют случаи, перечисленные ниже.

Данные пользователей в общем доступе

Персональные данные пользователя могут публиковаться в общем доступе в соответствии с функционалом сайта, например, при оставлении отзывов, может публиковаться указанное пользователем имя, такая активность на сайте является добровольной, и пользователь своими действиями дает согласие на такую публикацию.

По требованию закона

Информация может быть раскрыта в целях воспрепятствования мошенничеству или иным противоправным действиям; по требованию законодательства и в иных случаях, предусмотренных законом.

Для оказания услуг, выполнения обязательств

Пользователь соглашается с тем, что персональная информация может быть передана третьим лицам в целях оказания заказанных на сайте услуг, выполнении иных обязательств перед пользователем. К таким лицам, например, относятся курьерская служба, почтовые службы, службы грузоперевозок и иные.

Сервисам сторонних организаций, установленным на сайте

На сайте могут быть установлены формы, собирающие персональную информацию других организаций, в этом случае сбор, хранение и защита персональной информации пользователя осуществляется сторонними организациями в соответствии с их политикой конфиденциальности.

Сбор, хранение и защита полученной от сторонней организации информации осуществляется в соответствии с настоящей политикой конфиденциальности.

Как мы защищаем вашу информацию

Мы принимаем соответствующие меры безопасности по сбору, хранению и обработке собранных данных для защиты их от несанкционированного доступа, изменения, раскрытия или уничтожения, ограничиваем нашим сотрудникам, подрядчикам и агентам доступ к персональным данным, постоянно совершенствуем способы сбора, хранения и обработки данных, включая физические меры безопасности, для противодействия несанкционированному доступу к нашим системам.

Ваше согласие с этими условиями

Используя этот сайт, вы выражаете свое согласие с этой политикой конфиденциальности. Если вы не согласны с этой политикой, пожалуйста, не используйте наш сайт. Ваше дальнейшее использование сайта после внесения изменений в настоящую политику будет рассматриваться как ваше согласие с этими изменениями.

Отказ от ответственности

Политика конфиденциальности не распространяется ни на какие другие сайты и не применима к веб-сайтам третьих лиц, которые могут содержать упоминание о нашем сайте и с которых могут делаться ссылки на сайт, а также ссылки с этого сайта на другие сайты сети Интернет. Мы не несем ответственности за действия других веб-сайтов.

Изменения в политике конфиденциальности

Мы имеем право по своему усмотрению обновлять данную политику конфиденциальности в любое время. В этом случае мы опубликуем уведомление на главной странице нашего сайта. Мы рекомендуем пользователям регулярно проверять эту страницу для того, чтобы быть в курсе любых изменений о том, как мы защищаем информацию пользователях, которую мы собираем. Используя сайт, вы соглашаетесь с принятием на себя ответственности за периодическое ознакомление с политикой конфиденциальности и изменениями в ней.

Как с нами связаться

Если у вас есть какие-либо вопросы о политике конфиденциальности, использованию сайта или иным вопросам, связанным с сайтом, свяжитесь с нами:

8 800 222 00 21

[email protected]

Устройство электродвигателя постоянного тока

Электрический двигатель – это электрическая машина, предназначенная для преобразования электрической энергии, поступающей от источника тока в механическую энергию. Часть потребляемой электроэнергии расходуется на перемагничивание ферромагнетиков, преодоление электрического сопротивления и силы трения, что сопровождается образованием тепла.

Электродвигатель, работающий от источника постоянного тока, называют двигателем постоянного тока. В зависимости от особенностей конструкции электрические двигатели постоянного тока подразделяются на коллекторные и бесколлекторные. Рассмотрим устройство двигателя постоянного тока на примере изделия коллекторной конструкции. Основные элементы электродвигателя постоянного тока: статор, ротор, коллектор и токопроводящие щетки.

Статор, он же индуктор, – неподвижная часть машины, в большинстве вариантов исполнения – внешняя. Статор состоит из станины и магнитных полюсов. В зависимости от конструкции двигателя на статоре могут устанавливаться постоянные магниты, электромагниты с обмотками возбуждения или короткозамкнутые обмотки. Кроме основных магнитных полюсов на статоре могут устанавливаться дополнительные полюса. Статор необходим для создания магнитного потока в системе.

Подвижная вращающаяся часть машины, как правило, внутренняя – ротор или якорь. Ротор электродвигателя постоянного тока состоит из многочисленных катушек с токопроводящими обмотками, по которым проходит электрический ток. Количество катушек в конструкции ротора может достигать нескольких десятков. Таким образом частично устраняется неравномерность крутящего момента, уменьшается коммутируемый ток, обеспечивается оптимальное взаимодействие магнитных полей статора и ротора.

Щеточно-коллекторный узел представляет собой связующее звено между ротором и статором. В коллекторе объединены выводы всех катушек ротора. Этот узел служит переключателем тока со скользящими контактами и дополнительно выполняет функции датчика углового положения ротора.

Щетки – неподвижные контакты, подводящие ток к ротору. Чаще всего в двигателях применяются медно-графитовые и графитовые щетки. При вращении ротора происходит замыкание и размыкание контактов коллектора. При этом в обмотках ротора происходят переходные процессы, приводящие к искрению. Искрение и трение при работе двигателя постоянного тока приводят к тому, что щеточно-коллекторный узел является самым уязвимым элементом конструкции. Для уменьшения искрения чаще всего используется установка дополнительных полюсов. Порядка 25% поломок электродвигателей происходит по причине неисправности щеточно-коллекторного узла. В некоторых областях применения электродвигателей постоянного тока поломки по причине износа щеточно-коллекторного узла составляют свыше 60% от общего количества.

При подаче тока на ротор, помещенный в магнитное поле статора, в системе возникает момент силы, под действием которого ротор начинает вращаться. Направление вращения ротора зависит от направления тока. Чтобы ротор вращался в одном и том же направлении, направление тока в нем должно оставаться постоянным. Это условие выполняется с помощью коллекторного узла. Механическая энергия вращения ротора передается другим механизмам посредством присоединенного к ротору шкива и ременной передачи.

Основные критерии выбора электродвигателя: виды, особенности.

Электродвигатель — это устройство, способное преобразовывать энергию тока в кинетическую энергию. Такие приборы, обладают большим количеством преимуществ:

  • высокий показатель КПД, более 90%, благодаря чему двигатель можно использовать во многих сферах деятельности;
  • в процессе применения нет трения трансмиссии.

Изделие абсолютно безопасно для окружающей среды, так как в процессе работы не происходит выброс вредных элементов. Также к достоинствам можно отнести тот факт, что электродвигатель обладает высокой ремонтопригодностью. Благодаря этому вы сможете восстановить работу оборудования, не затрачивая большой объём денежных средств.

Главным фактором при выборе товара является определение сферы его применения. Оборудование находит применение в следующих областях:

  • насосных установках;
  • компрессорах;
  • на различных промышленных предприятиях;
  • в устройствах для кондиционирования.

Виды двигателя

На сегодняшний день на рынке электродвигателей доступно несколько основных видов устройств:

1. Привод постоянного тока.

Является одним из самых распространенных типов. Данная система применяется в металлургической промышленности и транспорте, однако модели постепенно вытесняются асинхронными устройствами.

Дело в том, что у такого аппарата существуют недостатки – возможность применения, только в том случае, если имеется определенная мощность тока, не изменяющаяся во время работы. Для обеспечения таких условий функционирования, требуется совершать дополнительные финансовые вложения.

Но есть и преимущества — этот вид системы гарантирует бесперебойную работу даже при чрезмерных нагрузках.

2. Приводы переменного тока.

Это изделия, которые можно разделить на два типа: синхронные и асинхронные. Каждый из этих видов имеет индивидуальные особенности и характеристики, которым также стоит уделить внимание:

  • Синхронные устройства в основном используются в устройствах, которые имеют стабильную рабочую скорость (генераторы, насосы). Данный вид системы обладает высоким КПД. Используя синхронные электродвигатели можно минимизировать потребление электроэнергии. Мощность системы может достигать показателя в 10 000 кВт, похвастаться которым смогут не многие.
  • Асинхронные двигатели – уникальные устройства. Их особенность заключается в высоких показателях вращения магнитного поля, особенно при сравнении с другими аппаратами. Работает оборудование при помощи переменного тока, который образуется благодаря индукции, возникающей во время передвижения проводниковой среды в магнитном поле. Для того чтобы это происходило, специалисты используют обмотку, которая обтекается токами.

3. Вентильные устройства.

Этот вид включает в себя аппараты, в которых для регулировки режима использования, следует применять специальные вентили. Такие агрегаты обладают целым рядом достоинств:

  • безопасность использования;
  • легкость эксплуатации;
  • отсутствие необходимости в дополнительном уходе;
  • высокий уровень исполнения;
  • возможность регулировать скорость вращения по своему усмотрению.

На что следует обращать внимание при выборе устройства?

Если вам требуется произвести выбор электродвигателя для производства, либо для применения в другой сфере, следует обратить внимание на такие факторы:

  • способ питания;
  • вид электрического тока;
  • режим эксплуатации;
  • воздействие внешней среды на оборудование.

Современная модель электродвигателя, должна функционировать от сети с частотой от 50 до 60 Гц, чтобы обеспечить её использование в любой точке мира. Двигатель должен демонстрировать высокий показатель КПД и отвечать всем международным нормам.

Мощность системы

Существует достаточно большое количество приборов, которые функционируют при постоянной или изменяющейся нагрузке. К такому оборудованию можно отнести наносы, вентиляторы и многие другие. В процессе выбора товара учитывайте мощность, которая вам необходима. Определить данный показатель, можно только при помощи расчетов. Чтобы произвести расчет мощности электродвигателя, следует воспользоваться формулой:

P=Рм/ηп

Обозначение:

  • «Рм» – мощность, которая будет потребляться устройством;
  • «ηп» – коэффициент передачи полезного действия.

Рекомендуем при использовании этой формулы устанавливать мощность аппарата немного выше расчетного показателя. Если вам потребуется посчитать номинальный уровень постоянного тока устройства, используйте такую формулу:

IH=1000PH/ηHUH

Чтобы определить ток трехфазного оборудования, используйте следующий способ:

IH=1000PH/UHcosφH√ηH)

Обозначения:

  • «РН» — номинальное значение мощности;
  • «UH» –номинальный уровень напряжения;
  • «cosφH» — показатель мощности.

Номинальный размер мощности также можно найти в техническом документе оборудования.

Обратите внимание! Выбирая устройство, запас показателя мощности обязательно должен быть, но не большим. В том случае, если это правило будет нарушено, может значительно снизиться показатель КПД. В некоторых ситуациях, это может повлечь за собой еще и снижение показателя мощности.

Вам необходимо рассчитать пусковой ток? Примените такую формулу:

IП=IH*Кп

Обозначения:

  • «IH» – номинальное значение тока;
  • «Кп» – кратность тока.

Пусковой ток рассчитывается для каждого двигателя в цепи. Количественное значение величины облегчит подбор типа автоматического выключателя, чтобы защитить всю цепь.

Режимы работы устройств

Режим работы способен определить нагрузку на прибор. В определенных ситуациях она может оставаться абсолютно неизменной, в других же может меняться. Показатель нагрузки также нужно учитывать во время выбора системы. В соответствии с нормами и стандартами, существуют определенные режимы использования агрегата:

  • Продолжительный режим (S1). Нагрузка остается постоянной в течение всего времени, пока температура электродвигателя не достигнет необходимого значения.
  • Кратковременный режим (S2). Температура при эксплуатации не достигает установившегося значения. После отключения двигателя, он охлаждается до температуры окружающей среды. Для режима необходимо проверять перегрузочную способность электропривода;
  • Периодически-кратковременный режим (S3). В периоды включения и отключения температура двигателя не успевает достигнуть заданного значения или охладиться до температуры окружающей среды. При расчете мощности двигателя обязательно учитывается продолжительность пауз и потерь в переходные периоды. При выборе электродвигателя важным параметром является допустимое количество включений за единицу времени;
  • Периодически кратковременный режим с частыми пусками (S4) и режим с электрическим торможением (S5). Данные режимы следует рассчитывать по таким же значениям, как и в предыдущем случае с S3;
  • Периодически-непрерывный режим с кратковременной нагрузкой (S6). В данном случае работа двигателя происходит под нагрузкой, которая чередуется с холостой эксплуатацией;
  • Периодически-непрерывный режим с электроторможением (S7);
  • Периодически-непрерывный режим с одновременным изменением нагрузки и частоты вращения (S8);
  • Непериодический режим с изменением нагрузки и частоты вращения (S9).

Большинство моделей электроприводов, которые предназначены для длительной эксплуатации, адаптированы под изменяющийся уровень нагрузки.

Климатические исполнения

Следует учитывать не только технические показатели и возможности электродвигателя, но и условия окружающей среды, в которой оборудованию придется регулярно работать. Современные модели создаются для применения в различных условиях, поэтому приобретайте оборудование, подходящее под ваши требования.

Маркировка товаров по ГОСТ:

  • У — модели можно использовать в умеренном климате;
  • ХЛ — электродвигатели адаптированы к низким температурам;
  • ТС – подходят для работы в сухом, тропическом климате;
  • ТВ – модели для тропического (влажного) климата;
  • Т – универсал для тропического климата;
  • О — товар для эксплуатации на суше;
  • М – оборудование для эксплуатации в морском климате;
  • В – подходят для использования в любых условиях суши и моря.

Кроме буквенных обозначений, следует обращать внимание на цифры, которые обычно указываются на моделях электродвигателей и в технической документации. Эти показатели сообщают о местности размещения.

  • 1 — устройство можно устанавливать на открытой площадке;
  • 2 — проводить монтаж в помещениях, где есть свободный доступ воздуха;
  • 3 – подходит для эксплуатации в закрытом помещении;
  • 4 — эксплуатация в производственных помещениях, оборудованных системой отопления и вентиляции;
  • 5 – модели для проведения работ зонах высокой влажности и скоплением конденсата.

Также необходимо обращать внимание на степень защищенности устройства от пыли и влаги. Данная информация регнламентируется стандартами с введенной степенью IP-защиты. Первая характеристическая цифра указывает на степень защиты, обеспечиваемой оболочкой от попадания твёрдых предпетов и пыли. Вторая классифицирующая цифра указывает степень защиты оборудования от вредного воздействия воды. В стандартном исполнении наши электродвигатели поставляются в исполнении IP55, и под заказ возможны исполнения электродвигателей со степенью защиты IP65 и IP66.

Подробнее ознакомиться с расшифровкой значений можно в обзорной статье по ссылке — promair.by/interesno-znat/rashifrovka-zachity.

На нашем сайте, представлен обширный каталог электродвигателей от производителя. Если в процессе выбора модели возникнут какие-либо вопросы, свяжитесь с нами по телефонам: +375 (17) 513-99-91, +375 (17) 513-99-92. Наши специалисты предоставят детальную консультацию и помогут подобрать подходящий продукт.

Электродвигатель — Energy Education

Рисунок 1. Электродвигатель от старого пылесоса. [1] Рисунок 2. Электрический ротор. [2]

Электродвигатель — это устройство, используемое для преобразования электричества в механическую энергию, противоположное электрическому генератору. Они работают с использованием принципов электромагнетизма, которые показывают, что сила прилагается, когда электрический ток присутствует в магнитном поле. Эта сила создает крутящий момент на проволочной петле, присутствующей в магнитном поле, которая заставляет двигатель вращаться и выполнять полезную работу.Двигатели используются в широком спектре приложений, таких как вентиляторы, электроинструменты, бытовая техника, электромобили и гибридные автомобили.

Как они работают

У двигателей

есть много разных рабочих частей, чтобы они постоянно вращались, обеспечивая необходимую мощность. Двигатели могут работать от постоянного (DC) или переменного (AC) тока, и оба имеют свои преимущества и недостатки. Для целей этой статьи будет проанализирован двигатель постоянного тока, чтобы прочитать о двигателях переменного тока, нажмите здесь.

Основные части двигателя постоянного тока включают: [3]

  • Статор: Неподвижная часть двигателя, а именно магнит.Электромагниты часто используются для увеличения мощности.
  • Ротор: Катушка, которая установлена ​​на оси и вращается с высокой скоростью, обеспечивая систему механической энергией вращения.
  • Коммутатор: Этот компонент является ключевым в двигателях постоянного тока, и его можно увидеть на рисунках 3 и 4. Без него ротор не мог бы вращаться непрерывно из-за противодействующих сил, создаваемых изменяющимся током. Коммутатор позволяет ротору вращаться, меняя направление тока каждый раз, когда катушка делает пол-оборота.
  • Щетки: Они подключаются к клеммам источника питания, позволяя электроэнергии течь в коммутатор.
  • Двигатель постоянного тока
  • Рисунок 3: Базовая установка двигателя постоянного тока. [3]

  • Рисунок 4: Анимация двигателя в действии. Коммутатор вращается, чтобы ротор вращался непрерывно. [3]

Список литературы

Электродвигатель | Британника

Самый простой тип асинхронного двигателя показан на рисунке в разрезе.Трехфазный набор обмоток статора вставлен в пазы в железе статора. Эти обмотки могут быть подключены по схеме «звезда», обычно без внешнего подключения к нейтральной точке, или по схеме «треугольник». Ротор состоит из цилиндрического стального сердечника с проводниками, размещенными в пазах по всей поверхности. В наиболее обычной форме эти проводники ротора соединены вместе на каждом конце ротора токопроводящим концевым кольцом.

Поперечное сечение трехфазного асинхронного двигателя.

Британская энциклопедия, Inc.

Основы работы асинхронного двигателя можно разработать, сначала предположив, что обмотки статора подключены к трехфазному источнику питания и что набор из трех синусоидальных токов, показанных на рисунке, протекает в обмотках статора. На этом рисунке показано влияние этих токов на создание магнитного поля через воздушный зазор машины в течение шести мгновений цикла. Для простоты показана только центральная токопроводящая петля для каждой фазной обмотки.В момент t 1 на рисунке, ток в фазе a является максимальным положительным, тогда как ток в фазах b и c составляет половину отрицательного значения. Результатом является магнитное поле с приблизительно синусоидальным распределением вокруг воздушного зазора с максимальным значением наружу вверху и максимальным значением внутрь внизу. В момент времени t 2 на рисунке (т.е. одна шестая цикла позже), ток в фазе c является максимально отрицательным, в то время как в фазе b и фазе a составляет половину значения. положительный.В результате, как показано на рисунке для t 2 , снова будет синусоидально распределенное магнитное поле, но повернутое на 60 ° против часовой стрелки. Исследование распределения тока для т 3 , т 4 , т 5 и т 6 показывает, что магнитное поле продолжает вращаться с течением времени. Поле совершает один оборот за один цикл токов статора. Таким образом, совокупный эффект трех равных синусоидальных токов, равномерно смещенных во времени и протекающих в трех обмотках статора, равномерно смещенных в угловом положении, должен создать вращающееся магнитное поле с постоянной величиной и механической угловой скоростью, которая зависит от частоты электроснабжение.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Вращательное движение магнитного поля относительно проводников ротора вызывает индуцирование напряжения в каждом из них, пропорциональное величине и скорости поля относительно проводников. Поскольку проводники ротора замкнуты накоротко на каждом конце, это приведет к протеканию токов в этих проводниках. В простейшем режиме работы эти токи будут примерно равны индуцированному напряжению, деленному на сопротивление проводника.На этом рисунке показана диаграмма токов ротора за момент времени t 1 рисунка. Видно, что токи приблизительно синусоидально распределены по периферии ротора и расположены так, чтобы создавать вращающий момент против часовой стрелки на роторе (то есть вращающий момент в том же направлении, что и вращение поля). Этот крутящий момент ускоряет ротор и вращает механическую нагрузку. По мере увеличения скорости вращения ротора его скорость относительно скорости вращающегося поля уменьшается.Таким образом, индуцированное напряжение уменьшается, что приводит к пропорциональному снижению тока в проводнике ротора и крутящего момента. Скорость ротора достигает постоянного значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, необходимому на этой скорости для нагрузки, без избыточного крутящего момента, доступного для ускорения объединенной инерции нагрузки и двигателя.

Вращающееся поле и токи, которые оно создает в короткозамкнутых проводниках ротора.

Encyclopædia Britannica, Inc.

Механическая выходная мощность должна обеспечиваться входной электрической мощностью. Первоначальных токов статора, показанных на рисунке, достаточно для создания вращающегося магнитного поля. Чтобы поддерживать это вращающееся поле в присутствии токов ротора, показанных на рисунке, необходимо, чтобы обмотки статора несли дополнительную составляющую синусоидального тока такой величины и фазы, чтобы нейтрализовать влияние магнитного поля, которое в противном случае могло бы возникнуть. токами ротора на рисунке.Общий ток статора в каждой фазной обмотке складывается из синусоидальной составляющей для создания магнитного поля и другой синусоиды, опережающей первую на четверть цикла, или 90 °, для обеспечения необходимой электроэнергии. Вторая, или силовая, составляющая тока находится в фазе с напряжением, приложенным к статору, в то время как первая, или намагничивающая, составляющая отстает от приложенного напряжения на четверть цикла или 90 °. При номинальной нагрузке эта намагничивающая составляющая обычно находится в диапазоне 0.От 4 до 0,6 величины силовой составляющей.

Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными непосредственно к трехфазному источнику питания постоянного напряжения и постоянной частоты. Типичные напряжения питания находятся в диапазоне от 230 вольт между фазами для двигателей относительно небольшой мощности (например, от 0,5 до 50 киловатт) до примерно 15 киловольт между фазами для двигателей большой мощности до примерно 10 мегаватт.

За исключением небольшого падения напряжения на сопротивлении обмотки статора, напряжение питания согласуется со скоростью изменения магнитного потока в статоре машины во времени.Таким образом, при питании с постоянной частотой и постоянным напряжением величина вращающегося магнитного поля остается постоянной, а крутящий момент примерно пропорционален силовой составляющей тока питания.

В асинхронном двигателе, показанном на предыдущих рисунках, магнитное поле совершает один оборот за каждый цикл частоты питания. Для источника с частотой 60 Гц скорость поля составляет 60 оборотов в секунду или 3600 оборотов в минуту. Скорость ротора меньше скорости поля на величину, достаточную для того, чтобы индуцировать необходимое напряжение в проводниках ротора для создания тока ротора, необходимого для момента нагрузки.При полной нагрузке скорость обычно на 0,5–5 процентов ниже скорости поля (часто называемая синхронной скоростью), причем более высокий процент применяется к двигателям меньшего размера. Эта разница в скорости часто называется скольжением.

Другие синхронные скорости могут быть получены с источником постоянной частоты, построив машину с большим количеством пар магнитных полюсов, в отличие от двухполюсной конструкции, показанной на рисунке. Возможные значения скорости магнитного поля в оборотах в минуту: 120 f / p , где f — частота в герцах (циклов в секунду), а p — количество полюсов (которое должно быть четное число).Данный железный каркас может быть намотан для любого из нескольких возможных количеств пар полюсов с помощью катушек, охватывающих угол приблизительно (360/ p ) °. Крутящий момент, доступный от рамы машины, останется неизменным, поскольку он пропорционален произведению магнитного поля и допустимого тока катушки. Таким образом, номинальная мощность рамы, являющаяся произведением крутящего момента и скорости, будет примерно обратно пропорциональна количеству пар полюсов. Наиболее распространенные синхронные скорости для двигателей с частотой 60 Гц — 1800 и 1200 оборотов в минуту.

Электродвигатель | Британника

Самый простой тип асинхронного двигателя показан на рисунке в разрезе. Трехфазный набор обмоток статора вставлен в пазы в железе статора. Эти обмотки могут быть подключены по схеме «звезда», обычно без внешнего подключения к нейтральной точке, или по схеме «треугольник». Ротор состоит из цилиндрического стального сердечника с проводниками, размещенными в пазах по всей поверхности. В наиболее обычной форме эти проводники ротора соединены вместе на каждом конце ротора токопроводящим концевым кольцом.

Поперечное сечение трехфазного асинхронного двигателя.

Британская энциклопедия, Inc.

Основы работы асинхронного двигателя можно разработать, сначала предположив, что обмотки статора подключены к трехфазному источнику питания и что набор из трех синусоидальных токов, показанных на рисунке, протекает в обмотках статора. На этом рисунке показано влияние этих токов на создание магнитного поля через воздушный зазор машины в течение шести мгновений цикла.Для простоты показана только центральная токопроводящая петля для каждой фазной обмотки. В момент t 1 на рисунке, ток в фазе a является максимальным положительным, тогда как ток в фазах b и c составляет половину отрицательного значения. Результатом является магнитное поле с приблизительно синусоидальным распределением вокруг воздушного зазора с максимальным значением наружу вверху и максимальным значением внутрь внизу. В момент времени t 2 на рисунке (т.е.е., одна шестая цикла позже), ток в фазе c является максимально отрицательным, в то время как ток в фазе b и фазе a имеет положительное значение на половину. В результате, как показано на рисунке для t 2 , снова будет синусоидально распределенное магнитное поле, но повернутое на 60 ° против часовой стрелки. Исследование распределения тока для т 3 , т 4 , т 5 и т 6 показывает, что магнитное поле продолжает вращаться с течением времени.Поле совершает один оборот за один цикл токов статора. Таким образом, совокупный эффект трех равных синусоидальных токов, равномерно смещенных во времени и протекающих в трех обмотках статора, равномерно смещенных в угловом положении, должен создать вращающееся магнитное поле с постоянной величиной и механической угловой скоростью, которая зависит от частоты электроснабжение.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Вращательное движение магнитного поля относительно проводников ротора вызывает индуцирование напряжения в каждом из них, пропорциональное величине и скорости поля относительно проводников.Поскольку проводники ротора замкнуты накоротко на каждом конце, это приведет к протеканию токов в этих проводниках. В простейшем режиме работы эти токи будут примерно равны индуцированному напряжению, деленному на сопротивление проводника. На этом рисунке показана диаграмма токов ротора за момент времени t 1 рисунка. Видно, что токи приблизительно синусоидально распределены по периферии ротора и расположены так, чтобы создавать вращающий момент против часовой стрелки на роторе (т.е.е. крутящий момент в том же направлении, что и вращение поля). Этот крутящий момент ускоряет ротор и вращает механическую нагрузку. По мере увеличения скорости вращения ротора его скорость относительно скорости вращающегося поля уменьшается. Таким образом, индуцированное напряжение уменьшается, что приводит к пропорциональному снижению тока в проводнике ротора и крутящего момента. Скорость ротора достигает постоянного значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, необходимому на этой скорости для нагрузки, без избыточного крутящего момента, доступного для ускорения объединенной инерции нагрузки и двигателя.

Вращающееся поле и токи, которые оно создает в короткозамкнутых проводниках ротора.

Британская энциклопедия, Inc.

Механическая выходная мощность должна обеспечиваться входной электрической мощностью. Первоначальных токов статора, показанных на рисунке, достаточно для создания вращающегося магнитного поля. Чтобы поддерживать это вращающееся поле в присутствии токов ротора, показанных на рисунке, необходимо, чтобы обмотки статора несли дополнительную составляющую синусоидального тока такой величины и фазы, чтобы нейтрализовать влияние магнитного поля, которое в противном случае могло бы возникнуть. токами ротора на рисунке.Общий ток статора в каждой фазной обмотке складывается из синусоидальной составляющей для создания магнитного поля и другой синусоиды, опережающей первую на четверть цикла, или 90 °, для обеспечения необходимой электроэнергии. Вторая, или силовая, составляющая тока находится в фазе с напряжением, приложенным к статору, в то время как первая, или намагничивающая, составляющая отстает от приложенного напряжения на четверть цикла или 90 °. При номинальной нагрузке эта намагничивающая составляющая обычно находится в диапазоне 0.От 4 до 0,6 величины силовой составляющей.

Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными непосредственно к трехфазному источнику питания постоянного напряжения и постоянной частоты. Типичные напряжения питания находятся в диапазоне от 230 вольт между фазами для двигателей относительно небольшой мощности (например, от 0,5 до 50 киловатт) до примерно 15 киловольт между фазами для двигателей большой мощности до примерно 10 мегаватт.

За исключением небольшого падения напряжения на сопротивлении обмотки статора, напряжение питания согласуется со скоростью изменения магнитного потока в статоре машины во времени.Таким образом, при питании с постоянной частотой и постоянным напряжением величина вращающегося магнитного поля остается постоянной, а крутящий момент примерно пропорционален силовой составляющей тока питания.

В асинхронном двигателе, показанном на предыдущих рисунках, магнитное поле совершает один оборот за каждый цикл частоты питания. Для источника с частотой 60 Гц скорость поля составляет 60 оборотов в секунду или 3600 оборотов в минуту. Скорость ротора меньше скорости поля на величину, достаточную для того, чтобы индуцировать необходимое напряжение в проводниках ротора для создания тока ротора, необходимого для момента нагрузки.При полной нагрузке скорость обычно на 0,5–5 процентов ниже скорости поля (часто называемая синхронной скоростью), причем более высокий процент применяется к двигателям меньшего размера. Эта разница в скорости часто называется скольжением.

Другие синхронные скорости могут быть получены с источником постоянной частоты, построив машину с большим количеством пар магнитных полюсов, в отличие от двухполюсной конструкции, показанной на рисунке. Возможные значения скорости магнитного поля в оборотах в минуту: 120 f / p , где f — частота в герцах (циклов в секунду), а p — количество полюсов (которое должно быть четное число).Данный железный каркас может быть намотан для любого из нескольких возможных количеств пар полюсов с помощью катушек, охватывающих угол приблизительно (360/ p ) °. Крутящий момент, доступный от рамы машины, останется неизменным, поскольку он пропорционален произведению магнитного поля и допустимого тока катушки. Таким образом, номинальная мощность рамы, являющаяся произведением крутящего момента и скорости, будет примерно обратно пропорциональна количеству пар полюсов. Наиболее распространенные синхронные скорости для двигателей с частотой 60 Гц — 1800 и 1200 оборотов в минуту.

Электродвигатель | Британника

Самый простой тип асинхронного двигателя показан на рисунке в разрезе. Трехфазный набор обмоток статора вставлен в пазы в железе статора. Эти обмотки могут быть подключены по схеме «звезда», обычно без внешнего подключения к нейтральной точке, или по схеме «треугольник». Ротор состоит из цилиндрического стального сердечника с проводниками, размещенными в пазах по всей поверхности. В наиболее обычной форме эти проводники ротора соединены вместе на каждом конце ротора токопроводящим концевым кольцом.

Поперечное сечение трехфазного асинхронного двигателя.

Британская энциклопедия, Inc.

Основы работы асинхронного двигателя можно разработать, сначала предположив, что обмотки статора подключены к трехфазному источнику питания и что набор из трех синусоидальных токов, показанных на рисунке, протекает в обмотках статора. На этом рисунке показано влияние этих токов на создание магнитного поля через воздушный зазор машины в течение шести мгновений цикла.Для простоты показана только центральная токопроводящая петля для каждой фазной обмотки. В момент t 1 на рисунке, ток в фазе a является максимальным положительным, тогда как ток в фазах b и c составляет половину отрицательного значения. Результатом является магнитное поле с приблизительно синусоидальным распределением вокруг воздушного зазора с максимальным значением наружу вверху и максимальным значением внутрь внизу. В момент времени t 2 на рисунке (т.е.е., одна шестая цикла позже), ток в фазе c является максимально отрицательным, в то время как ток в фазе b и фазе a имеет положительное значение на половину. В результате, как показано на рисунке для t 2 , снова будет синусоидально распределенное магнитное поле, но повернутое на 60 ° против часовой стрелки. Исследование распределения тока для т 3 , т 4 , т 5 и т 6 показывает, что магнитное поле продолжает вращаться с течением времени.Поле совершает один оборот за один цикл токов статора. Таким образом, совокупный эффект трех равных синусоидальных токов, равномерно смещенных во времени и протекающих в трех обмотках статора, равномерно смещенных в угловом положении, должен создать вращающееся магнитное поле с постоянной величиной и механической угловой скоростью, которая зависит от частоты электроснабжение.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Вращательное движение магнитного поля относительно проводников ротора вызывает индуцирование напряжения в каждом из них, пропорциональное величине и скорости поля относительно проводников.Поскольку проводники ротора замкнуты накоротко на каждом конце, это приведет к протеканию токов в этих проводниках. В простейшем режиме работы эти токи будут примерно равны индуцированному напряжению, деленному на сопротивление проводника. На этом рисунке показана диаграмма токов ротора за момент времени t 1 рисунка. Видно, что токи приблизительно синусоидально распределены по периферии ротора и расположены так, чтобы создавать вращающий момент против часовой стрелки на роторе (т.е.е. крутящий момент в том же направлении, что и вращение поля). Этот крутящий момент ускоряет ротор и вращает механическую нагрузку. По мере увеличения скорости вращения ротора его скорость относительно скорости вращающегося поля уменьшается. Таким образом, индуцированное напряжение уменьшается, что приводит к пропорциональному снижению тока в проводнике ротора и крутящего момента. Скорость ротора достигает постоянного значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, необходимому на этой скорости для нагрузки, без избыточного крутящего момента, доступного для ускорения объединенной инерции нагрузки и двигателя.

Вращающееся поле и токи, которые оно создает в короткозамкнутых проводниках ротора.

Британская энциклопедия, Inc.

Механическая выходная мощность должна обеспечиваться входной электрической мощностью. Первоначальных токов статора, показанных на рисунке, достаточно для создания вращающегося магнитного поля. Чтобы поддерживать это вращающееся поле в присутствии токов ротора, показанных на рисунке, необходимо, чтобы обмотки статора несли дополнительную составляющую синусоидального тока такой величины и фазы, чтобы нейтрализовать влияние магнитного поля, которое в противном случае могло бы возникнуть. токами ротора на рисунке.Общий ток статора в каждой фазной обмотке складывается из синусоидальной составляющей для создания магнитного поля и другой синусоиды, опережающей первую на четверть цикла, или 90 °, для обеспечения необходимой электроэнергии. Вторая, или силовая, составляющая тока находится в фазе с напряжением, приложенным к статору, в то время как первая, или намагничивающая, составляющая отстает от приложенного напряжения на четверть цикла или 90 °. При номинальной нагрузке эта намагничивающая составляющая обычно находится в диапазоне 0.От 4 до 0,6 величины силовой составляющей.

Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными непосредственно к трехфазному источнику питания постоянного напряжения и постоянной частоты. Типичные напряжения питания находятся в диапазоне от 230 вольт между фазами для двигателей относительно небольшой мощности (например, от 0,5 до 50 киловатт) до примерно 15 киловольт между фазами для двигателей большой мощности до примерно 10 мегаватт.

За исключением небольшого падения напряжения на сопротивлении обмотки статора, напряжение питания согласуется со скоростью изменения магнитного потока в статоре машины во времени.Таким образом, при питании с постоянной частотой и постоянным напряжением величина вращающегося магнитного поля остается постоянной, а крутящий момент примерно пропорционален силовой составляющей тока питания.

В асинхронном двигателе, показанном на предыдущих рисунках, магнитное поле совершает один оборот за каждый цикл частоты питания. Для источника с частотой 60 Гц скорость поля составляет 60 оборотов в секунду или 3600 оборотов в минуту. Скорость ротора меньше скорости поля на величину, достаточную для того, чтобы индуцировать необходимое напряжение в проводниках ротора для создания тока ротора, необходимого для момента нагрузки.При полной нагрузке скорость обычно на 0,5–5 процентов ниже скорости поля (часто называемая синхронной скоростью), причем более высокий процент применяется к двигателям меньшего размера. Эта разница в скорости часто называется скольжением.

Другие синхронные скорости могут быть получены с источником постоянной частоты, построив машину с большим количеством пар магнитных полюсов, в отличие от двухполюсной конструкции, показанной на рисунке. Возможные значения скорости магнитного поля в оборотах в минуту: 120 f / p , где f — частота в герцах (циклов в секунду), а p — количество полюсов (которое должно быть четное число).Данный железный каркас может быть намотан для любого из нескольких возможных количеств пар полюсов с помощью катушек, охватывающих угол приблизительно (360/ p ) °. Крутящий момент, доступный от рамы машины, останется неизменным, поскольку он пропорционален произведению магнитного поля и допустимого тока катушки. Таким образом, номинальная мощность рамы, являющаяся произведением крутящего момента и скорости, будет примерно обратно пропорциональна количеству пар полюсов. Наиболее распространенные синхронные скорости для двигателей с частотой 60 Гц — 1800 и 1200 оборотов в минуту.

8 Обычная бытовая техника и устройства с двигателями

Изобретение двигателей — это событие, изменившее мир, которое сильно и безвозвратно повлияло на то, как мы живем.

Нигде это не проявляется так заметно, как в видах транспорта, которыми мы пользуемся, чтобы добраться из одного места в другое. От наших машин, морских кораблей и самолетов, курсирующих в самом небе над нами.

Motors также повлияли на то, как мы живем дома, особенно когда дело касается домашних дел.Вот несколько удивительных примеров бытовой техники и устройств, в которых используется технология электродвигателей (или, по крайней мере, тех, о которых вы, возможно, не думали поначалу).

Одна из самых распространенных бытовых приборов со времен появления Интернета! Компьютеры на самом деле делают спортивные моторы, даже если на первый взгляд кажется, что у них нет движущихся частей. Двигатели связаны с его жесткими дисками. Он «раскручивает» пластины в приводе и считывает хранящиеся на них данные. Вентиляторы охлаждения, которые отводят горячий воздух изнутри устройства, также требуют вращения двигателей.

Другой распространенный бытовой прибор, холодильник нуждается в небольших двигателях для работы его компрессора. Это сжимает хладагент в жидкость, чтобы создать низкую температуру, которая помогает сохранить свежие продукты. По такому же принципу работают кондиционеры.

В микроволновой печи есть мотор, кухонный прибор, используемый для нагрева остатков и оттаивания замороженных продуктов. В основном это связано с механизмом поворотного стола, который медленно вращает пищу, когда микроволновая печь сама запускает процесс нагрева.

Стиральной машине нужен мощный двигатель, чтобы она могла выполнять свою работу — чистить грязное белье! Для машин с двумя ваннами, у которых есть стиральная ванна и ванна центробежной сушилки, необходимы два двигателя. С другой стороны, машины с фронтальной загрузкой обычно обходятся одним.

Это неизменно надежное устройство требует мощного всасывающего двигателя для «всасывания» пыли и грязи с полов и ковров. Некоторые модели даже позволяют реверсировать поток воздуха. Это позволит вам использовать пылесос в качестве воздуходувки в спешке.

Да, в этом карманном компьютере в сумке или кармане тоже есть пара двигателей! Один из них легко найти — тот, который дает вашему телефону функцию вибрации. Также в объективе камеры телефона есть один, который помогает фокусироваться, масштабировать, а также стабилизировать изображение.

Это автоматизированное чудо, которое позволяет нам быстро и тщательно чистить зубы, также имеет в себе микромотор. Это заставляет головку щетины вибрировать и вращаться при нажатии кнопки.

Альтернатива кондиционеру — один из самых больших двигателей, когда-либо предназначенных для работы в доме.В зависимости от размера и модели он также может быть самым громким. Никто не может отрицать, насколько это энергоэффективно и экономично для снижения температуры в жаркий и влажный полдень.

Вот и все — восемь самых распространенных бытовых приборов и устройств, в которых используются моторы! Некоторые из них совершенно очевидны, другие не слишком очевидны, особенно если у вас никогда не было опыта их разборки. Но это действительно показывает, насколько появление электродвигателей изменило ландшафт современного удобства — и мы можем только предполагать, какие изменения в правилах игры могут произойти дальше по мере развития технологий.

Есть ли у вас какие-либо другие электроприборы или устройства, которые были бы полезны в вашей повседневной деятельности? Поговорим об этом в комментариях ниже 🙂

Нравится:

Нравится Загрузка …

Связанные

Электродвигатели: что это такое и как они работают?

Электродвигатели используются постоянно для питания устройств, которые мы используем каждый день. Будь то вентилятор, охлаждающий вас в жаркий день, двигатель воздуходувки для листьев или электромобиль, без электродвигателей, мир был бы совсем другим.

Что такое электродвигатель?

Электродвигатель — это машина, которая может преобразовывать электрическую энергию в механическую (в частности, кинетическую энергию или энергию движения). Обычно это достигается за счет использования взаимосвязи между электричеством и магнетизмом.

Электродвигатели могут питаться от переменного тока, например от сетевой розетки, или постоянного тока, например от аккумулятора.

Как работает электродвигатель?

Основной принцип, лежащий в основе электродвигателя, заключается в том, что катушка с проволокой должна свободно вращаться в присутствии внешнего магнитного поля.

Когда ток проходит через катушку с проволокой, взаимодействие между током и полем создает крутящий момент, заставляющий катушку вращаться. Это вращение можно использовать, например, для вращения шин на игрушечной машине, или оно может приводить в движение коленчатый вал и преобразовывать вращательное движение в поступательное.

Как сделать свой собственный электродвигатель

Иногда лучший способ понять, как работает двигатель, — это построить его самостоятельно. Вы можете построить простой двигатель постоянного тока из обычных предметов домашнего обихода.

Посылая ток через провод тщательно продуманной формы в присутствии магнитного поля, мы можем создать часть нашей цепи, которая будет вращаться, позволяя нам преобразовывать электрическую энергию в механическую.

    Сделайте катушку из провода, несколько раз обернув обмотку вокруг батареи 1,5 В с ячейкой «D» (батарея служит формой; снимите катушку, когда закончите намотку). Оставьте примерно 2-3 см торча с обоих концов. Убедитесь, что все витки намотаны в одном направлении.

    Катушка должна быть хорошо сбалансирована на этих концах, чтобы она могла легко поворачиваться при установке в подставку, предусмотренную скрепками. Вы должны удерживать катушку вместе, скручивая последнюю петлю вокруг катушек, чтобы намотать катушки вместе.

    Когда катушка находится в показанном положении, с одного из концов провода, который будет контактировать со скрепками, изоляция должна быть удалена только с нижней стороны. Другой конец должен быть полностью обнажен в месте контакта со скрепкой.Таким образом, примерно половину времени через катушку будет проходить ток.

    Согните две скрепки так, чтобы они удерживали катушку, как показано, и закрепили их на месте.

    Поместите постоянный магнит под катушку.

    Подключите источник питания, например батарею D, которую вы использовали в качестве формы, к скрепкам.

    Попробуйте запустить двигатель, слегка покрутив катушку. Попробуйте, настройте, попробуйте, настройте, попробуйте и снова настройтесь, пока не добьетесь успеха!

Как это работает?

Если катушка ориентирована, как показано на изображении, ток проходит через катушку по часовой стрелке, а магнитное поле направлено вверх, тогда верх катушки будет ощущать силу, указывающую наружу (относительно экрана компьютера, на котором вы это смотрите. ), и нижняя часть катушки почувствует направленную внутрь силу.Это заставит катушку вращаться.

Как только ваша катушка повернется на 180 градусов, ток будет течь против часовой стрелки. Однако, поскольку вы сняли половину провода, ток не будет течь, пока катушка перевернута. Это сделано для того, чтобы у нас не возникла сила в противоположном направлении, заставляющая катушку реверсировать, а не продолжать.

При условии, что первоначальный толчок из-за поля достаточно силен, катушка перевернется на 180 градусов, совершая полный оборот, к концу которого ток течет таким образом, что сила заставляет ее сделать еще один оборот, как и раньше. .Если все достаточно хорошо сбалансировано, мотор должен вращаться довольно быстро и долго.

Детали коммерческого двигателя

К компонентам коммерческого двигателя относятся следующие:

Якорь является силовой частью двигателя. Он может быть расположен на роторе (вращающаяся часть) или на статоре (неподвижная часть). Якорь состоит из катушек проволоки, которые взаимодействуют с магнитным полем при прохождении тока.В нашем самодельном двигателе катушка была якорем и ротором, а скрепки — статором.

Щетки позволяют передавать ток на ротор при его вращении. В нашем самодельном моторе точка контакта скрепок и медного провода служила той же цели.

Коммутатор служит для периодического изменения направления тока. Это необходимо для двигателя постоянного тока или двигателя постоянного тока, но обычно не требуется для двигателя переменного тока или двигателя переменного тока, потому что ток уже меняет направление.Мы добились включения / выключения тока в нашем двигателе, оставив одну сторону контактного провода изолированной.

Магнит поля или Катушки возбуждения (электромагниты) создают необходимое магнитное поле.

Ось представляет собой стержнеобразную деталь, выровненную с осью вращения ротора, так что она вращается вместе с ротором. Горизонтальные концы нашего самодельного мотора были по сути осью.

Шестерня — это небольшая шестерня, которая может использоваться для передачи движения двигателя другому объекту или части машины.

Типы электродвигателей

Существует множество различных типов электродвигателей. Хотя сначала они подразделяются на двигатели переменного или постоянного тока, возможны и многие другие варианты. Будь то тяжелые, легкие, сельскохозяйственные или общие, здесь перечислены лишь некоторые из множества типов.

Однофазный двигатель работает от одного источника переменного тока.

Трехфазный двигатель — это двигатель, который приводится в действие тремя переменными токами одинаковой частоты, не совпадающими по фазе друг с другом.

Синхронный двигатель — это двигатель, период вращения которого кратен частоте переменного тока.

В асинхронном асинхронном двигателе или , электрический ток в роторе создается за счет электромагнитной индукции из магнитного поля обмотки статора.

Шаговый двигатель — это бесщеточный двигатель постоянного тока, который прерывает полный оборот на равные ступени. Мотор может двигаться и удерживаться на любом из шагов.

Электрогенераторы

Электрогенераторы являются реверсом электродвигателей; они берут механическую энергию и преобразуют ее в электрическую. Это можно сделать разными способами.

Например, энергия ветра может использоваться для вращения лопастей вентилятора ветрогенератора, которые вращают ротор внутри генератора, и возникающая в результате электромагнитная индукция вызывает протекание тока. Аналогичным образом работают гидроэлектростанции: падающая вода вращает лопасти турбины.

Электродвигатель — Энциклопедия Нового Мира

Вращающееся магнитное поле как сумма магнитных векторов от трехфазных катушек

Электродвигатель преобразует электрическую энергию в кинетическую энергию. Обратная задача — преобразование кинетической энергии в электрическую — выполняется генератором или динамо-машиной. Во многих случаях два устройства различаются только своим применением и незначительными деталями конструкции, а некоторые приложения используют одно устройство для выполнения обеих ролей. Например, тяговые двигатели, используемые на локомотивах, часто выполняют обе задачи, если локомотив оборудован динамическими тормозами.

Большинство электродвигателей работают за счет электромагнетизма, но также существуют двигатели, основанные на других электромеханических явлениях, таких как электростатические силы и пьезоэлектрический эффект. Фундаментальный принцип, на котором основаны электромагнитные двигатели, заключается в том, что на любой токоведущий провод, находящийся внутри магнитного поля, действует механическая сила. Сила описывается законом силы Лоренца и перпендикулярна как проводу, так и магнитному полю.

Большинство магнитных двигателей являются вращающимися, но существуют и линейные двигатели.В роторном двигателе вращающаяся часть (обычно внутри) называется ротором, а неподвижная часть — статором. Ротор вращается, потому что провода и магнитное поле расположены так, что вокруг оси ротора создается крутящий момент. Двигатель содержит электромагниты, намотанные на раму. Хотя эту раму часто называют арматурой, этот термин часто используют ошибочно. Правильно, якорь — это та часть двигателя, на которую подается входное напряжение. В зависимости от конструкции машины якорь может служить как ротор, так и статор.

Двигатели постоянного тока

Электродвигатели различных размеров. Ротор от небольшого двигателя постоянного тока 3 В. Этот двигатель имеет 3 катушки, и коммутатор можно увидеть на ближнем конце.

Один из первых электромагнитных роторных двигателей был изобретен Майклом Фарадеем в 1821 году и состоял из свободно висящего провода, погруженного в бассейн с ртутью. Постоянный магнит был помещен в середину ртутной ванны. Когда через провод пропускался ток, он вращался вокруг магнита, показывая, что ток порождал круговое магнитное поле вокруг провода.Этот двигатель часто демонстрируется на школьных уроках физики, но иногда вместо токсичной ртути используется рассол (соленая вода). Это простейшая форма класса электродвигателей, называемых униполярными двигателями. Более поздняя доработка — Колесо Барлоу.

В другой ранней конструкции электродвигателя использовался поршень возвратно-поступательного действия внутри переключаемого соленоида; концептуально его можно рассматривать как электромагнитную версию двухтактного двигателя внутреннего сгорания. Томас Давенпорт построил небольшой электродвигатель постоянного тока в 1834 году, используя его для управления игрушечным поездом по круговой дороге.Он получил патент на него в 1837 году.

Современный двигатель постоянного тока был изобретен случайно в 1873 году, когда Зеноб Грамм соединил вращающуюся динамо-машину со вторым аналогичным устройством, приведя его в действие как двигатель. Машина Грамма была первым промышленно полезным электродвигателем; более ранние изобретения использовались в качестве игрушек или лабораторных диковинок.

Классический двигатель постоянного тока имеет вращающийся якорь в виде электромагнита. Поворотный переключатель, называемый коммутатором, меняет направление электрического тока дважды за цикл, чтобы он протекал через якорь, так что полюса электромагнита толкаются и притягиваются к постоянным магнитам на внешней стороне двигателя.Когда полюса электромагнита якоря проходят через полюсы постоянных магнитов, коммутатор меняет полярность электромагнита якоря. В этот момент переключения полярности импульс поддерживает классический двигатель в нужном направлении. (См. Схемы ниже.)

  • Вращение двигателя постоянного тока
  • Простой электродвигатель постоянного тока. Когда катушка запитана, вокруг якоря создается магнитное поле. Левая сторона якоря отодвигается от левого магнита и тянется вправо, вызывая вращение.

  • Якорь продолжает вращаться.

  • Когда якорь становится выровненным по горизонтали, коммутатор меняет направление тока через катушку на противоположное, меняя местами магнитное поле. Затем процесс повторяется.

Электродвигатель постоянного тока с возбужденным полем

Постоянные магниты на внешней стороне (статоре) электродвигателя постоянного тока можно заменить электромагнитами. Изменяя ток возбуждения, можно изменять соотношение скорость / крутящий момент двигателя.Обычно обмотка возбуждения размещается последовательно (последовательная обмотка), с обмоткой якоря для получения низкоскоростного двигателя с высоким крутящим моментом, параллельно (шунтирующая обмотка) с якорем, чтобы получить высокоскоростной двигатель с низким крутящим моментом, или имеют обмотку частично параллельно, а частично последовательно (составная обмотка) для баланса, который обеспечивает стабильную скорость в диапазоне нагрузок. Раздельное возбуждение также является обычным, с фиксированным напряжением поля, скорость регулируется изменением напряжения якоря.Дальнейшее уменьшение тока возбуждения возможно для получения еще более высокой скорости, но, соответственно, более низкого крутящего момента, что называется режимом «слабого поля».

Теория

Если вал двигателя постоянного тока вращается под действием внешней силы, двигатель будет действовать как генератор и создавать электродвижущую силу (ЭДС). Это напряжение также генерируется при нормальной работе двигателя. Вращение двигателя создает напряжение, известное как противо-ЭДС (CEMF) или противо-ЭДС, поскольку оно противодействует приложенному напряжению на двигателе.Следовательно, падение напряжения на двигателе состоит из падения напряжения из-за этой CEMF и паразитного падения напряжения, возникающего из-за внутреннего сопротивления обмоток якоря.

Поскольку CEMF пропорциональна скорости двигателя, при первом запуске или полном останове электродвигателя CEMF отсутствует. Следовательно, ток через якорь намного выше. Этот высокий ток создаст сильное магнитное поле, которое запустит вращение двигателя. По мере вращения двигателя CEMF увеличивается до тех пор, пока не станет равным приложенному напряжению за вычетом паразитного падения напряжения.В этот момент через двигатель будет протекать меньший ток.

Управление скоростью

Обычно скорость вращения двигателя постоянного тока пропорциональна приложенному к нему напряжению, а крутящий момент пропорционален току. Регулировка скорости может быть достигнута с помощью регулируемых выводов аккумуляторной батареи, переменного напряжения питания, резисторов или электронного управления. Направление двигателя постоянного тока с обмоткой возбуждения можно изменить, поменяв местами подключения возбуждения или якоря, но не то и другое вместе. Обычно это делается с помощью специального набора контакторов (контакторов направления).

Эффективное напряжение можно изменять, вставляя последовательный резистор или используя переключающее устройство с электронным управлением, состоящее из тиристоров, транзисторов или, ранее, ртутных дуговых выпрямителей. В цепи, известной как прерыватель, среднее напряжение, приложенное к двигателю, изменяется путем очень быстрого переключения напряжения питания. Поскольку отношение «включено» к «выключено» изменяется для изменения среднего приложенного напряжения, скорость двигателя изменяется. Процент времени включения, умноженный на напряжение питания, дает среднее напряжение, приложенное к двигателю.

Поскольку двигатель постоянного тока с последовательным возбуждением развивает максимальный крутящий момент на низкой скорости, он часто используется в тяговых устройствах, таких как электровозы и трамваи. Другое применение — стартеры для бензиновых и небольших дизельных двигателей. Серийные двигатели никогда не должны использоваться в приложениях, где привод может выйти из строя (например, ременные передачи). По мере ускорения двигателя ток якоря (и, следовательно, возбуждения) уменьшается. Уменьшение поля заставляет двигатель ускоряться (см. «Слабое поле» в последнем разделе), пока он не разрушит себя.Это также может быть проблемой для железнодорожных двигателей в случае потери сцепления, поскольку, если быстро не взять под контроль двигатели, они могут развивать скорость намного выше, чем при нормальных обстоятельствах. Это может вызвать проблемы не только для самих двигателей и шестерен, но и из-за разницы скоростей между рельсами и колесами, это также может вызвать серьезные повреждения рельсов и ступеней колес, поскольку они быстро нагреваются и охлаждаются. Ослабление поля используется в некоторых электронных элементах управления для увеличения максимальной скорости электромобиля.В простейшей форме используется контактор и резистор ослабления поля, электронное управление контролирует ток двигателя и подключает резистор ослабления поля в цепь, когда ток двигателя уменьшается ниже заданного значения (это будет, когда двигатель работает на полной расчетной скорости). Как только резистор включен в цепь, двигатель увеличит скорость выше своей нормальной скорости при номинальном напряжении. Когда ток двигателя увеличивается, система управления отключает резистор и становится доступным крутящий момент на низкой скорости.

Одним из интересных методов управления скоростью двигателя постоянного тока является управление Уорда-Леонарда.Это метод управления двигателем постоянного тока (обычно с шунтирующей или составной обмоткой) и был разработан как метод обеспечения двигателя с регулируемой скоростью от источника переменного тока (переменного тока), хотя он не лишен своих преимуществ в схемах постоянного тока. Источник переменного тока используется для привода двигателя переменного тока, обычно асинхронного двигателя, который приводит в действие генератор постоянного тока или динамо-машину. Выход постоянного тока из якоря напрямую подключен к якорю двигателя постоянного тока (обычно идентичной конструкции). Шунтирующие обмотки возбуждения обеих машин постоянного тока возбуждаются через переменный резистор от якоря генератора.Этот переменный резистор обеспечивает исключительно хорошее управление скоростью от состояния покоя до полной скорости и постоянный крутящий момент. Этот метод управления был методом de facto с момента его разработки до момента его замены на твердотельные тиристорные системы. Она нашла применение практически в любой среде, где требовалось хорошее управление скоростью, от пассажирских лифтов до обмотки головок большой шахты и даже промышленного технологического оборудования и электрических кранов. Его основным недостатком было то, что для реализации схемы требовалось три машины (пять в очень больших установках, поскольку машины постоянного тока часто дублировались и управлялись тандемным переменным резистором).Во многих случаях установка двигатель-генератор часто оставалась постоянно работающей, чтобы избежать задержек, которые в противном случае были бы вызваны ее запуском по мере необходимости. Есть множество устаревших установок Ward-Leonard, которые все еще используются.

Универсальные двигатели

Вариант обмотки Двигатель постоянного тока — универсальный двигатель . Название происходит от того факта, что он может использовать переменный ток или постоянный ток, хотя на практике они почти всегда используются с переменным током.Принцип заключается в том, что в двигателе постоянного тока с обмоткой поля ток как в поле, так и в якоре (и, следовательно, результирующие магнитные поля) будут чередоваться (обратная полярность) в одно и то же время, и, следовательно, генерируемая механическая сила всегда в одном и том же направлении. . На практике двигатель должен быть специально спроектирован для работы с переменным током (необходимо учитывать импеданс, а также пульсирующую силу), и получаемый в результате двигатель обычно менее эффективен, чем эквивалентный чистый двигатель DC .При работе на нормальных частотах линии электропередачи максимальная мощность универсальных двигателей ограничена, а двигатели мощностью более одного киловатта встречаются редко. Но универсальные двигатели также составляют основу традиционного железнодорожного тягового двигателя. В этом приложении для поддержания высокого электрического КПД они работали от очень низкочастотных источников переменного тока с частотой 25 Гц и 16 2 / 3 Гц. Поскольку это универсальные двигатели, локомотивы, использующие эту конструкцию, также обычно могли работать от третьего рельса с питанием от постоянного тока.

Преимущество универсального двигателя заключается в том, что источники питания переменного тока могут использоваться на двигателях, которые имеют типичные характеристики двигателей постоянного тока, в частности, высокий пусковой момент и очень компактную конструкцию, если используются высокие скорости вращения. Отрицательный аспект — проблемы с обслуживанием и коротким сроком службы, вызванные коммутатором. В результате такие двигатели обычно используются в устройствах переменного тока, таких как миксеры для пищевых продуктов и электроинструменты, которые используются только с перерывами. Непрерывное управление скоростью универсального двигателя, работающего от переменного тока, очень легко достигается с помощью тиристорной схемы, в то время как ступенчатое управление скоростью может быть выполнено с помощью нескольких отводов на катушке возбуждения.Бытовые блендеры, рекламирующие много скоростей, часто сочетают в себе катушку возбуждения с несколькими ответвлениями и диод, который можно вставить последовательно с двигателем (в результате чего двигатель работает на полуволновом постоянном токе с 0,707 среднеквадратичного напряжения линии питания переменного тока).

В отличие от двигателей переменного тока, универсальные двигатели могут легко превышать один оборот за цикл сетевого тока. Это делает их полезными для таких приборов, как блендеры, пылесосы и фены, где требуется высокая скорость работы. Моторы многих пылесосов и триммеров для сорняков превышают 10 000 об / мин, Dremel и другие подобные миниатюрные измельчители часто превышают 30 000 об / мин.Теоретический универсальный двигатель, которому разрешено работать без механической нагрузки, будет превышать скорость, что может привести к его повреждению. В реальной жизни, однако, различное трение подшипников, «парусность» якоря и нагрузка любого встроенного охлаждающего вентилятора — все это предотвращает превышение скорости.

Из-за очень низкой стоимости полупроводниковых выпрямителей в некоторых приложениях, в которых раньше использовался универсальный двигатель, теперь используется чистый двигатель постоянного тока, обычно с полем постоянного магнита. Это особенно верно, если полупроводниковая схема также используется для регулирования скорости.

Преимущества универсального двигателя и распределения переменного тока сделали установку низкочастотной системы распределения тягового тока экономичной для некоторых железнодорожных установок. На достаточно низких частотах характеристики двигателя примерно такие же, как если бы двигатель работал от постоянного тока.

Двигатели переменного тока

В 1882 году Никола Тесла определил принцип вращающегося магнитного поля и впервые применил вращающееся силовое поле для работы машин.Он использовал этот принцип для разработки уникального двухфазного асинхронного двигателя в 1883 году. В 1885 году Галилео Феррарис независимо исследовал эту концепцию. В 1888 году Феррарис опубликовал свое исследование в докладе Королевской академии наук в Турине.

Введение двигателя Теслы с 1888 года и далее положило начало тому, что известно как Вторая промышленная революция, сделав возможным эффективное производство и распределение электроэнергии на большие расстояния с использованием системы передачи переменного тока, также изобретенной Тесла (1888 г.).До изобретения вращающегося магнитного поля двигатели работали, непрерывно пропуская проводник через постоянное магнитное поле (как в униполярных двигателях).

Тесла предположил, что коммутаторы из машины могут быть удалены, и устройство может работать во вращающемся силовом поле. Его учитель профессор Пошель заявил, что это было бы похоже на создание вечного двигателя. [1] Тесла позже получит патент США 0416194 (PDF), Электродвигатель (декабрь 1889 г.), который напоминает двигатель, изображенный на многих фотографиях Теслы.Этим классическим электромагнитным двигателем переменного тока был асинхронный двигатель .

9057 905
Энергия статора Энергия ротора Общая потребляемая энергия Развиваемая мощность
10 90 100 900
50 100

В асинхронном двигателе , поле и якорь в идеале имели одинаковую напряженность поля, а сердечники поля и якоря были одинакового размера.Полная энергия, потребляемая для работы устройства, равнялась сумме энергии, затраченной на якорь и катушку возбуждения. [2] Мощность, развиваемая при работе устройства, равна произведению энергии, затрачиваемой в катушках якоря и возбуждения. [3]

Михаил Осипович Доливо-Добровольский позже изобрел трехфазный «клеть-ротор» в 1890 году. Успешная коммерческая многофазная система генерации и передачи на большие расстояния была спроектирована Алмерианом Декером в Mill Creek No.1 [4] в Редлендс, Калифорния. [5]

Компоненты и типы

Типичный двигатель переменного тока состоит из двух частей:

  1. Внешний стационарный статор с катушками, на которые подается переменный ток для создания вращающегося магнитного поля, и;
  2. Внутренний ротор, прикрепленный к выходному валу, которому крутящий момент создает крутящий момент.

В зависимости от типа используемого ротора существует два основных типа электродвигателей переменного тока:

  • Синхронный электродвигатель, который вращается точно с частотой питания или кратной частотой питания, и;
  • Асинхронный двигатель, который вращается немного медленнее и обычно (хотя и не всегда) имеет форму двигателя с короткозамкнутым ротором.

Трехфазные асинхронные двигатели переменного тока

Трехфазные асинхронные двигатели переменного тока мощностью 1 л.с. (746 Вт) и 25 Вт с небольшими двигателями от проигрывателя компакт-дисков, игрушек и головки считывающего устройства привода CD / DVD

При наличии многофазного источника питания, Обычно используется трехфазный (или многофазный) асинхронный двигатель переменного тока, особенно для двигателей большей мощности. Разность фаз между тремя фазами многофазного источника питания создает вращающееся электромагнитное поле в двигателе.

Благодаря электромагнитной индукции вращающееся магнитное поле индуцирует ток в проводниках в роторе, который, в свою очередь, создает уравновешивающее магнитное поле, которое заставляет ротор вращаться в направлении вращения поля.Ротор всегда должен вращаться медленнее, чем вращающееся магнитное поле, создаваемое многофазным источником питания; в противном случае в роторе не будет создаваться уравновешивающее поле.

Асинхронные двигатели являются рабочими лошадками промышленности, и двигатели мощностью до 500 кВт (670 лошадиных сил) производятся в строго стандартизированных типоразмерах, что делает их почти полностью взаимозаменяемыми между производителями (хотя стандартные размеры в Европе и Северной Америке различаются). Очень большие синхронные двигатели могут иметь выходную мощность в десятки тысяч кВт для трубопроводных компрессоров, приводов в аэродинамической трубе и наземных преобразовательных систем.

В асинхронных двигателях используются два типа роторов.

Роторы с короткозамкнутым ротором: В большинстве двигателей переменного тока используется ротор с короткозамкнутым ротором, который можно найти практически во всех бытовых и легких промышленных двигателях переменного тока. Беличья клетка получила свое название от своей формы — кольца на обоих концах ротора, с перемычками, соединяющими кольца по всей длине ротора. Обычно это литой алюминий или медь, залитые между железными пластинами ротора, и обычно видны только концевые кольца.Подавляющее большинство токов ротора будет проходить через стержни, а не через ламинаты с более высоким сопротивлением и обычно покрытые лаком. Очень низкие напряжения при очень высоких токах типичны для шин и концевых колец; В двигателях с высоким КПД часто используется литая медь для уменьшения сопротивления ротора.

В работе двигатель с короткозамкнутым ротором можно рассматривать как трансформатор с вращающейся вторичной обмоткой — когда ротор не вращается синхронно с магнитным полем, индуцируются большие токи ротора; большие токи ротора намагничивают ротор и взаимодействуют с магнитными полями статора, чтобы синхронизировать ротор с полем статора.Двигатель с короткозамкнутым ротором без нагрузки на синхронной скорости будет потреблять электроэнергию только для поддержания скорости ротора против потерь на трение и сопротивление; по мере увеличения механической нагрузки будет увеличиваться и электрическая нагрузка — электрическая нагрузка по своей природе связана с механической нагрузкой. Это похоже на трансформатор, где электрическая нагрузка первичной обмотки связана с электрической нагрузкой вторичной обмотки.

Вот почему, например, двигатель вентилятора с короткозамкнутым ротором может приглушать свет в доме при запуске, но не приглушает свет, когда его вентиляторный ремень (и, следовательно, механическая нагрузка) снимается.Кроме того, остановившийся двигатель с короткозамкнутым ротором (перегруженный или с заклинившим валом) будет потреблять ток, ограниченный только сопротивлением цепи, при попытке запуска. Если что-то еще не ограничивает ток (или не отключает его полностью), вероятным результатом является перегрев и разрушение изоляции обмотки.

Практически каждая стиральная машина, посудомоечная машина, отдельный вентилятор, проигрыватель и т. Д. Использует какой-либо вариант двигателя с короткозамкнутым ротором.

Ротор с обмоткой: Альтернативная конструкция, называемая ротором с обмоткой, используется, когда требуется регулировка скорости.В этом случае ротор имеет такое же количество полюсов, что и статор, а обмотки выполнены из проволоки, соединенной с контактными кольцами на валу. Угольные щетки подключают контактные кольца к внешнему контроллеру, например, к переменному резистору, который позволяет изменять скорость скольжения двигателя. В некоторых мощных приводах с регулируемой скоростью вращения ротора энергия частоты скольжения улавливается, выпрямляется и возвращается в источник питания через инвертор.

По сравнению с роторами с короткозамкнутым ротором, двигатели с фазным ротором дороги и требуют обслуживания контактных колец и щеток, но они были стандартной формой для регулирования скорости до появления компактных силовых электронных устройств.Транзисторные инверторы с частотно-регулируемым приводом теперь можно использовать для управления скоростью, а двигатели с фазным ротором становятся все реже. (Транзисторные инверторные приводы также позволяют использовать более эффективные трехфазные двигатели, когда доступен только однофазный сетевой ток, но это никогда не используется в бытовых приборах, потому что это может вызвать электрические помехи и из-за высоких требований к мощности.)

Используются несколько способов запуска многофазного двигателя. Там, где допустимы большой пусковой ток и высокий пусковой момент, двигатель можно запустить через линию, подав полное линейное напряжение на клеммы (Direct-on-line, DOL).Если необходимо ограничить пусковой пусковой ток (если мощность двигателя больше, чем у источника питания при коротком замыкании), используется пуск с пониженным напряжением с использованием последовательных катушек индуктивности, автотрансформатора, тиристоров или других устройств. Иногда используется метод пуска со звезды на треугольник, когда катушки двигателя сначала соединяются звездой для ускорения нагрузки, а затем переключаются на треугольник, когда нагрузка достигает скорости. Этот метод более распространен в Европе, чем в Северной Америке.Транзисторные приводы могут напрямую изменять приложенное напряжение в зависимости от пусковых характеристик двигателя и нагрузки.

Этот тип двигателя становится все более распространенным в тяговых приложениях, таких как локомотивы, где он известен как асинхронный тяговый двигатель.

Скорость в этом типе двигателя традиционно изменялась за счет наличия дополнительных наборов катушек или полюсов в двигателе, которые можно включать и выключать для изменения скорости вращения магнитного поля. Однако развитие силовой электроники означает, что частота источника питания теперь также может быть изменена, чтобы обеспечить более плавное управление скоростью двигателя.

Трехфазные синхронные двигатели переменного тока

Если соединения с обмотками ротора трехфазного двигателя сняты на контактных кольцах и подают отдельный ток возбуждения для создания непрерывного магнитного поля (или если ротор состоит из постоянного магнит), результат называется синхронным двигателем, потому что ротор будет вращаться синхронно с вращающимся магнитным полем, создаваемым многофазным источником питания.

Синхронный двигатель также может использоваться как генератор переменного тока.

В настоящее время синхронные двигатели часто приводятся в действие транзисторными частотно-регулируемыми приводами.Это значительно облегчает запуск массивного ротора большого синхронного двигателя. Они также могут запускаться как асинхронные двигатели с использованием обмотки с короткозамкнутым ротором, которая имеет общий ротор: как только двигатель достигает синхронной скорости, ток в обмотке с короткозамкнутым ротором не индуцируется, поэтому он мало влияет на синхронную работу двигателя. , помимо стабилизации скорости двигателя при изменении нагрузки.

Синхронные двигатели иногда используются в качестве тяговых двигателей.

Двухфазные серводвигатели переменного тока

Типичный двухфазный серводвигатель переменного тока имеет короткозамкнутый ротор и поле, состоящее из двух обмоток: 1) главной обмотки постоянного напряжения (переменного тока) и 2) управляющей обмотка напряжения (переменного тока) находится в квадратуре с основной обмоткой, чтобы создать вращающееся магнитное поле.Электрическое сопротивление ротора намеренно повышено, чтобы кривая скорость-крутящий момент была достаточно линейной. Двухфазные серводвигатели по своей сути являются высокоскоростными устройствами с низким крутящим моментом, которые в значительной степени приспособлены для управления нагрузкой.

Однофазные асинхронные двигатели переменного тока

Трехфазные двигатели по своей природе создают вращающееся магнитное поле. Однако, когда доступна только однофазная мощность, вращающееся магнитное поле должно создаваться другими способами. Обычно используются несколько методов.

Обычным однофазным электродвигателем является электродвигатель с экранированными полюсами, который используется в устройствах, требующих низкого крутящего момента, таких как электрические вентиляторы или другие небольшие бытовые приборы.В этом двигателе небольшие одновитковые медные «затеняющие катушки» создают движущееся магнитное поле. Часть каждого полюса окружена медной катушкой или лентой; индуцированный ток в перемычке противодействует изменению потока через катушку (закон Ленца), так что максимальная напряженность поля перемещается через поверхность полюса в каждом цикле, создавая необходимое вращающееся магнитное поле.

Другой распространенный однофазный двигатель переменного тока — это асинхронный двигатель с расщепленной фазой , обычно используемый в основных бытовых приборах, таких как стиральные машины и сушилки для одежды.По сравнению с двигателями с экранированными полюсами эти двигатели обычно могут обеспечивать гораздо больший пусковой крутящий момент за счет использования специальной пусковой обмотки в сочетании с центробежным переключателем.

В электродвигателях с расщепленной фазой пусковая обмотка спроектирована с более высоким сопротивлением, чем рабочая обмотка. Это создает цепь LR, которая немного сдвигает фазу тока в пусковой обмотке. Когда двигатель запускается, пусковая обмотка подключается к источнику питания через набор подпружиненных контактов, на которые нажимает еще не вращающийся центробежный переключатель.

Фаза магнитного поля в этой пусковой обмотке смещена по сравнению с фазой сетевого питания, что позволяет создать движущееся магнитное поле, которое запускает двигатель. Когда двигатель достигает скорости, близкой к расчетной, срабатывает центробежный выключатель, размыкая контакты и отсоединяя пусковую обмотку от источника питания. Тогда двигатель работает только на ходовой обмотке. Пусковую обмотку необходимо отключить, так как это приведет к увеличению потерь в двигателе.

В пусковом двигателе с конденсатором , пусковой конденсатор вставлен последовательно с пусковой обмоткой, создавая LC-цепь, способную к гораздо большему фазовому сдвигу (и, следовательно, гораздо большему пусковому моменту). Конденсатор, естественно, увеличивает стоимость таких двигателей.

Другой вариант — двигатель с постоянным разделенным конденсатором (PSC) (также известный как конденсаторный двигатель запуска и работы). Этот двигатель работает аналогично двигателю с конденсаторным пуском, описанному выше, но здесь нет переключателя центробежного пуска, а вторая обмотка постоянно подключена к источнику питания.Двигатели PSC часто используются в кондиционерах, вентиляторах и воздуходувках, а также в других случаях, когда требуется регулируемая скорость.

Отталкивающие двигатели — однофазные двигатели переменного тока с фазным ротором, аналогичные универсальным двигателям. В отталкивающем двигателе щетки якоря закорочены вместе, а не соединены последовательно с полем. Было изготовлено несколько типов отталкивающих двигателей, но наиболее часто использовался асинхронный двигатель с отталкивающим пуском (RS-IR).Двигатель RS-IR имеет центробежный переключатель, который закорачивает все сегменты коммутатора, так что двигатель работает как асинхронный двигатель после разгона до полной скорости. Двигатели RS-IR используются для обеспечения высокого пускового момента на ампер в условиях низких рабочих температур и плохого регулирования напряжения источника. По состоянию на 2006 год было продано немного отталкивающих двигателей любого типа.

Однофазные синхронные двигатели переменного тока

Небольшие однофазные двигатели переменного тока также могут быть спроектированы с намагниченными роторами (или несколькими вариантами этой идеи).Роторы в этих двигателях не требуют индуцированного тока, поэтому они не скользят назад против частоты сети. Вместо этого они вращаются синхронно с частотой сети. Из-за высокой точности скорости такие двигатели обычно используются для питания механических часов, проигрывателей виниловых дисков и ленточных накопителей; раньше они также широко использовались в приборах точного времени, таких как ленточные самописцы или механизмы привода телескопов. Синхронный двигатель с расщепленными полюсами — это одна из версий.

Моментные двигатели

Моментные двигатели — это особая разновидность асинхронных двигателей, которые могут работать неограниченное время при остановке (с заблокированным от вращения ротором) без повреждений.В этом режиме двигатель будет прикладывать постоянный крутящий момент к нагрузке (отсюда и название). Обычное применение моментного двигателя — это двигатели подающей и приемной катушек в ленточном накопителе. В этом приложении, приводимые в действие низким напряжением, характеристики этих двигателей позволяют приложить к ленте относительно постоянное легкое натяжение независимо от того, протягивает ли ведущую ленту мимо головок ленты. Управляемые более высоким напряжением (и, следовательно, обеспечивающие более высокий крутящий момент), моментные двигатели также могут работать в режиме быстрой перемотки вперед и назад, не требуя каких-либо дополнительных механизмов, таких как шестерни или муфты.В компьютерном мире моментные двигатели используются с рулевыми колесами с обратной связью по усилию.

Шаговые двигатели

По конструкции тесно связаны с трехфазными синхронными двигателями переменного тока шаговые двигатели, в которых внутренний ротор, содержащий постоянные магниты или большой железный сердечник с выступающими полюсами, управляется набором внешних магнитов, которые переключаются электронно. Шаговый двигатель также можно рассматривать как нечто среднее между электродвигателем постоянного тока и соленоидом. Поскольку каждая катушка поочередно получает питание, ротор выравнивается с магнитным полем, создаваемым обмоткой возбуждения под напряжением.В отличие от синхронного двигателя, в его применении двигатель не может вращаться непрерывно; вместо этого он «шагает» из одного положения в другое, поскольку обмотки возбуждения последовательно включаются и отключаются. В зависимости от последовательности ротор может вращаться вперед или назад.

Двигатель с постоянным магнитом

Двигатель с постоянным магнитом такой же, как и обычный двигатель постоянного тока, за исключением того факта, что обмотка возбуждения заменена постоянными магнитами. Таким образом, двигатель будет действовать как двигатель постоянного тока с постоянным возбуждением (двигатель постоянного тока с независимым возбуждением).

Эти двигатели обычно имеют небольшую мощность, до нескольких лошадиных сил. Они используются в небольших приборах, транспортных средствах с батарейным питанием, в медицинских целях, в другом медицинском оборудовании, таком как рентгеновские аппараты. Эти двигатели также используются в игрушках и в автомобилях в качестве вспомогательных двигателей для регулировки сиденья, электрических стеклоподъемников, люка в крыше, регулировки зеркал, электродвигателей вентилятора, вентиляторов охлаждения двигателя и т.п.

Последние разработки — двигатели ПСМ для электромобилей.- Высокая эффективность — Минимальный фиксирующий момент и крутящий момент неровности поверхности — Небольшая занимаемая площадь, компактные размеры — Малый вес источник [3]

Бесщеточные двигатели постоянного тока

Многие ограничения классического коллекторного двигателя постоянного тока связаны с необходимостью прижимания щеток к коммутатору. Это создает трение. На более высоких скоростях щеткам становится все труднее поддерживать контакт. Щетки могут отскакивать от неровностей поверхности коллектора, создавая искры. Это ограничивает максимальную скорость машины.Плотность тока на единицу площади щеток ограничивает мощность двигателя. Неидеальный электрический контакт также вызывает электрические помехи. Щетки со временем изнашиваются и требуют замены, а сам коллектор подлежит износу и техническому обслуживанию. Сборка коммутатора на большой машине — дорогостоящий элемент, требующий точной сборки многих деталей.

Эти проблемы устранены в бесщеточном двигателе. В этом двигателе механический «вращающийся переключатель» или узел коммутатора / щеточного устройства заменен внешним электронным переключателем, синхронизированным с положением ротора.Бесщеточные двигатели обычно имеют КПД 85-90 процентов, тогда как двигатели постоянного тока с щеткой обычно имеют КПД 75-80 процентов.

На полпути между обычными двигателями постоянного тока и шаговыми двигателями находится область бесщеточных двигателей постоянного тока. Построенные аналогично шаговым двигателям, они часто используют внешний ротор с постоянным магнитом , три фазы управляющих катушек, одно или несколько устройств на эффекте Холла для определения положения ротора и соответствующую приводную электронику. В специализированном классе контроллеров бесщеточных двигателей постоянного тока для определения положения и скорости используется обратная связь по ЭДС через основные фазовые соединения вместо датчиков Холла.Эти двигатели широко используются в электрических радиоуправляемых транспортных средствах и обозначаются моделистами как двигатели outrunner (поскольку магниты находятся снаружи).

Бесщеточные двигатели постоянного тока обычно используются там, где требуется точное управление скоростью, в дисководах компьютеров или в видеомагнитофонах, шпинделях в приводах компакт-дисков, компакт-дисков (и т. Д.), А также в механизмах офисных изделий, таких как вентиляторы, лазерные принтеры и копировальные аппараты . У них есть несколько преимуществ перед обычными двигателями:

  • По сравнению с вентиляторами переменного тока, использующими двигатели с экранированными полюсами, они очень эффективны и работают намного холоднее, чем эквивалентные двигатели переменного тока.Такой холодный режим работы приводит к значительному увеличению срока службы подшипников вентилятора.
  • Без изнашиваемого коммутатора срок службы бесщеточного двигателя постоянного тока может быть значительно больше по сравнению с двигателем постоянного тока с использованием щеток и коммутатора. Коммутация также имеет тенденцию вызывать большое количество электрических и радиочастотных помех; без коммутатора или щеток бесщеточный двигатель может использоваться в электрически чувствительных устройствах, таких как звуковое оборудование или компьютеры.
  • Те же устройства на эффекте Холла, которые обеспечивают коммутацию, могут также обеспечивать удобный сигнал тахометра для приложений с замкнутым контуром (сервоуправлением).В вентиляторах сигнал тахометра может использоваться для получения сигнала «вентилятор исправен».
  • Двигатель можно легко синхронизировать с внутренними или внешними часами, что позволяет точно регулировать скорость.
  • Бесщеточные двигатели не имеют шансов на искрение, в отличие от щеточных двигателей, что делает их более подходящими для сред с летучими химическими веществами и топливом.

Современные бесщеточные двигатели постоянного тока имеют мощность от долей ватта до многих киловатт. В электромобилях используются более мощные бесщеточные двигатели мощностью до 100 кВт.Они также находят значительное применение в высокопроизводительных электрических моделях самолетов.

Двигатели постоянного тока без сердечника

Ничто в конструкции любого из описанных выше двигателей не требует, чтобы железные (стальные) части ротора действительно вращались; крутящий момент действует только на обмотки электромагнитов. Этим фактом пользуется бесщеточный электродвигатель постоянного тока , специализированная форма щеточного электродвигателя постоянного тока. Эти двигатели, оптимизированные для быстрого разгона, имеют ротор без железного сердечника.Ротор может иметь форму заполненного обмоткой цилиндра внутри магнитов статора, корзины, окружающей магниты статора, или плоского блинчика (возможно, сформированного на печатной монтажной плате), проходящего между верхним и нижним магнитами статора. Обмотки обычно стабилизируются путем пропитки эпоксидной смолой.

Поскольку ротор намного легче по весу (массе), чем обычный ротор, сформированный из медных обмоток на стальных пластинах, ротор может ускоряться намного быстрее, часто достигая механической постоянной времени менее 1 мс.Это особенно верно, если в обмотках используется алюминий, а не более тяжелая медь. Но поскольку в роторе нет металлической массы, которая могла бы служить радиатором, даже небольшие двигатели без сердечника часто должны охлаждаться принудительным воздухом.

Эти двигатели обычно использовались для привода приводов магнитных лентопротяжных устройств и до сих пор широко используются в высокопроизводительных системах с сервоуправлением.

Линейные двигатели

Линейный двигатель — это, по сути, электродвигатель, который был «раскручен» так, что вместо создания крутящего момента (вращения) он создает линейную силу по всей своей длине, создавая бегущее электромагнитное поле.

Линейные двигатели чаще всего представляют собой асинхронные двигатели или шаговые двигатели. Вы можете найти линейный двигатель в поезде на магнитной подвеске (Transrapid), где поезд «летит» над землей.

Электродвигатель с двойным питанием

Электродвигатели с двойным питанием или Электромашины с двойным питанием включают в себя два набора многофазных обмоток с независимым питанием, которые активно участвуют в процессе преобразования энергии (т. Е. С двойным питанием), по крайней мере, с одним из комплекты обмоток с электронным управлением для синхронной работы от субсинхронных до сверхсинхронных скоростей.В результате электродвигатели с двойным питанием представляют собой синхронные машины с эффективным диапазоном скоростей с постоянным крутящим моментом, который в два раза превышает синхронную скорость для данной частоты возбуждения. Это в два раза больше диапазона скоростей с постоянным крутящим моментом, чем у электрических машин с одиночным питанием, которые включают одну активную обмотку. Теоретически этот атрибут имеет привлекательные последствия по стоимости, размеру и эффективности по сравнению с электрическими машинами с однополярным питанием, но двигатели с двойным питанием трудно реализовать на практике.

Электромашины с двойным питанием и бесщеточным ротором с двойным питанием и так называемые бесщеточные электрические машины с двойным питанием — единственные примеры синхронных электрических машин с двойным питанием.

Электродвигатель с одинарным питанием

Электродвигатели с одиночным питанием или Электромашины с одиночным питанием включают одну многофазную обмотку, которая активно участвует в процессе преобразования энергии (т. Е. С одинарным питанием). Электромашины с однополярным питанием работают либо по индукционным (т.е. асинхронным), либо по синхронным принципам. Комплект активной обмотки может иметь электронное управление для оптимальной производительности. Индукционные машины демонстрируют пусковой момент и могут работать как автономные машины, но синхронные машины должны иметь вспомогательные средства для запуска и практической работы, такие как электронный контроллер.

Асинхронные двигатели (т. Е. С короткозамкнутым ротором или ротор с обмоткой), синхронные двигатели (т. Е. С возбуждением от поля, двигатели с постоянным магнитом или бесщеточные двигатели постоянного тока, реактивные двигатели и т. Д.), Которые обсуждаются на этой странице, являются примеры двигателей с однополярным питанием. Безусловно, двигатели с однополярным питанием — это преимущественно устанавливаемые двигатели.

Двигатель с двумя механическими портами

Электродвигатели с двумя механическими портами (или электродвигатель DMP) считается новой концепцией электродвигателей.Точнее, электродвигатели DMP — это на самом деле два электродвигателя (или генератора), занимающие один и тот же корпус. Каждый двигатель работает по традиционным принципам электродвигателя. Электрические порты, которые могут включать в себя электронную опору электродвигателей, связаны с одним электрическим портом, в то время как два механических порта (вала) доступны снаружи. Теоретически ожидается, что физическая интеграция двух двигателей в один увеличит удельную мощность за счет эффективного использования в противном случае ненужной площади магнитного сердечника.Механика интеграции, например, для двух механических валов, может быть довольно экзотической.

Наномотор с нанотрубками

Исследователи из Калифорнийского университета в Беркли разработали подшипники вращения на основе многослойных углеродных нанотрубок. Прикрепив золотую пластину (размером порядка 100 нм) к внешней оболочке подвешенной многослойной углеродной нанотрубки (например, вложенных углеродных цилиндров), они могут электростатически вращать внешнюю оболочку относительно внутреннего ядра.Эти подшипники очень прочные; Устройства колебались тысячи раз без признаков износа. Работа была сделана на месте в SEM. Эти наноэлектромеханические системы (НЭМС) являются следующим шагом в миниатюризации, которая в будущем может найти свое применение в коммерческих целях.

На этом рендере можно увидеть процесс и технологию.

Пускатели двигателей

Противо-ЭДС помогает сопротивлению якоря ограничивать ток через якорь. При первом подаче питания на двигатель якорь не вращается.В этот момент противоэдс равна нулю, и единственным фактором, ограничивающим ток якоря, является сопротивление якоря. Обычно сопротивление якоря двигателя меньше одного Ом; поэтому ток через якорь при подаче питания будет очень большим. Этот ток может вызвать чрезмерное падение напряжения, что повлияет на другое оборудование в цепи. Или просто отключите устройства защиты от перегрузки.

  • Следовательно, возникает необходимость в дополнительном сопротивлении, включенном последовательно с якорем, для ограничения тока до тех пор, пока вращение двигателя не сможет создать противоэдс.По мере увеличения скорости вращения двигателя сопротивление постепенно снижается.

Трехточечный пускатель

Входящая мощность обозначается как L1 и L2. Компоненты, обозначенные пунктирными линиями, образуют трехточечный стартер. Как следует из названия, есть только три соединения с пускателем. Подключения к якорю обозначены как A1 и A2. Концы катушки возбуждения (возбуждения) обозначены как F1. и F2. Для управления скоростью полевой реостат соединен последовательно с шунтирующим полем.Одна сторона линии соединена с рычагом стартера (на схеме обозначена стрелкой). Рычаг подпружинен, поэтому он вернется в положение «Выкл.», Которое не удерживается ни в каком другом положении.

  • На первом этапе плеча полное линейное напряжение прикладывается к полю шунта. Поскольку полевой реостат обычно устанавливается на минимальное сопротивление, скорость двигателя не будет чрезмерной; кроме того, двигатель будет развивать большой пусковой крутящий момент.
  • Пускатель также соединяет электромагнит последовательно с шунтирующим полем.Он будет удерживать рычаг в положении, когда рычаг соприкасается с магнитом.
  • Между тем это напряжение подается на шунтирующее поле, а пусковое сопротивление ограничивает прохождение тока к якорю.
  • По мере того, как двигатель набирает скорость, нарастает противоэдс, рычаг медленно перемещается в положение короткого замыкания.

Четырехточечный стартер

Четырехточечный стартер устраняет недостаток трехточечного стартера. В дополнение к тем же трем точкам, которые использовались с трехточечным стартером, другая сторона линии, L1, является четвертой точкой, подведенной к стартеру.Когда рычаг перемещается из положения «Выкл.», Катушка удерживающего магнита подключается к линии. Удерживающий магнит и пусковые резисторы работают так же, как и в трехпозиционном пускателе.

  • Возможность случайного размыкания цепи возбуждения весьма мала. Четырехточечный пускатель обеспечивает защиту двигателя от обесточивания. В случае сбоя питания двигатель отключается от сети.

См. Также

Компоненты:

  • Центробежный переключатель
  • Коммутатор (электрический)
  • Контактное кольцо

Ученые и инженеры:

Области применения:

  • Настольная пила
  • Электромобиль
  • Коррекция коэффициента мощности

Прочее:

  • Электротехника
  • Электрический элемент
  • Электрогенератор
  • Список тем по электронике
  • Список технологий
  • Теорема максимальной мощности
  • Мотор-генератор
  • Контроллер двигателя
  • Метод движения
  • Однофазный электроэнергия
  • Хронология развития двигателей и двигателестроения

Примечания

Ссылки

  • Бедфорд, Б.Д., Р. Г. Хофт и др. 1964. Принципы инверторных цепей. Нью-Йорк: John Wiley & Sons, Inc. ISBN 0471061344. (Для управления скоростью двигателя с регулируемой частотой используются схемы инвертора)
  • Чиассон, Джон Н. 2005. Моделирование и высокопроизводительное управление электрическими машинами , Нью-Йорк, Нью-Йорк: Wiley-IEEE Press. ISBN 047168449X.
  • Fink, Donald G .; Бити, Х. Уэйн (1978). Стандартный справочник для инженеров-электриков, одиннадцатое издание. Нью-Йорк, Нью-Йорк: Макгроу-Хилл.ISBN 007020974X.
  • Фицджеральд, А. Э., Чарльз Кингсли младший, Стивен Д. Уманс. 2002. Электрические машины. Колумбус, Огайо: McGraw-Hill Science / Engineering / Math. ISBN 0073660094.
  • Houston, Edwin J .; Артур Кеннелли, (1902) Последние типы динамо-электрических машин. , авторское право — American Technical Book Company 1897, Нью-Йорк, Нью-Йорк: P.F. Кольер и сыновья. ASIN: B000874XH6
  • Купхальдт, Тони Р. Уроки электрических цепей — Том II. 2000-2006.Глава 13 ДВИГАТЕЛИ ПЕРЕМЕННОГО ТОКА. дата обращения 11 апреля 2006 г.
  • Пелли Б. Р. (1971). Тиристорные преобразователи с фазовым управлением и циклоконвертеры. Хобокен, Нью-Джерси: John Wiley & Sons. ISBN 0471677906
  • Шейнфилд Д. Дж. (2001). Промышленная электроника для инженеров, химиков и техников. Норвич, Нью-Йорк: Издательство Уильяма Эндрю. ISBN 0815514670.
  • Smith, A.O. Переменного и постоянного тока электродвигателей. [4]. accessdate 11 апреля 2006 г.

Внешние ссылки

Все ссылки получены 18 сентября 2017 г.

Источники

Энциклопедия Нового Света писателей и редакторов переписали и завершили статью Википедия в соответствии со стандартами New World Encyclopedia . Эта статья соответствует условиям лицензии Creative Commons CC-by-sa 3.0 (CC-by-sa), которая может использоваться и распространяться с указанием авторства. Кредит предоставляется в соответствии с условиями этой лицензии, которая может ссылаться как на участников Энциклопедии Нового Света, участников, так и на самоотверженных добровольцев Фонда Викимедиа.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *