Устройство электродвигателя: Электрический двигатель — Википедия – типы, устройство, принцип работы, параметры, производители

Содержание

принцип работы, из чего состоит?

Выполнение механической работы — это главный процесс в нашем материальном мире. По этой причине появление электродвигателей стало важнейшим событием в развитии человеческой цивилизации. Именно эти устройства понесли на себе весь груз промышленного производства. Это и обеспечило, в конце концов, так называемую научно-техническую революцию. В любых электрических движках в основу конструкции положено открытие взаимодействия проводов с проходящим по ним электрическим током.

О том, какие результаты были достигнуты за время, прошедшее с этого открытия, и будет рассказано нашим читателям. Напомним, что взаимодействие запитанных электротоком проводов обнаружил Андре Ампер в 1820 году. После этого события была создана конструкция, способная усилить это взаимодействие — соленоид. Катушка с ферромагнитным сердечником при сближении с постоянным магнитом или другой аналогичной катушкой воздействовала на них со значительным усилием. Поэтому оставалось только придумать такое конструктивное решение, которое позволит максимально увеличить взаимодействие соленоидов и придаст ему необходимое направление.

Превращение электроэнергии в механическую работу

Два соленоида могут либо притягиваться, либо отталкиваться. Их взаимодействие определяется полюсами. Одноименные — отталкиваются, разноименные — притягиваются. Поэтому не составляет особого труда догадаться о конструктивном решении, позволяющем получить вращение вала:

  • Вал и соленоид объединяются в жесткую конструкцию. Соленоид располагается так, чтобы создаваемые силовые линии магнитного поля были перпендикулярны оси вращения вала. Полученный элемент двигателя называется ротором, а также индуктором.
  • Вокруг ротора располагаются несколько других соленоидов для его притяжения. Чтобы направление было явно задано, а вращение равномерно, их должно быть как минимум три. Полученный элемент движка называется статором.
  • Статор или ротор в разных конструкциях моторов могут также иметь название якорь. Суть якоря электрического двигателя заключена в его сходстве со своим корабельным тезкой. Для корабельного якоря характерна прикрепленная цепь, соединяющая его с кораблем. А строение якоря электрического движка включает в себя либо ротор, либо статор, а также присоединенный к нему электрический шнур. Он используется для подключения к источнику питания. То есть вместо якоря с цепью получается ротор или статор со шнуром питания — в этом и заключено их сходство и происхождение названия элемента движка.
  • Статор состоит из стальных пластин, которые уменьшают потери электроэнергии, создаваемые вихревыми токами. В результате получается конструкция из обмоток с сердечниками, охватывающая ротор. Они образуют отверстие цилиндрической формы. В него входит цилиндрический ротор с некоторым зазором относительно статора. Такая конструкция электрических двигателей самая распространенная.
Классическая конструкция электродвигателя — ротор внутри статора
Классическая конструкция электродвигателя — ротор внутри статора

Однако для решения некоторых задач необходимо применение иных конструкций. Это может быть, например, расположение ротора снаружи статора или отсутствие вала по причине линейного перемещения элементов двигателя относительно друг друга.

Электродвигатель с внешним ротором Электродвигатель с внешним ротором

Простейшим линейным двигателем является электромагнит с втягивающимся сердечником. Для того чтобы более точно управлять перемещением подвижной части линейного движка, в нем используется необходимое число взаимодействующих магнитных элементов. Электромагнитами могут быть либо все, либо их часть — это постоянные магниты.

Линейный электродвигатель Линейный электродвигатель

Как видно из рассмотренных примеров, принцип работы электродвигателя использует магнитные поля. Они — следствие как постоянного тока, так и переменного. Но в любом случае принцип действия электродвигателя — это переход электроэнергии в энергию движения.

Далее рассмотрим, как работает электродвигатель, изготовленный соответственно напряжению электропитания — постоянному или переменному.

Электропитание источником переменного напряжения

Двигатель переменного тока наиболее широко используется. Это обусловлено переменным напряжением в большинстве электросетей. Электродвигатели переменного тока подключаются к ним с использованием минимального количества дополнительных устройств. Для любого из приборов надежность и долговечность являются главными качествами. Для этого конструкция должна иметь минимум потенциально уязвимых элементов. Наиболее значимыми из них являются контакты. Меньше контактов — больше надежности.

Устройство и принцип работы электродвигателя с максимальной надежностью основаны на явлении электромагнитной индукции. Это явление используется в трансформаторах. Создание гальванически развязанных электрических цепей — это их важнейшее назначение. Аналогично создаются гальванически развязанные статорные и роторные цепи. Под напряжением пребывают только обмотки статора. Возникающая в роторе электромагнитная индукция приводит к взаимодействию магнитных полей. Но принцип работы электродвигателя переменного тока — это не только индукция. Кроме нее должно существовать условие, обеспечивающее возникновение однонаправленной силы, без которой вращение невозможно. Для этого необходимо пространственное перемещение электромагнитного поля.

С этой целью устройство электродвигателя переменного тока предусматривает одно из следующих конструктивных решений:

  • использование однофазного источника переменного напряжения с фазосдвигающим элементом с двумя парами полюсов;
  • подключение к трехфазному источнику питания обмоток статора с тремя парами полюсов;
  • применение коммутатора, переключающего взаимодействующие обмотки.

Движимые перемещающимся магнитным полем

Электродвигатель, принцип работы которого определяет электромагнитная индукция, работает следующим образом. В его роторе отсутствуют контакты. Переменное магнитное поле с максимумом, перемещающимся вокруг ротора, вызывает в нем токи, создающие собственное электромагнитное поле. Существование этих токов возможно только при отставании ротора от движущегося максимума электромагнитного поля статора.

Иначе не получится электромагнитной индукции, условием которой является пересечение силовых линий и проводника. Движки, в которых скорости перемещения поля статора и ротора отличаются друг от друга, называются асинхронными. Асинхронный электродвигатель, устройство которого показано далее, в основном имеет одинаковую конструкцию статора, но разные варианты исполнения ротора.

Принцип работы асинхронного двигателя Принцип работы асинхронного двигателя

Самыми распространенными являются короткозамкнутый ротор и другая его конструкция, именуемая «беличьей клеткой». В последнем варианте ротора получается более эффективная индукция. Однако и конструкция при этом менее технологичная. Но в этих двух разновидностях асинхронного двигателя лишь один недостаток — большой пусковой ток.

Разновидности асинхронного двигателя Разновидности асинхронного двигателя

Чтобы регулировать процесс пуска, потребовалась третья конструкция ротора, называемая «фазной». Но если где-то прибыло, значит, где-то и убыло. У фазного ротора появились контакты — кольца и щетки. А контакты — главная проблема электротехники. Выигрывая в экономичности, проигрываем в долговечности и эксплуатационных расходах. За щетками и кольцами необходим уход и периодическая замена, в результате чего фазный ротор применяется намного реже. Появление мощных полупроводниковых приборов делает возможным регулировку любого асинхронного двигателя в пределах коммутационных возможностей этих приборов. Поэтому сегодня фазный ротор — это архаичная конструкция.

Фазный ротор
Фазный ротор

Но если ротор изготовить из специального материала, который обладает некоторой остаточной намагниченностью, скорости поля статора и вращения ротора станут одинаковыми. Под воздействием статора в роторе такого движка из-за свойств его материала не могут возникать токи с величиной, достаточной для движения. Но это и не нужно. Материал способен многократно усиливать внешнее электромагнитное поле и становиться постоянным магнитом. И такой магнитный ротор будет тянуться за электромагнитным полем статора. Такой двигатель называется синхронно-гистерезисным.

Элементы синхронно-гистерезисного движка Элементы синхронно-гистерезисного движка

К сожалению, гистерезисный ротор имеет высокую себестоимость материала. А поскольку мощность движка напрямую связана с его размерами, большие и мощные синхронные двигатели с гистерезисным ротором из-за его высокой цены не производятся. Вместо этого делается постоянный электромагнит с питанием через кольца. Так менее надежно, но гораздо дешевле.

Синхронный двигатель Синхронный двигатель

Скорость вращения синхронных и асинхронных движков определяет частота напряжения питания и число пар полюсов. Эта особенность — их большой недостаток. Ведь частота электросети составляет 50–60 Гц, и без применения дополнительного оборудования, через которое придется подключать двигатель, изменить ее невозможно. А это значительно усложняет и удорожает установку. По этой причине в управляемом электроприводе для возможности широкого диапазона регулирования оборотов применяется другой двигатель, о котором будет рассказано далее.

Коллекторные двигатели

Чтобы разобраться в том, как работает электромотор с коллектором, надо обратиться к опытам с рамкой, расположенной между полюсами магнитов. Это классический опыт для демонстрации взаимодействия проводника с током и магнитного поля. На изображениях далее наглядно показан результат этого взаимодействия.

Коллекторные двигатели Коллекторные двигатели

Но сила, вращающая рамку, зависит от ее положения относительно полюсов. По мере вращения она постепенно уменьшается. И по этой причине рамка останавливается. Чтобы вращение продолжалось, для конкретной конструкции рамки с магнитами потребуется больше рамок. При этом каждая из них подключается к своей паре скользящих контактов. Они образуются парой щеток и парой пластин — ламелей.

Движок, в котором реализован принцип вращения рамки в магнитном поле, содержит ротор с большим числом обмоток — рамок. Ламели собраны в специальном конструктивном элементе — коллекторе. Если магнитное поле создается постоянными магнитами, вращение возможно только при постоянном напряжении на щетках коллектора. Это и есть двигатель постоянного тока (сокращенно ДПТ).

Ротор ДПТ (а также универсального движка) Ротор ДПТ (а также универсального движка)

Скорость вращения ротора этого движка зависит только от напряжения на щетках коллектора. Если вместо постоянного магнита применить электромагнит, получится универсальный мотор, способный работать как при постоянном, так и при переменном напряжении. Полярность статора и ротора будет изменяться одновременно, сохраняя направление действия силы, вращающей ротор. Универсальный мотор — это тот самый движок, который широко применяется в регулируемых приводах.

Пояснение принципа работы униполярного двигателя Пояснение принципа работы униполярного двигателя

Разновидностью ДПТ и универсального двигателя можно считать униполярный движок. У его конструкции нет коллектора, но есть щетки. Появление мощных полупроводниковых приборов позволило создавать роторы без колец и коллекторов. Но при этом принцип работы электродвигателя не изменился.

Похожие статьи:

Конструкция асинхронного электродвигателя — 160 фото, схемы, чертежи и примеры использования

Асинхронные электродвигатели – это один из самых широко применяемых видов двигателей. Их можно встретить везде – в стиральной машинке, вентиляторе, вытяжке и т.п. вещах. Об особенностях конструкции подобных устройств и пойдёт речь в этой статье.

Краткое содержимое статьи:

Понятие асинхронного электрического двигателя

Как видно на фото асинхронного двигателя, подобный агрегат представляет собой электромашину, назначение которой заключается в преобразовании электроэнергии в энергию механического типа. Другими словами, подобное оборудование, потребляя электроток, даёт крутящий момент. Именно он позволяет вращать многие агрегаты.

Название «асинхронный» значит «неодновременный». Если изучить описание асинхронных двигателей, то можно заметить, что в таких устройствах ротор вращается с меньшей частотой, чем электромагнитное поле статора.

Данное отставание или, как его ещё называют, скольжение можно высчитать, используя следующую формулу:

S = (n1— n2)/ n1 — 100%, где

n1 – частота электромагнитного поля статора;

n2 – частота вращения вала.

Устройство электродвигателя

Электродвигатель представляет собой специальный агрегат, который преобразует электрическую энергию в механическую. Это один из наиболее важных механизмов, без которых немыслима жизнь современного общества. Он приводит в движение устройства и технику, подключенные к нему. Широко применяется во всех сферах производства и бытового хозяйства: начиная от прессовых, грузоподъемных, металлообрабатывающих станков и заканчивая компрессорами, лифтами, ручным инструментом и домашними приборами.

Как правило, электродвигатели подбирают для комплектации своих устройств и техники сами производители. Но случается и так, что владельцы оборудования или рядовые покупатели выбирают модули для обслуживания своих предприятий или бытовых нужд. Иногда компании используют агрегаты одного типа для оснащения всего производства. Благодаря этому достигается унификация процессов, сокращаются расходы на техобслуживание и капитальный ремонт.

Основу устройства электродвигателя составляют два ключевых узла: статор и ротор. Первый — это внешний элемент неподвижного характера, генерирующий недвижимые или вращаемые магнитные поля. Ротор является подвижной деталью, размещаемой внутри статора и комплектуемой различными дополнительными компонентами. Магнитные полюса ротора и статора взаимодействуют между собой и создают момент вращения, трансформирующий электроэнергию в механический аналог.

Электродвигатель — главные преимущества

  • Высокий КПД — 90-95%;
  • Отсутствие вредных выбросов;
  • Простая конструкция;
  • Высокая надежность;
  • Оптимальная стоимость обслуживания;
  • Низкая пожаро- и взрывоопасность;
  • Возможность рекуперации;
  • Высокая плавность хода;
  • Минимальный шум;
  • Возможность зарядки от обычной сети.

Типы электродвигателей

Правильный выбор типа электродвигателя напрямую влияет на надежность, экономичность, эффективность и долговечность работы техники, которую он обслуживает. Именно поэтому при подборе приводного агрегата необходимо учитывать параметры его функционала: мощность, вид питания, напряжение, энергетические критерии, габариты и другие. В первую очередь все электродвигатели классифицируются на следующие типы:

По напряжению:

  • переменного тока;
  • постоянного тока.

По принципу работы:

  • синхронные;
  • асинхронные.

По фазам сети:

  • однофазные;
  • двухфазные;
  • трехфазные.

По уровню защиты:

  • закрытые — модули в технологичной оболочке, предохраняющей от проникновения пыли, влаги, газов и других веществ, вредных для узлов двигателя;
  • взрывозащищенные — установки, помещенные в прочный кожух, предохраняющий от внутреннего взрыва и препятствующий возникновению пожара;
  • защищенные — агрегаты, укомплектованные специальными средствами защиты (козырьками, сетками, заслонками) от проникновения различных веществ и предметов.

С точки зрения конструкции все типы электродвигателей отличаются по вариантам подключения к технике и защиты от внешних негативных воздействий. Для комплектации используются корпуса, изготовленные из высокопрочных чугунных или алюминиевых сплавов. В независимости от конструктивных нюансов, однотипные модели характеризуются идентичными параметрами установки и электрики.

Схема подключения электродвигателя

Схема подключения электродвигателя зависит от особенностей его конструкции и может быть типовой, комбинированной или индивидуальной. Некоторые приводы подключаются к сети только напрямую, другие — при помощи специальных дополнительных устройств. Использование неправильной схемы приводит к поломке оборудования и отключению от сети.

Схемы подключения электродвигателей практически всех ведущих отечественных и зарубежных производителей в хорошем качестве и на русском языке можно найти в интернете. Они представлены в различных открытых источниках, дающих возможность свободного скачивания. Постоянно обновляемые каталоги содержат красочные и легко увеличиваемые изображения, а также советы по быстрому подключению и технике безопасности.

Перед практическим применением схемы подключения электродвигателя рекомендуется изучить его характеристики в техпаспорте. Это особенно важно при вводе в эксплуатацию силовых модулей западноевропейского производства, рассчитанных на работу в разных условиях напряжения. Такие агрегаты подключаются только по определенным схемам. В противном случае они быстро сгорают под нагрузкой.

Пуск электродвигателя

Современные производства используют большое количество электрических двигателей. Поточные линии и конвейерные комплексы, оборудование и станки, насосы и компрессоры — все это обслуживают приводные механизмы. Фактически процесс пуска электродвигателей осуществляется непрерывно. Что же происходит с агрегатами в этот момент?

При включении механизма показатели электротока и напряжения на обмотках существенно превосходят допустимые номинальные значения. В результате сразу после прямого пуска электродвигателя на обмотки подается сильнейшая динамическая нагрузка. Чем мощнее силовой привод и техника, к которой он подключен, тем грандиозней затраты по его старту.

Огромное повышение нагрузки носит кратковременный характер: она выходит на нормальный уровень уже через несколько секунд. Но с каждым последующим включением это нарушает изоляцию обмоток и вызывает межвитковые замыкания. В итоге обмотки перегреваются и повреждаются, что способствует поломке или нарушению работы всего оборудования.

Чтобы обеспечить соответствие номинальным значениям, приходится повышать мощность питающих магистралей, что приводит к значительному удорожанию техники и расходу электричества. Кроме этого, во время подобных пусков электродвигатель является глобальным источником электромагнитных искажений и нарушает работу всех приборов, запитанных в сети или размещенных близко к нему.

Кажется, что все вышеперечисленные сложности могут быть присущи только мощной и громоздкой промышленной технике, однако, это не так. Проблемы с пуском касаются и любого бытового электроинструмента, работающего в многократном режиме стартов и остановок. Подобный режим эксплуатации также снижает его энергопотребление, функциональность и долговечность.

Плавный пуск электродвигателя

Применение специальных систем плавного пуска способствует уменьшению или исключению негативных последствий, возникающих при включении электродвигателей. Высокотехнологичные электронные аппараты снижают стартовые токи и напряжение, повышают надежность и срок службы оборудования.

В состав таких приборов включается силовой блок и регулировочный узел для настройки различных параметров защиты и эксплуатации. Кроме того, аппараты плавного пуска электродвигателей могут быть оснащены специальными защитными комплексами: от превышения времени старта, перегрузок, слишком маленького тока, уменьшения частоты сети, перекоса фаз и т.д.

Плавный пуск электродвигателя — преимущества

  • Повышает надежность работы, увеличивает срок службы привода и техники;
  • Улучшает функциональные и рабочие характеристики агрегата;
  • Позволяет автоматизировать управление технологическими процессами;
  • Снижает пусковые токи, благодаря чему исключает их вредное воздействие на сеть.

Многие модели современных приводов уже укомплектованы устройствами для обеспечения плавного пуска и защиты от перегрузок. Если же в состав прибора такой механизм не входит, его можно приобрести отдельно. 

Защита электродвигателей

В ходе работы привода, как и любого электротехнического устройства, возможно возникновение аварийных ситуаций. Если не принять меры и не обеспечить защиту электродвигателя, из-за его повреждений могут выйти из строя другие составляющие энергосистемы. Современные приборы защиты привода обладают широким функционалом, направленным на повышение уровня безопасности и исключение аварийных ситуаций.

Чтобы грамотно выбрать такое устройство, необходимо изучить характеристики оборудования, условия его работы, степень ответственности и порядок обслуживания привода. Возможно применение как одного, так одновременно и нескольких средств. В любом случае защита электродвигателя должна быть надежной в эксплуатации и обеспечивать эффективный и безотказный технологический процесс

Основные функции устройств по защите электродвигателя

  • Удаленный или локальный контроль и управление;
  • Мониторинг напряжения, мощности, температуры;
  • Контроль последовательности фаз;
  • Отключение при аварийных ситуациях;
  • Защита от перегрузок и короткого замыкания.

Линейки продуктов современных производителей содержат широкий ассортимент наименований для защиты приводов: автоматические выключатели, коммутационные приборы, реле, устройства плавного пуска и другие. Ключевыми достоинствами решений являются: широкий функционал, соответствие стандартам, высокая надежность и скорость срабатывания, недопустимость ложного отключения.

Продажа электродвигателей

Научно-технический прогресс способствует появлению новых механизмов и устройств, облегчающих выполнение работ в быту и трудоемких отраслях производства. Сегмент продажи электродвигателей предлагает огромный выбор высокотехнологичного оборудования для любых сфер деятельности. Кроме основной продукции от ведущих отечественных и мировых производителей, можно приобрести контакторы, преобразователи, автоматические выключатели, реле и многое другое.

Использование силового привода в комплекте с дополнительным оборудованием позволяет оптимизировать процесс эксплуатации и экономить энергоресурсы. Выбирая надежную и проверенную компанию по продаже электродвигателей, покупатель получает следующие преимущества:

  • обширный ассортимент;
  • официальные гарантии;
  • прямые поставки;
  • налаженная логистика;
  • индивидуальная комплектация;
  • скидки и бонусы.

Подбор и покупка электродвигателей осуществляются с помощью квалифицированных специалистов. Профессиональные консультанты компаний, с которыми можно связаться любым удобным способом, оказывают поддержку на всех этапах оформления и доставки заказа. Поставки электротехнического оборудования осуществляются по всей России.

Асинхронный электродвигатель: устройство и принцип работы

Самым эффективным устройством, превращающим электрическую энергию в механическую, является асинхронный двигатель, изобретенный инженером Доливо-Добровольским в конце 19 века. Учитывая возрастающий интерес современников к разработке и сборке станков, самодвижущихся аппаратов и прочих механизмов, мы постараемся объяснить, как работает асинхронный электродвигатель, чтобы вы могли понять принцип его действия и результативно его использовать.

Устройство асинхронного электродвигателя

В его конструкцию входят следующие элементы:

  • Статор цилиндрической формы, собранный из стальных листов. Сердечник статора имеет пазы, в которые уложены обмотки. Их оси сдвинуты на 120 градусов по отношению друг к другу.
  • Ротор (короткозамкнутый или фазный). Первый вариант представляет собой сердечник с алюминиевыми стержнями, накоротко замкнутыми торцевыми кольцами (беличья клетка). Второй вариант состоит из трехфазной обмотки, чаще всего соединенной «звездой».
  • Конструктивные детали – вал, подшипники, лапы, подшипниковые щиты, крыльчатка и кожух вентилятора, коробка выводов — обеспечивающие вращение, охлаждение и защиту механизма.

Схему асинхронного двигателя с указанием его деталей легко найти в интернете или в пособиях.

Принцип работы асинхронного двигателя

Принцип действия асинхронного электродвигателя заложен в его названии (не синхронный). То есть статор и ротор при включении создают вращающиеся с разной частотой магнитные поля. При этом частота вращения магнитного поля ротора всегда меньше частоты вращения магнитного поля статора.

Чтобы более наглядно представить себе этот процесс, возьмите постоянный магнит и покрутите его вокруг своей оси возле медного диска. Диск с небольшим отставанием начнет вращаться вслед за магнитом. Дело в том, что при вращении магнита в структуре диска возбуждаются токи Фуко (индукционные токи), движущиеся по замкнутому кругу. По сути они являются токами короткого замыкания, разогревающими металл. В диске «зарождается» собственное магнитное поле, в дальнейшем взаимодействующее с полем магнита.

В асинхронном двигателе для получения вращающегося поля используются обмотки статора. Магнитный поток, образованный ими, создает ЭДС в проводниках ротора. При взаимодействии магнитного поля статора и индуцируемого тока в обмотке ротора создается электромагнитная сила, приводящая во вращение вал электродвигателя.

Пошагово процесс выглядит следующим образом:

  1. При запуске двигателя магнитное поле статора пересекается с контуром ротора и индуцирует электродвижущую силу.
  2. В накоротко замкнутом роторе возникает переменный ток.
  3. Два магнитных поля (статора и ротора) создают крутящий момент.
  4. Крутящийся ротор пытается «догнать» поле статора.
  5. В тот момент, когда частоты вращения магнитного поля статора и ротора совпадут, электромагнитные процессы в роторе затухают и крутящий момент становится равным нулю.
  6. Магнитное поле статора возбуждает контур ротора, который к этому моменту снова отстает.

То есть ротор всегда медленнее магнитного поля статора, что и обеспечивает асинхронность.

Поскольку ток в роторе индуцируется бесконтактно, отпадает необходимость установки скользящих контактов, что делает асинхронные двигатели более надежными и эффективными. Изменяя направление тока в одной из обмоток (для этого нужно поменять фазы на клеммах), вы можете «заставить» мотор вращаться в ту или другую сторону.

Направление электромагнитной силы легко определить, вспомнив школьный курс физики и воспользовавшись «правилом левой руки».

На частоту вращения магнитного поля статора влияет частота питающей сети и число пар полюсов. Поскольку число пар полюсов зависит от типа двигателя и остается неизменным, то, если вы хотите изменить частоту вращения поля, необходимо изменить частоту питающей сети с помощью преобразователя.

Преимущества асинхронных двигателей

Благодаря тому, что устройство и принцип работы асинхронного электродвигателя достаточно просты, он обладает массой преимуществ и широко применяется во всех сферах народного хозяйства и в быту. Двигатели этого типа характеризуются:

  • Надежностью и долговечностью. Отсутствие контакта между подвижными и неподвижными деталями сводит к минимуму возможность износа и поломок.
  • Низкой стоимостью. Они доступны (не зря 90% от всех выпускающихся в мире двигателей именно асинхронные).
  • Простотой эксплуатации. Для того чтобы использовать их, не обязательно иметь специальные знания и навыки.
  • Универсальностью. Их можно установить практически на любое оборудование.

Изобретение асинхронного электродвигателя было значимым вкладом в развитие науки, промышленности и сельского хозяйства. С ним наша жизнь стала более комфортной.


Асинхронный электродвигатель — устройство, принцип работы, виды асинхронных двигателей

Данный двигатель зачастую используется в промышленности. Он простой в использовании, долговечный, недорогой.

Двигатель

Асинхронный двигатель

Асинхронный двигатель превращает электрическую энергию в механическую. Его работа основана на принципе вращающегося магнитного поля. Сам принцип действия аппарата можно описать несколькими пунктами поэтапно:

  1. Во время запуска самого двигателя происходит пересечение магнитного поля с контуром ротора, после чего происходит индицирование электродвижущей силы.
  2. В замкнутом роторе происходит возникновение переменного тока.
  3. Магнитные поля: статора и ротора также воссоздают непосредственно так называемый крутящий момент.
  4. Ротор «догоняет» поле самого статора.
  5. Когда частоты вращения самого магнитного поля статора/ротора имеют совпадения, электромагнитные процессы, образованные в месте ротора затухают. После чего крутящий момент приравнивается к «0».
  6. Статор, а вернее его образованное магнитное поле возбуждает контур ротора, который в этот момент вновь позади.

Где применяются?

Как уже уточнялось выше в статье, применяется данный двигатель промышленности (лебедки общепромышленного назначения, краны) и бытовой технике (асинхронные двигатели с небольшой мощностью).

Теперь остановим ваше внимание на электродвигателе непосредственно с короткозамкнутым ротором. Они применяются в самих электроприводах различных типов станков, а если говорить точнее: металлообрабатывающих, а также часто встречающихся на сегодня грузоподъемных и ткацких, в том числе деревообрабатывающих), а также в вентиляторах, лифтах, различных насосах, бытовых приборах.

Если говорить об асинхронном электродвигателе с короткозамкнутым ротором, то благодаря его применению можно добиться существенного снижения энергопотребления оборудования, которое в свою очередь, обеспечивает высокий уровень надежности аппарата. Данные характеристики оказывают положительный эффект на модернизацию производства в целом.

 

Что такое «скольжение»?

Пришло время поговорить о таком понятии как «скольжение» асинхронного двигателя.
Это, по сути, относительная разность скоростей самого вращения «ротора», это ни что иное, как изменение, так называемого переменного магнитного тока. «Скольжение» измеряется в относительных единицах, а также можно измерять в процентном соотношении.

Устройство асинхронного двигателя

Основные части двигателя: статор и ротор. Три обмотки находятся на полюсах железного сердечника кольцевой формы, сети так называемого трехфазного тока 0 располагаются одна относительно другой строго под углом 120 градусов.
Также отметим, что внутри самого сердечника закреплен на той же оси цилиндр из высококачественного металла. Он называется – ротор.

устройство асинхронного двигателя

Из чего состоит асинхронный электродвигатель

Статор

Статор это неподвижная часть, которая формирует вращающееся магнитное поле. Именно это поле непосредственно соприкасается с электромагнитным полем самой подвижной части, именуемой ротором, тем самым происходит полноценное вращение ротора.

Двигатели статора имеют фазные и короткозамкнутые роторы.

Устройство статора
  1. Первое это корпус, изготовленный из чугуна, но часто встречаются корпуса из алюминия.
  2. Далее идет сердечник из пластин, которые изготовлены из электротехнической стали в толщину 0,5 миллиметров. Пластины сердечника скреплены скобками или же швами, покрыты изоляционным лаком, закреплены в станине при помощи стопорных болтов.
  3. Ну и последнее в устройстве статора– обмотки, сдвинутые друг к другу на 120 градусов, как правило, в устройстве их не более трех, они вложены в пазы на внутренней стороне самого сердечника, изготовлены из изолированного медного, алюминиевого провода круглого/квадратного сечения.
Сердечник статора

Выполняется с посадкой на вал, без наличия промежуточной втулки. Посадка сердечников используется в двигателях с высотой непосредственно оси в 250 миллиметров без шпонки.
В больших двигателях сердечники закреплены на вал с применением шпонки. В случае, если ротор в диаметре 990 миллиметров, сердечник шихтуют из разных сегментов.

Обмотка статора и количество оборотов электродвигателя

Определить количество оборотов электродвигателя можно лишь при помощи обмотки. В этом нет ничего сложного и достаточно просто следовать инструкции и все получится. Для этого нужно:

  1. Снять крышку с двигателя.
  2. Найти одну из секций и посмотреть, сколько места она занимает по окружности самого круга. Например, если катушка заняла половину круга – это 180 градусов, то двигатель идет на 3000 оборотов в минуту.
  3. Если в окружности вмещается три секции на 120 градусов, то это двигатель на 1500 оборотов в минуту.
  4. Если в катушке вмещается 4 секции на 90 градусов, то двигатель на 3000 оборотов в минуту.

Ротор

Вращается внутри самого статора (выше описывали, что он представляет собой). Ротор – элемент электрического двигателя. Его вал соединен с деталями агрегаторов. Если говорить о массивном роторе – это цельный стальной цилиндр, который помещается во внутрь статора с не присоединенным к его поверхности сердечником (также выше описывали что такое сердечник).

Также бывают еще разновидности ротора:

  • фазный (уложен в пазы сердечника обмоткой и соединен по схеме «звезда»),
  • короткозамкнутый (залитый в поверхность сердечника, замкнут с торцов при помощи двух высокопроводящих медных колец).
Устройство короткозамкнутого ротора

Такая обмотка зачастую называется у профессионалов «беличьим колесом» по причине того, что его внешняя конструкция достаточно схожа с ним. Состоит из аллюминевых стержней, торцов с двумя кольцами замкнутых накоротко. Такие стержни вставлены, как правило, в пазы сердечника самого ротора.

Как сделан фазный ротор

Фазный ротор представляет собой двигатель, который поддается регулировке при помощи добавления в цепь ротора так называемых добавочных сопротивлений. Используются такого плана двигатели во время пуска с нагрузкой на валу. В свою очередь, увеличение сопротивления в цепи ротора предоставляет возможность увеличить пусковой момент.

Что лучше короткозамкнутый или фазный: совместная работа ротора и статора

Здесь стоит отметить, что особенных преимуществ нет ни у одного ротора, каждый хорош по-своему. Более подробно на них останавливаться не будем, так как вся необходимая информация по этим двум разновидностям ротора уже была дана выше в статье. остановим внимание на том, как регулируется частота вращения ротора. Это можно сделать при помощи изменения так называемого дополнительного сопротивления самой цепи ротора.

Также можно регулировать частоту вращения ротора, изменив напряжение статора, который подведен к обмотке.

Можно также изменить частоту питающего напряжения или же переключить число пар полюсов, ввести резисторы в цепь ротора.

Классификация по типу ротора

Классификация по типу ротора следующая: однофазный асинхронный двигатель с короткозамкнутым ротором, а также есть такая разновидность ротора, как двухфазный асинхронный двигатель короткозамкнутый.

Плюс ко всему сегодня часто пользуется спросом и асинхронный двигатель с короткозамкнутым ротором с тремя фазами, а также асинхронный двигатель с фазным ротором, также с тремя фазами. Именно так и делится классификация ротора по числу фаз.

Линейные моторы

В линейных двигателях перемещение рабочего органа РО (коротких подач) происходит от самого двигателя через ременную передачу строго на винт (ходовой).

Шариковая гайка скреплена с короткой передачей пружинных механизмов защиты от соударений, именно через нее происходит вращение винта и происходит трансформация в продольное перемещение РО.

Подключение двигателя к питанию

Кнопки “Стоп” должны быть подключены в последовательности друг с другом, а в свою очередь кнопки “Пуск” должны строго настрого быть подключены в параллели между собой в цепи управления.

Во время нажатия на “Пуск” цепь катушки будет замкнута, а сама катушка начинает втягиваться, а во время размыкания кнопки, напряжение питающее катушку, пойдет через блок-контакт КМ. Прервать цепь управления можно при помощи нажатия на одну из кнопок “Стоп”.

Достоинства и недостатки асинхронных двигателей

плюсы и минусы асинхронных двигателей

Какие недостатки и достоинства у асинхронных электродвигателей

Достоинства:

  • прежде всего, их легко использовать и никаких сложностей при эксплуатации не возникает
  • конструкция двигателей очень простая и это еще одно их преимущество, а также нельзя не отметить их низкую себестоимость (порой это имеет большое значение для покупателей, так что это еще один плюс таких двигателей)
  • надежность

Недостатки:

  • модели оснащены маленьким пусковым механизмом
  • выдают высокой спусковой ток
  • очень сильно чувствительны к возможной смене параметров в сети
  • для плавного регулирования скорости нужен преобразователь вероятных частот

Несмотря на то, что есть свои недостатки эти асинхронные двигатели, пользуются огромной популярностью. Так что все-таки они заслуживают должного уважения и не зря их часто используют в промышленности.

Заключение

Надеемся, теперь вам полностью понятен принцип работы асинхронного двигателя. Если хотите регулярно узнавать новую информацию по этой теме, а также по теме металлоискателей, подписывайтесь на нашу группу в социальной сети «Вконтакте». Для этого вам необходимо будет перейти по следующей ссылке https://vk.com/electroinfonet. Там можно не только узнавать различного рода полезную информацию, но еще и задавать вопросы и получать на них подробные ответы.

Принципиальное устройство электродвигателя | У электрика.ру

Принципиальное устройство электродвигателяЭлектродвигатель — это прибор для преобразования электроэнергии в механическую. Устройство электродвигателя несложное, а принцип его работы основывается на обнаруженном Фарадеем в 1921 году эффекте электромагнетизма, успешно применяемом и в настоящее время. Его принцип гласит: взаимодействие электротока в проводнике с постоянным магнитным полем приводит к непрерывному вращению проводника.

Основные разновидности электродвигателей

Основными компонентами электродвигателя, обеспечивающими его вращение, являются магниты и электромагниты. В роли последних выступают катушки из намотанного проводника.

Все виды электродвигателей можно разделить на 3 основных группы:

  • двигатели класса AC. Они работают за счёт напряжения переменного тока, и для подключения могут требовать как одну, так и три фазы;
  • электродвигатели DC. Их работа осуществляется за счёт напряжения постоянного тока;
  • универсальные электродвигатели. Они работают вне зависимости от типа подаваемого на них напряжения. Единственное условие — обеспечение номинальной мощности и вольтажа подаваемой электроэнергии.

Несмотря на одинаковое использование моторами принципов преобразования энергии, они могут существенно различаться между собой. Причём как конструктивно, так и по способу контроля скорости, регулированию момента вращения.

Использование электродвигателей чрезвычайно широко как в быту, так и на производстве. Дома можно обнаружить немалое число бытовой техники, в которой они служат основными узлами: вентиляторы, кондиционеры, стиральные машины, соковыжималки. Не являются исключением и компьютеры. Электродвигатели также применяются для работы секционных ворот и шлагбаумов, в качестве основного силового агрегата в тепловозах и электровозах. В последнее время стало широко популярно их применение в автомобилестроении — в качестве оснащения гибридных авто и электромобилей.

По принципу работы электромоторы разделяются на 2 группы:

  1. Синхронные. Их конструкция предусматривает наличие обмотки на роторе. Для подачи на неё напряжения используются щётки из токопроводящего материала. Скорость вращения моторов равна скорости движения магнитного поля.
  2. Асинхронные. Они характеризуются отсутствием обмоток ротора и щёток, что существенно упрощает их конструкцию и делает её надёжнее. В асинхронных электромоторах обороты ротора меньше скорости вращения магнитного поля.

Постараемся разобрать подробнее устройство электродвигателей обоих типов.

Как устроен синхронный электромотор

Двигатели этого типа получили широкое распространение в быту. Во многом благодаря возможности регулировки и поддержания заданной скорости вращения. Кроме этого, в отличие от асинхронных электромоторов, синхронные двигатели могут раскручиваться свыше 3000 оборотов в минуту. Они применяются в электроинструменте, бытовой технике, климатических системах и пр.синхронный электромотор

Их конструкция следующая: в корпусе установлены обмотки, и они же присутствуют на роторе или якоре. Выводы обмоток ведут к коллектору или площадкам токопроводящего кольца. Подачи напряжения на них осуществляется щетками (обычно на основе графита). Схема установки щёток такова, что они воздействуют только на пару обмоток, и воздействие при вращении мотора чередуются.

Распространёнными неисправностями синхронных двигателей являются:

  1. Износ, разрушение щёток или снижение качества контакта.
  2. Попадание грязи на коллектор.
  3. Выход из строя подшипников.
  4. Обрыв или перегорание обмотки.

Для создания вращающего момента используется взаимодействие токов якоря и создаваемого обмоткой магнитного поля. Для регулировки оборотов нужно изменять величину подаваемого на обмотки электромотора напряжения, что осуществляется при помощи реостатов.

Устройство асинхронного двигателя

Преимуществом моторов асинхронного типа является возрастание мощности пропорционально нагрузке. К примеру, при холостом ходе мотора он работает на максимальных оборотах, но при этом потребляет минимум энергии. При увеличении нагрузки, приводящей к снижению оборотов, крутящий момент увеличивается, и тем самым электромотор выходит на номинальную мощность.асинхронный двигатель

Однако устройство электродвигателя этого типа имеет и определённые недостатки:

  1. При работе в трехфазных сетях переменного тока скорость вращения не может превышать 3000 оборотов.
  2. При подаче нагрузки, превышающей мощность мотора, произойдёт его стопорение, в результате чего обмотки или сам ротор выйдут из строя.
  3. При выборе электродвигателя необходимо учитывать его производительность. Установка мотора меньшей мощности приведёт к выходу его из строя, большей — к неоправданно высоким энергозатратам.

Асинхронный двигатель представляет собой корпус, в котором уложены обмотки статора. При использовании трехфазной сети количество обмоток будет равно 3. При подаче на них напряжения возникает магнитное поле, приводящее вал электромотора в движение. Охлаждение осуществляется за счёт установленного на конце вала вентилятора.

Скорость вращения ротора асинхронного мотора зависима от числа полюсов в статоре. При их кратном увеличении происходит снижение оборотов двигателя, но при этом возрастает его мощность.

Ещё одним существенным недостатком является невозможность осуществлять регулировку оборотов. Проблема в том, что она зависит непосредственно от частоты тока, а использование высокоточных модификаторов синуса нецелесообразно. Основное их применение — механизмы и оборудование, работа которых не требует регулировки и большой скорости вращения, при этом на максимальную мощность они должны выходить только при нагрузке. К примеру — циркулярные пилы и прочее столярное оборудование.

 

Поделиться ссылкой:

Похожее

5.2. Устройство асинхронного двигателя

Асинхронный двигатель состоит из двух основных частей, разделенных воздушным зазором: неподвижного статора и вращающегося ротора. Каж­дая из этих частей имеет сердечник и обмотку. При этом обмотка статора включается в сеть и является как бы первичной, а обмотка ротора — вто­ричной, так как энергия в нее поступает из обмотки статора за счет магнит­ной связи между этими обмотками.

По своей конструкции асинхронные двигатели разделяются на два вида: двигатели с короткозамкнутым ротором и двигатели с фазным ротором. Рас­смотрим устройство трехфазного асинхронного двигателя с короткозамкнутым ротором (рис.5.2). Двигатели этого вида имеют наиболее широкое применение.

Рис.5.2. Устройство трехфазного асинхронного двигателя

с короткозамкнутым ротором:

1 — вал; 2, 6 — подшипники; 3, 7 — подшипниковые щиты; 4 — коробка выводов;

5 — вентилятор; 8 — кожух вентилятора; 9 — сердечник ротора с короткозамкну-

той обмоткой; 10 — сердечник статора с обмоткой; 11 — корпус; 12 — лапы

Неподвижная часть двигателя — статор — состоит из корпуса // и сердечника 10 с трехфазной обмоткой. Корпус двигателя отливают из алю­миниевого сплава или из чугуна либо делают сварным. Рассматриваемый двигатель имеет закрытое обдуваемое исполнение. Поэтому поверхность его корпуса имеет ряд продольных ребер, назначение которых состоит в том, чтобы увеличить поверхность охлаждения двигателя.

В корпусе расположен сердечник статора 10, имеющий шихтованную конструкцию: отштампованные листы из тонколистовой электротехничес­кой стали толщиной обычно 0,5 мм покрыты слоем изоляционного лака, собраны в пакет и скреплены специальными скобами или продольными свар­ными швами по наружной поверхности пакета. Такая конструкция Сердеч­ника способствует значительному уменьшению вихревых токов, возникаю­щих в процессе перемагничивания сердечника вращающимся магнитным полем. На внутренней поверхности сердечника статора имеются продоль­ные пазы, в которых расположены пазовые части обмотки статора, соеди­ненные в определенном порядке лобовыми частями, находящимися за преде­лами сердечника по его торцовым сторонам. Конструкция короткозамкнутого ротора приведена на рис.5.3.

Рис.5.3. Конструкция короткозамкнутого ротора: а — беличья клетка; б — ротор с медной стержневой обмоткой; в — ротор с алюминиевой литой обмоткой;

1 — сердечник ротора; 2 — стержни; 3 — замыкающие кольца;

4 — лопасти вентилятора

Обмотка статора асинхронного электродвигателя может быть соединена звездой или треугольником. Схемы соединения представлены на рис.5.4

Рис.5.4. Схемы соединения выводов трехфазных обмоток электродвигателя:

а — звезда; б — треугольник

5.3. Принцип образования вращающегося магнитного поля

Принцип образования вращающегося магнитного поля рассмотрим на при­мере простейшей трехфазной двухполюсной обмотки, каждая фаза которой состоит из одной секции, фазы обмотки соединены звездой (рис.5.5). При этом секции тока в фазных обмотках (по времени) относительно друг друга на электрический угол 120° (рис.5.5, б). Проведем ряд построений вектора МДС трехфазной обмотки Fm, соответствующих различным моментам времениt0, t1, t2,t3отмеченным на графике рис.5.5, б.

В момент времени t0ток в фазе А равен 0, в фазе В ток имеет отрица­тельное, а в фазе С — положительное направления. Эти направления тока отмечаем на рис.5.5, б в сечениях обмоток статора для данного момента времени. При этом следует помнить, что за положительное направление тока

Рис.5.5. Получение вращающегося магнитного поля: а — трехфазная обмотка статора;

б — вращение МДС; в — модель магнитного поля статора;

1-4 — обмотка фазы А; 3-6 — обмотка фазы В;

5—2 — обмотка фазы С (первая цифра — начало обмотки)

в фазной обмотке принимается направление тока от начала обмотки к ее концу и обозначается х, а, следовательно, отрицательное направление тока в обмотке соответствует направлению тока от конца к началу и обозначается •. Затем в соответствии с указанными на рис. 5, б направлениями токов определяем (по правилу буравчика) направление вектора МДС трехфазной обмотки статора (вектор Fmнаправлен вниз).

В момент времени t1т.е. через (1/3) Т, ток в фазе В равен нулю, в фазе А имеет положительное, а в фазе С — отрицательное направление. Сделав построения, аналогичные моменту времени t0, заметим, что вектор МДС обмотки статора Fmпо сравнению с его положением в момент вре­мени t0повернулся на 120° в направлении движения часовой стрелки.

Проведя аналогичные построения вектора МДС обмотки статора для момента t2и t3, видим, что каждый раз при переходе от одного момента времени к другому вектор Fmповорачивается на 120°, а за один период изменения токов в обмотках (с t0до t3) делает полный оборот (360°) и будет, таким образом, вращающимся. Вращающаяся МДС создает враща­ющееся магнитное поле, эквивалентное полю магнита N — S с индукци­ей Во (рис.5, в). Это поле вращается с синхронной частотойn0кото­рая пропорциональна частоте переменного токаfи обратно пропорцио­нальна числу пар полюсов обмоток статора р, т.е.

,

Зависимость n0 от р и f представлена в табл.5.2.

Таблица 5.2

f = 50 Гц

Р

1

2

3

4

5

6

n0, об/мин

3000

1500

1000

750

600

500

р=1

f. ГЦ

50

100

200

400

500

1000

Круговое вращающееся магнитное поле характеризуется тем, что пространственный вектор магнитной индукции этого поля Во вра­щается равномерно (n0= const).

При необходимости изменить направление вращения магнитного поля статора нужно по­менять порядок следования токов в фазных обмотках статора, для чего переключают фазы на зажимах двигателя (рис.5.6).

Рис.5.6. Изменение направления вращения магнитного поля.

Отправить ответ

avatar
  Подписаться  
Уведомление о