Газотурбинный двигатель — Википедия
Газотурбинный двигатель (ГТД) — это воздушный двигатель, в котором воздух сжимается нагнетателем перед сжиганием в нём топлива, а нагнетатель приводится газовой турбиной, использующей энергию нагретых таким образом газов. Двигатель внутреннего сгорания с термодинамическим циклом Брайтона.
То есть сжатый воздух из компрессора поступает в камеру сгорания, куда подаётся топливо, которое, сгорая, образует газообразные продукты с большей энергией. Затем в газовой турбине часть энергии продуктов сгорания преобразуется во вращение турбины, которая расходуется на сжатие воздуха в компрессоре. Остальная часть энергии может передаваться на приводимый агрегат или использоваться для создания реактивной тяги. Эта часть работы двигателя считается полезной. Газотурбинные двигатели имеют большую удельную мощность до 6 кВт/кг.
В качестве топлива используется разнообразное горючее. Например: бензин, керосин, дизельное топливо, мазут, природный газ, судовое топливо, водяной газ, спирт и измельчённый уголь.
Одну из простейших конструкций газотурбинного двигателя, для понятия его работы, можно представить как вал, на котором находится два диска с лопатками, первый диск — компрессора, второй — турбины, в промежутке между ними установлена камера сгорания.
Простейшая схема газотурбинного двигателя Схема турбореактивного двигателяПринцип работы газотурбинного двигателя:
- всасывание и сжатие воздуха в осевом компрессоре, подача его в камеру сгорания;
- смешение сжатого воздуха с топливом для образования топливо-воздушной смеси (ТВС) и сгорание этой смеси;
- расширение газов из-за её нагрева при сгорании топливо-воздушной смеси, что формирует вектор давления газа, направленный в сторону меньшего сопротивления (в направлении лопаток турбины), передача энергии (давления) газа лопатками турбины на диск или вал, в котором эти лопатки закреплены;
- привод во вращение диска турбины и, вследствие этого, передача крутящего момента по валу с диска турбины на диск компрессора.[1]
Увеличение количества подаваемого топлива (добавление «газа») вызывает генерирование большего количества газов высокого давления, что, в свою очередь, ведёт к увеличению числа оборотов турбины и диска(ов) компрессора и, вследствие этого, увеличению количества нагнетаемого воздуха и его давления, что позволяет подать в камеру сгорания и сжечь больше топлива. Количество топливо-воздушной смеси зависит напрямую от количества воздуха, поданного в камеру сгорания. Увеличение количества ТВС (топливо-воздушной смеси) приведёт к увеличению давления в камере сгорания и температуры газов на выходе из камеры сгорания и, вследствие этого, позволяет создать бо́льшую энергию выбрасываемых газов, направленную для вращения турбины и повышения реактивной силы.
Как и во всех циклических тепловых двигателях, чем выше температура сгорания, тем выше топливный коэффициент полезного действия (если точнее, чем выше разница между «нагревателем» и «охладителем»). Сдерживающим фактором является способность стали, никеля, керамики или других материалов, из которых состоит двигатель, выдерживать температуру и давление. Значительная часть инженерных разработок направлена на то, чтобы отводить тепло от частей турбины. Большинство турбин также пытается рекуперировать тепло выхлопных газов, которое, в противном случае, теряется впустую. Рекуператоры — это теплообменники, которые передают тепло выхлопных газов сжатому воздуху перед сгоранием. Также существует и другой способ утилизации тепла остаточных газов — подача в паровой котёл-утилизатор. Генерируемый котлом пар может быть передан паровой турбине для выработки дополнительной энергии в комбинированном цикле на парогазовой установке, либо использоваться для нужд отопления и ГВС в комбинированном производстве тепла и электроэнергии (когенерация) на газотурбинной ТЭЦ.
Чем меньше двигатель, тем выше должна быть частота вращения вала(ов), необходимая для поддержания максимальной линейной скорости лопаток, так как длина окружности (путь, проходимый лопатками за один оборот), прямо зависит от радиуса ротора. Максимальная скорость турбинных лопаток определяет максимальное давление, которое может быть достигнуто, что приводит к получению максимальной мощности, независимо от размера двигателя. Вал реактивного двигателя вращается с частотой около 10000 об/мин и микротурбина — с частотой около 100000 об/мин.
Для дальнейшего развития авиационных и газотурбинных двигателей рационально применять новые разработки в области высокопрочных и жаропрочных материалов для возможности повышения температуры и давления. Применения новых типов камер сгорания, систем охлаждения, уменьшения числа и массы деталей и двигателя в целом возможно в прогрессе применение альтернативных видов топлива, изменение самого представления конструкции двигателя.
Газотурбинная установка (ГТУ) с замкнутым циклом[править | править код]
В ГТУ с замкнутым циклом рабочий газ циркулирует без контакта с окружающей средой. Нагрев (перед турбиной) и охлаждение (перед компрессором) газа производится в теплообменниках. Такая система позволяет использовать любой источник тепла (например, газоохлаждаемый ядерный реактор). Если в качестве источника тепла используется сгорание топлива, то такое устройство называют двигателем внешнего сгорания. На практике ГТУ с замкнутым циклом используются редко.
Газотурбинная установка (ГТУ) с внешним сгоранием[править | править код]
Большинство ГТУ представляют собой двигатели внутреннего сгорания, но также возможно построить ГТУ внешнего сгорания, которая, фактически, является газотурбинной версией теплового двигателя.[источник не указан 3006 дней]
При внешнем сгорании в качестве топлива используется пылевидный уголь или мелкоистолчённая биомасса (например, опилки). Внешнее сжигание газа используется как непосредственно, так и косвенно. В прямой системе сквозь турбину проходят продукты сгорания. В косвенной системе используется теплообменник, и через турбину проходит чистый воздух. Тепловой КПД ниже в системе внешнего сгорания косвенного типа, однако лопасти не подвергаются воздействию продуктов сгорания.
Одновальные и многовальные газотурбинные двигатели[править | править код]
Простейший газотурбинный двигатель имеет только один вал, куда устанавливается турбина, которая приводит во вращение компрессор и одновременно является источником полезной мощности. Это накладывает ограничение на режимы работы двигателя.
Иногда двигатель выполняется многовальным. В этом случае имеется несколько последовательно стоящих турбин, каждая из которых приводит свой вал. Турбина высокого давления (первая после камеры сгорания) всегда приводит в движение компрессор двигателя, а последующие могут приводить как внешнюю нагрузку (винты вертолёта
Также преимущество многовального двигателя в том, что каждая турбина работает при оптимальной скорости вращения и нагрузке. При нагрузке, приводимой от вала одновального двигателя, была бы очень плохая приёмистость двигателя, то есть способность к быстрой раскрутке, так как турбине требуется поставлять мощность и для обеспечения двигателя большим количеством воздуха (мощность ограничивается количеством воздуха), и для разгона нагрузки. При двухвальной схеме лёгкий ротор высокого давления быстро выходит на режим, обеспечивая двигатель воздухом, а турбину низкого давления — большим количеством газов для разгона. Также есть возможность использовать менее мощный стартёр для разгона при пуске только ротора высокого давления.
Система запуска[править | править код]
Для запуска ГТД нужно раскрутить его ротор до определённых оборотов, чтобы компрессор начал подавать достаточное количество воздуха (в отличие от объёмных компрессоров, подача инерционных (динамических) компрессоров квадратично зависит от частоты вращения и поэтому на малых оборотах практически отсутствует), и поджечь подаваемое в камеру сгорания топливо. Со второй задачей справляются свечи зажигания, зачастую установленные на специальных пусковых форсунках, а раскрутка выполняется стартером той или иной конструкции:
- электростартер, зачастую являющийся стартёр-генератором, то есть после запуска переключающимся в режим генератора постоянного тока 27 вольт. Таковы, например, ГС-24 вспомогательного двигателя ТА-6Б или СТГ-18 турбовинтового двигателя АИ-24 самолёта Ан-24;
- воздушный турбостартер (ВТС) — небольшая воздушная турбина, получающая воздух от системы отбора (от ВСУ или соседнего работающего двигателя) или наземной установки воздушного запуска (УВЗ). Такие стартёры стоят на двигателях Д-30КП самолёта Ил-76, ТВ3-117 вертолётов Ми-8 и Ми-24 и многих других;
- турбостартер (ТС) — небольшой турбовальный двигатель, рассчитанный только на раскрутку ротора основного двигателя, на котором он и установлен. Такие стартёры стоят, например, на двигателе АИ-25ТЛ учебно-тренировочного самолёта L-39 и НК-12МВ дальнего бомбардировщика Ту-95. Сам ТС имеет электрозапуск.[6]
Турбореактивный двигатель[править | править код]
В полёте поток воздуха тормозится во входном устройстве перед компрессором, в результате чего его температура и давление повышается. На земле во входном устройстве воздух ускоряется, его температура и давление снижаются.
Проходя через компрессор, воздух сжимается, его давление повышается в 10—45 раз, возрастает его температура. Компрессоры газотурбинных двигателей делятся на осевые и центробежные. В наши дни в двигателях наиболее распространены многоступенчатые осевые компрессоры. Центробежные компрессоры, как правило, применяются в малогабаритных силовых установках.
Далее сжатый воздух попадает в камеру сгорания, в так называемые жаровые трубы, либо в кольцевую камеру сгорания, которая не состоит из отдельных труб, а является цельным кольцевым элементом. В наши дни кольцевые камеры сгорания являются наиболее распространёнными. Трубчатые камеры сгорания используются гораздо реже, в основном на военных самолётах. Воздух на входе в камеру сгорания разделяется на первичный, вторичный и третичный. Первичный воздух поступает в камеру сгорания через специальное окно в передней части, по центру которого расположен фланец крепления форсунки, и участвует непосредственно в окислении (сгорании) топлива (формировании топливо-воздушной смеси). Вторичный воздух поступает в камеру сгорания сквозь отверстия в стенках жаровой трубы, охлаждая, придавая форму факелу и не участвуя в горении. Третичный воздух подаётся в камеру сгорания уже на выходе из неё, для выравнивания поля температур. При работе двигателя в передней части жаровой трубы всегда вращается вихрь раскалённого газа (что обусловлено специальной формой передней части жаровой трубы), постоянно поджигающего формируемую топливовоздушную смесь, происходит сгорание топлива (керосина, газа), поступающего через форсунки в парообразном состоянии.
Газовоздушная смесь расширяется и часть её энергии преобразуется в турбине через рабочие лопатки в механическую энергию вращения основного вала. Эта энергия расходуется, в первую очередь, на работу компрессора, а также используется для привода агрегатов двигателя (топливных подкачивающих насосов, масляных насосов и т. п.) и привода электрогенераторов, обеспечивающих энергией различные бортовые системы.
Основная часть энергии расширяющейся газовоздушной смеси идёт на ускорение газового потока в сопле и создание реактивной тяги.
Чем выше температура сгорания, тем выше КПД двигателя. Для предупреждения разрушения деталей двигателя для их изготовления используют жаропрочные сплавы и термобарьерные покрытия. А также применяется система охлаждения воздухом, отбираемым от средних ступеней компрессора.
Турбореактивный двигатель с форсажной камерой[править | править код]
Турбореактивный двигатель с форсажной камерой (ТРДФ) — модификация ТРД, применяемая в основном на сверхзвуковых самолётах. Между турбиной и соплом устанавливается дополнительная форсажная камера, в которой сжигается дополнительное горючее. В результате происходит увеличение тяги (форсаж) до 50 %, но расход топлива резко возрастает. Двигатели с форсажной камерой, как правило, не используются в коммерческой авиации по причине их низкой экономичности.
Двухконтурный турбореактивный двигатель[править | править код]
Схема турбореактивного двухконтурного двигателя (ТРДД) со смешением потоков: 1 — компрессор низкого давления; 2 — внутренний контур; 3 — выходной поток внутреннего контура; 4 — выходной поток внешнего контураВ турбореактивном двухконтурном двигателе (ТРДД) воздушный поток попадает в компрессор низкого давления, после чего часть потока проходит по обычной схеме через турбокомпрессор, а остальная часть (холодная) проходит через внешний контур и выбрасывается без сгорания, создавая дополнительную тягу. В результате снижается температура выходного газа, снижается расход топлива и уменьшается шум двигателя. Отношение количества воздуха, прошедшего через внешний контур, к количеству прошедшего через внутренний контур воздуха называется степенью двухконтурности (m). При степени двухконтурности <4 потоки контуров на выходе, как правило, смешиваются и выбрасываются через общее сопло, если m > 4 — потоки выбрасываются раздельно, так как из-за значительной разности давлений и скоростей смешение затруднительно. Применение второго контура в двигателях для военной авиации позволяет охлаждать горячие части двигателя, это позволяет увеличивать температуру газов перед турбиной, что способствует дополнительному повышению тяги.
Двигатели с малой степенью двухконтурности (m < 2) применяются для сверхзвуковых самолётов, двигатели с m > 2 для дозвуковых пассажирских и транспортных самолётов.
Турбовентиляторный двигатель[править | править код]
Схема турбореактивного двухконтурного двигателя без смешения потоков (Турбовентиляторного двигателя): 1 — вентилятор; 2 — защитный обтекатель; 3 — турбокомпрессор; 4 — выходной поток внутреннего контура; 5 — выходной поток внешнего контура.Турбовентиляторный реактивный двигатель (ТВРД) — это ТРДД со степенью двухконтурности m=2—10. Здесь компрессор низкого давления преобразуется в вентилятор, отличающийся от компрессора меньшим числом ступеней и большим диаметром, и горячая струя практически не смешивается с холодной. Применяется в гражданской авиации, двигатель имеет большой назначенный ресурс и малый удельный расход топлива на дозвуковых скоростях.
Турбовинтовентиляторный двигатель[править | править код]
Дальнейшим развитием ТВРД с увеличением степени двухконтурности m=20—90 является турбовинтовентиляторный двигатель (ТВВД). В отличие от турбовинтового двигателя, лопасти двигателя ТВВД имеют саблевидную форму, что позволяет перенаправить часть воздушного потока в компрессор и повысить давление на входе компрессора. Такой двигатель получил название винтовентилятор и может быть как открытым, так и закапотированным кольцевым обтекателем. Второе отличие — винтовентилятор приводится от турбины не напрямую, а, как винт, через редуктор. Двигатель наиболее экономичен, но при этом крейсерская скорость полёта ЛА, с такими типами двигателей, обычно не превышает 550 км/ч, имеются более сильные вибрации и «шумовое загрязнение».
Пример ТВВД — Д-27 грузового самолёта Ан-70.
Турбовинтовой двигатель[править | править код]
Схема турбовинтового двигателя: 1 — воздушный винт; 2 — редуктор; 3 — турбокомпрессорВ турбовинтовом двигателе (ТВД) основное тяговое усилие обеспечивает воздушный винт, соединённый через редуктор с валом турбокомпрессора.[7] Для этого используется турбина с увеличенным числом ступеней, так что расширение газа в турбине происходит почти полностью и только 10—15 % тяги обеспечивается за счёт газовой струи.
Турбовинтовые двигатели гораздо более экономичны на малых скоростях полёта и широко используются для самолётов, имеющих большую грузоподъёмность и дальность полёта — например, Ан-12, Ан-22, C-130. Крейсерская скорость самолётов, оснащённых ТВД, 500—700 км/ч.
Вспомогательная силовая установка (ВСУ)[править | править код]
ВСУ — небольшой газотурбинный двигатель, являющийся автономным источником энергии на борту. Простейшие ВСУ могут выдавать только сжатый воздух, отбираемый от компрессора турбины, который используется для запуска маршевых (основных) двигателей, либо для работы системы кондиционирования на земле (пример, ВСУ типа АИ-9, применяемая на вертолётах и самолёте Як-40). Более сложные ВСУ, помимо источника сжатого воздуха, выдают электрический ток в бортовую сеть, то есть являются полноценным автономным энергоузлом, обеспечивающем нормальное функционирование всех бортовых систем самолёта без запуска основных двигателей, а также при отсутствии наземных аэродромных источников энергии. Такова, например, ВСУ ТА-12 самолётов Ан-124[8], Ту-95МС, Ту-204, Ан-74 и других.
Турбовальный двигатель[править | править код]
Такой двигатель чаще всего имеет свободную турбину. Вся турбина поделена на две части, между собой механически несвязанные. Связь между ними только газодинамическая. Газовый поток, вращая первую турбину, отдает часть своей мощности для вращения компрессора и далее, вращая вторую, тем самым через вал этой (второй) турбины приводит в действие полезные агрегаты. Реактивное сопло на турбовальном двигателе отсутствует. Выходное устройство для отработанных газов соплом не является и тяги не создаёт.
Выходной вал ТВаД, с которого снимается вся полезная мощность, может быть направлен как назад, через канал выходного устройства, так и вперед, либо через полый вал турбокомпрессора, либо через редуктор вне корпуса двигателя.
Редуктор — непременная принадлежность турбовального двигателя. Скорость вращения как ротора турбокомпрессора, так и ротора свободной турбины велика настолько, что это вращение не может быть напрямую передано на приводимые агрегаты. Они просто не смогут выполнять свои функции и даже могут разрушиться. Поэтому между свободной турбиной и полезным агрегатом обязательно ставится редуктор для снижения частоты вращения приводного вала.
Компрессор у ТВаД может быть осевым (если двигатель мощный) либо центробежным. Часто компрессор бывает и смешанным по конструкции, в нём есть как осевые, так и центробежные ступени. В остальном принцип работы этого двигателя такой же, как и у ТРД.
Основное применение турбовальный двигатель находит в авиации, по большей части, на вертолётах. Полезная нагрузка в этом случае — несущий винт вертолёта. Известным примером могут служить широко распространённые вертолёты Ми-8 и Ми-24 с двигателями ТВ2-117 и ТВ3-117.
Турбостартёр[править | править код]
ТС — агрегат, устанавливаемый на газотурбинном двигателе и предназначенный для его раскрутки при запуске.
Такие устройства представляют собой миниатюрный, простой по конструкции турбовальный двигатель, свободная турбина которого раскручивает ротор основного двигателя при его запуске. В качестве примера: турбостартёр ТС-21, используемый на двигателе АЛ-21Ф-3, который устанавливается на самолёты типа Су-24[9], или ТС-12, устанавливаемый на авиационные двигатели НК-12 самолётов Ту-95 и Ту-142. ТС-12 имеет одноступенчатый центробежный компрессор, двухступенчатую осевую турбину привода компрессора и двухступенчатую свободную турбину. Номинальные обороты ротора компрессора в начале запуска двигателя — 27 тысяч мин−1, по мере раскрутки ротора НК-12 за счёт роста оборотов свободной турбины ТС-12 противодавление за турбиной компрессора падает и обороты возрастают до 30 тысяч мин−1.
Турбостартёр ГТДЭ-117 двигателя АЛ-31Ф также выполнен со свободной турбиной, а стартёр С-300М двигателя АМ-3, стоявшего на самолётах Ту-16, Ту-104 и М-4 — одновальный и раскручивает ротор двигателя через гидромуфту.[10]
Судовые установки[править | править код]
Используются в судовой промышленности для снижения веса. General Electric LM2500 и LM6000 — характерные модели этого типа машин.
Суда, использующие турбовальные газотурбинные двигатели называют газотурбоходами. Они являются разновидностью теплохода. Это чаще всего суда на подводных крыльях, у которых гребной винт приводит в движение турбовальный двигатель механически через редуктор или электрически через генератор, который он вращает. Либо это суда на воздушной подушке, которая создаётся при помощи ГТД.
Например, газотурбоход «Циклон-М» с 2 газотурбинными двигателями ДО37. Пассажирских газотурбоходов за российскую историю было всего два. Последнее очень перспективное судно «Циклон-М» появилось в 1986 году. Более таких судов не строили. В военной сфере в этом плане дела обстоят несколько лучше. Примером является десантный корабль «Зубр», самое большое в мире судно на воздушной подушке.
Железнодорожные установки[править | править код]
Локомотивы, на которых стоят турбовальные газотурбинные двигатели, называются газотурбовозами (разновидность тепловоза). На них используется электрическая передача. ГТД вращает электрогенератор, а вырабатываемый им ток, в свою очередь, питает электродвигатели, приводящие локомотив в движение. В 1960-е годы в СССР проходили довольно успешную опытную эксплуатацию три газотурбовоза. Два пассажирских и один грузовой. Однако они не выдержали соревнования с электровозами и в начале 1970-х годов проект был свёрнут. Но в 2007 году по инициативе ОАО «РЖД» был изготовлен опытный образец грузового газотурбовоза, работающий на сжиженном природном газе. ГТ1 успешно прошёл испытания, позднее был построен второй газотурбовоз, с той же силовой установкой, но на другой ходовой части, машины эксплуатируются.
Перекачка природного газа[править | править код]
Газотурбинный двигатель НК-12СТ, используется на магистральных газопроводах ООО «Газпром трансгаз Москва» с 1981 года. По состоянию на 2018 год, в ООО «Газпром Трансгаз Москва» эксплуатируется тридцать таких двигателей.Принцип работы газоперекачивающей установки практически не отличается от турбовинтовых двигателей, ТВаД используются здесь в качестве привода мощных насосов, а в качестве топлива используется тот же самый газ, который они перекачивают. В отечественной промышленности для этих целей широко применяются двигатели, созданные на базе авиационных — НК-12 (НК-12СТ)[11], НК-32 (НК-36СТ), так как на них можно использовать детали авиадвигателей, выработавшие свой лётный ресурс.
Электростанции[править | править код]
Турбовальный газотурбинный двигатель может использоваться для привода электрогенератора на электростанциях, основу которой составляют один или несколько таких двигателей. Такая электростанция может иметь электрическую мощность от двадцати киловатт до сотен мегаватт.
Однако, газотурбинный двигатель, помимо вращения, также производит большое количество тепла, которое также может быть использовано для производства электроэнергии или теплоснабжения, поэтому наиболее эффективно его применение совместно с котлом-утилизатором. Полученный в котле-утилизаторе пар подаётся в паротурбинную установку, в таком случае вся установка в целом называется парогазовой, либо подаётся в сетевой подогреватель для использования в теплофикации, в таком случае установка называется газотурбинной ТЭЦ.
Парогазовая установка является одним из самых распространённых и эффективных источников электроэнергии, её КПД выше, чем у отдельных паросиловых и газотурбинных установок.
Танкостроение[править | править код]
Первые исследования в области применения газовой турбины в танковых двигателях проводились в Германии Управлением вооружённых сухопутных сил начиная с середины 1944 года. Первым массовым танком с газотурбинным двигателем стал С-танк.
Установка блочного силового агрегата (двигатель — трансмиссия) в танк M1A1Турбовальные двигатели (ТВаД) установлены на советском танке Т-80 (двигатель ГТД-1000Т) и американском М1 Абрамс. Газотурбинные двигатели, устанавливаемые на танках, имеют при схожих с дизельными размерах гораздо бо́льшую мощность, меньший вес и меньшую шумность, меньшую дымность выхлопа. Также ТВаД лучше удовлетворяет требованиям многотопливности, гораздо легче запускается, — оперативная готовность танка с ГТД, то есть запуск двигателя и последующий вход в рабочий режим всех его систем, занимает несколько минут, что для танка с дизельным двигателем в принципе невозможно, а в зимних условиях при низких температурах дизелю требуется достаточно длительный предпусковой прогрев, который не требуется ТВаД. Из-за отсутствия жёсткой механической связи турбины и трансмиссии на застрявшем или просто упёршемся в препятствие танке двигатель не глохнет. В случае попадания воды в двигатель (утоплении танка) достаточно выполнить так называемую холодную прокрутку ГТД для удаления воды из газовоздушного тракта и после этого двигатель можно запускать — на танке с дизельным двигателем в аналогичной ситуации происходит гидроудар, ломающий детали цилиндро-поршневой группы и непременно требующий замены двигателя.
Однако из-за низкого КПД газотурбинных двигателей, установленных на тихоходных (в отличие от самолётов) транспортных средствах, требуется гораздо большее количество возимого топлива для сравнимого с дизельным двигателем километрового запаса хода. Именно из-за расхода топлива, невзирая на все достоинства, танки типа Т-80 поэтапно выводятся из эксплуатации. Неоднозначным оказался опыт эксплуатации танковых ТВаД М1 Абрамс в условиях высокой запылённости (например в песчаных пустынях). В отличие от него, Т-80 благополучно может эксплуатироваться в условиях высокой запылённости, — конструктивно хорошо продуманная система очистки поступающего в двигатель воздуха на Т-80 надёжно защищает ГТД от песка и пыли. «Абрамсы», напротив, «задохнулись» — во время двух кампаний против Ирака при прохождении пустынь довольно много «Абрамсов» встали, так как их двигатели забились песком[источник не указан 709 дней].
Автостроение[править | править код]
STP Oil Treatment Special на выставке в зале славы музея трассы Indianapolis Motor Speedway показана вместе с газотурбинным двигателем Pratt & Whitney. A 1968 Howmet TX — единственный в истории газотурбинный двигатель, принёсший победу в автомобильной гонке.Множество экспериментов проводилось с автомобилями, оснащёнными газовыми турбинами.
В 1950 году дизайнер Ф. Р. Белл и главный инженер Морис Вилкс в британской компании Rover Company анонсировали первый автомобиль с приводом от газотурбинного двигателя. Двухместный JET1 имел двигатель, расположенный позади сидений, решётки воздухозаборника по обеим сторонам машины, и выхлопные отверстия на верхней части хвоста. В ходе испытаний автомобиль достиг максимальной скорости 140 км/ч, на скорости турбины 50000 об/мин. Автомобиль работал на бензине, парафиновом или дизельном маслах, но проблемы с потреблением топлива оказались непреодолимыми для производства автомобилей. В настоящее время он выставлен в лондонском Музее науки.
Команды Rover и British Racing Motors (Формула-1) объединили усилия для создания Rover-BRM, автомобиля с приводом от газовых турбин, который принял участие в гонке 24 часа Ле-Мана 1963 года, управляемого Грэмом Хиллом и Гитнером Ричи. Этот автомобиль показал среднюю скорость 173 км/ч, максимальную — 229 км/ч.
Американские компании Ray Heppenstall, Howmet Corporation и McKee Engineering объединились для совместной разработки собственных газотурбинных спортивных автомобилей в 1968 году, Howmet TX приняла участие в нескольких американских и европейских гонках, в том числе завоевав две победы, а также принимала участие в гонке 24 часа Ле-Мана 1968 года. Автомобили использовали газовые турбины Continental Motors Company, благодаря которым, в конечном итоге, ФИА было установлено шесть посадочных скоростей для машин с приводом от турбин.
На гонках автомобилей с открытыми колёсами, революционное полноприводное авто 1967 года STP Oil Treatment Special с приводом от турбины, специально подобранной легендой гонок Эндрю Гранателли и управляемое Парнелли Джонсом, почти выиграло в гонке «Инди-500»; авто с турбиной STP компании Pratt & Whitney обгоняло почти на круг авто, шедшее вторым, когда у него неожиданно отказала коробка передач за три круга до финишной черты. В 1971 году глава компании Lotus Колин Чепмен представил авто Lotus 56B F1, с приводом от газовой турбины Pratt & Whitney. У Чепмена была репутация создателя машин-победителей, но он вынужден был отказаться от этого проекта из-за многочисленных проблем с инерционностью турбин (турболагом).
Оригинальная серия концептуальных авто General Motors Firebird была разработана для автовыставки Моторама 1953, 1956, 1959 годов, с приводом от газовых турбин.
Единственная серийная модель «семейного» газотурбинного автомобиля для использования на дорогах общего пользования была выпущена Chrysler в 1963—1964 года. Компания передала пятьдесят собранных вручную машин в кузовах итальянского ателье Ghia добровольцам, которые испытывали новинку в обычных дорожных условиях до января 1966 года. Эксперимент прошёл удачно, но компания, не располагавшая средствами для постройки нового моторного производства, отказалась от массового выпуска автомобиля с ГТД. После ужесточения экологических стандартов и взрывного роста цен на нефть компания, с трудом пережившая финансовый кризис, отказалась от продолжения разработок[12].[13]
В 1791 году английский изобретатель Джон Барбер получил патент за номером 1833, в котором описал первую газовую турбину.[14]
В 1892 году русский инженер П. Д. Кузьминский конструировал и построил первый в мире ГТД с газовой реверсивной турбиной радиального типа с 10 ступенями давления.[15] Турбина должна была работать на парогазовой смеси, которая получалась в созданной им же камере сгорания — «газопаророде».[16]
В 1906—1908 году русский инженер В. В. Кароводин сконструировал газовую турбину взрывного типа (турбину постоянного объёма).[17] Бескомпрессорный ГТД Кароводина с 4 камерами прерывистого сгорания и газовой турбиной при 10 000 об/мин развивал мощность 1,2 квт (1,6 л. с.).[18]
В 1909 году русский инженер Н. Герасимов запатентовал ГТД, использующийся для реактивного движения, то есть по сути — первый турбореактивный двигатель (привилегия № 21021, 1909 г.).[19][20][21]
В 1913 г., М. Н. Никольский спроектировал газотурбинный двигатель мощностью 120 кВт (160 л. с.), у которого было три ступени газовой турбины.[22][23]
Дальнейшие усовершенствования в конструкцию газотурбинных двигателей внесли В. И. Базаров (1923 г.), В. В. Уваров и Н. Р. Брилинг (1930—1936 гг.).[24][25]
В 1930-е годы огромный вклад в развитие газотурбинных технологий внесла группа конструкторов под руководством академика АН СССР А. М. Люльки. Главные работы конструктора касались турбореактивных двигателей с центробежным лопастным компрессором, которые стали основными для авиации.[26][27][28][29]
Как и у любого теплового двигателя, у ГТД есть множество параметров, которые необходимо контролировать для эксплуатации двигателя в безопасных, а по возможности и экономичных режимах. Измеряются с помощью приборов контроля.
- Обороты — контролируются для оценки режима работы двигателя и недопущения опасных режимов. У многовальных двигателей, как правило, контролируются обороты всех валов — например, на Як-42 для контроля оборотов всех трёх валов каждого двигателя Д-36 установлен трёхстрелочный тахометр ИТА-13[30], на Ан-72 и Ан-74, оснащённых такими же двигателями Д-36 — три двухстрелочных тахометра, два стоят на приборной доске пилотов и показывают один обороты роторов вентиляторов, второй обороты роторов ВД, третий установлен на пульте предполётной подготовки и показывает обороты роторов НД.
- Температура выходящих газов (ТВГ) — температура газов за турбиной двигателя, как правило, за последней ступенью[5], так как температура перед турбиной слишком высока для надёжного измерения. Температура газов показывает тепловую нагрузку на турбину и измеряется с помощью термопар. Также от термопар может работать автоматика, срезающая расход топлива или вовсе выключающая двигатель при превышении ТВГ — СОТ-1 на двигателе ТА-6[1], РТ-12 на двигателе НК-8 и так далее.
Конструкторы газотурбинных двигателей и основанные ими КБ[править | править код]
Турбированный двигатель: плюсы и минусы
Современные автопроизводители в последнее время всё чаще устанавливают на свои модели турбированные двигатели взамен атмосферных. Казалось бы, это логично, поскольку турбонаддув придаёт мотору дополнительную мощность при сохранении небольшого рабочего объёма, но на деле всё не так просто. Поэтому специалисты советуют изучить плюсы и минусы турбированного двигателя и проанализировать особенности его эксплуатации, прежде чем приобретать автомобиль.
Что такое турбированный двигатель в автомобиле
Первые турбированные двигатели были сконструированы ещё в 1905 году, однако на легковые автомобили их начали устанавливать во второй половине 20-го века. Турбонаддув – система нагнетания в цилиндры атмосферного двигателя дополнительного воздуха, вследствие чего происходит повышение среднего эффективного давления в цилиндрах. Это увеличивает мощность мотора без внесения изменений в его конструкцию. Работу мотора с турбонаддувом обеспечивает приводной нагнетатель, использующий энергию отработанных газов. Они приводят в движение колесо турбины, которая в свою очередь вращает колесо компрессора с помощью роторного вала. Компрессорное колесо сжимает воздух, который нагревается, а после поступления в интеркулер охлаждается и подаётся в цилиндры.
Это важно! Энергия отработанных газов растёт по мере увеличения числа вращения движка. Чем интенсивнее работает мотор, тем больше становится энергетический потенциал и растёт подача сжатого воздуха.
До недавнего времени двигатели с турбонаддувом устанавливались исключительно на дорогостоящие спортивные модели автомобилей. Но, по утверждению маркетологов, в настоящее время доля моделей с такими моторами стремительно увеличивается, и турбина становится практически обязательным элементов престижных марок авто.
Турбины устанавливают гораздо чаще на дизельных двигателях, чем на бензиновых
Производители машин делают акцент на том, что турбодвигатели беспощадно теснят «атмосферники», и большинство покупателей хороших машин предпочитают именно такой тип двигателя. Но так ли хорош турбомотор, как это расписывают конструкторы и инженеры автопредприятий? Чтобы сделать выводы, стоит рассмотреть его конструктивные особенности и поближе познакомиться с принципом действия.
Конструктивные особенности
Система турбонаддува состоит из компрессора, интеркулера, регулятора давления наддува и других узлов. Главная деталь – турбокомпрессор, регулирующий рост давления в системе впуска воздуха. Интеркулер охлаждает воздух и повышает его плотность.
Схема движения воздуха во время работы турбированного двигателя
Всей системой управляет регулятор наддува. Это перепускной клапан, ограничивающий давление отработанных газов. Отсекая некоторое их количество, клапан делает давление наддува оптимальным.
Турбокомпрессор работает следующим образом:
- Воздух проходит через воздушный фильтр и поступает во входное отверстие.
- Происходит сжатие воздуха, и в нём увеличивается содержание кислорода. Воздух нагревается, и его плотность снижается.
- Массы воздуха покидают турбокомпрессор и попадают в интеркулер, в котором происходит охлаждение.
- Сжатый воздух проникает через дроссель и впускной коллектор в цилиндры мотора.
- Часть выхлопных газов, образовавшихся при сгорании топлива в цилиндрах, передаётся турбодвигателем назад в коллектор турбины. Этот поток воздуха запускает движение вала, на противоположном конце которого расположен компрессор. Здесь начинается повторное сжатие воздуха.
Схема турбокомпрессора
Это важно! Результат работы турбонаддува – увеличение уровня сжатия кислорода при сохранении объёма цилиндров. За один такт работы турбомотор сжигает больше топливной смеси, чем атмосферный двигатель того же объёма.
Плюсы и минусы
Турбированные двигатели имеют свои сильные и слабые стороны, поэтому верить заявлениям автопроизводителей об их однозначном преимуществе не стоит. Прежде чем принимать решение о выборе машины, оснащённой турбонаддувом бензинового двигателя, стоит взвесить все «за» и «против».
Преимущества
Главное достоинство турбированного мотора – его повышенная мощность, и в этом с производителями нельзя не согласиться. По мощности при аналогичном объёме цилиндров агрегат превосходит атмосферные моторы на 20–30%. Дополнительные плюсы установки на мотор турбонаддува состоят в следующем:
- Повышение эффективности работы за счёт оптимизации процесса сгорания безвоздушной смеси в цилиндрах. Благодаря этому расход топлива на обеспечение работы аналогичного количества атмосферного мотора лошадиных сил значительно снижается.
- Уменьшенный уровень шума и вибрации во время движения.
- Экологичность. Эффективное сгорание топлива внутри цилиндров значительно уменьшает количество выбросов в атмосферу через выхлопную трубу. Специалисты утверждают, что введение в Европе и США новых норм токсичности выхлопа увеличило производство автомобилей с турбированными бензиновыми двигателями на 25%.
- Компактные размеры. Мотор на трёх и даже двух цилиндрах по мощности сопоставим с четырёхцилиндровым «атмосферником». Благодаря оптимальным размерам такой двигатель имеет большее число вариантов расположения в автомобиле.
Недостатки
При всех своих достоинствах турбонаддув имеет и некоторые негативные стороны:
- Повышенная чувствительность к качеству топлива. Отсюда вытекает необходимость использования бензина более высокого класса. Турбированный двигатель быстро выйдет из строя, если заставлять его работать на 92 бензине.
- При активном использовании турбины расход топлива увеличивается в 1,5 раза. Любители езды в стиле «газ в пол» будут заполнять бак своего автомобиля в два раза чаще.
- Необходимость частой замены масла. Смазка добавляется в мотор и непосредственно в турбокомпрессорную установку, поэтому его расход увеличивается. Требования к марке масла также довольно жёсткие: можно использовать только качественные марки синтетики, стоимость которых на порядок выше минеральных или полусинтетических смазок. К этому стоит добавить необходимость частой замены масла: каждые 8 000 километров. В то время как в атмосферных двигателях процедуру можно проводить через 12 и даже 15 тысяч километров. Несвоевременная замена масла и фильтров приведёт к изменению параметров турбины и скорому выходу её из строя.
- Дорогостоящий ремонт. Комплектующие для турбированных моторов имеют достаточно высокую цену, поэтому их ремонт требует значительного вложения средств. Стоимость ремонта возрастает дополнительно из-за отсутствия квалифицированных работников СТО. Отремонтировать мотор с турбонаддувом возьмутся не на каждом автосервисе, а за квалификацию мастеров придётся заплатить на 40–50% больше. Капитальный ремонт двигателя с турбонаддувом требуется каждые 150–200 тысяч километров пробега.
- Особенности эксплуатации. Машину с турбодвигателем нужно правильно заводить и глушить. После запуска двигатель должен поработать вхолостую, причём, чем автомобиль старше, тем «прогон» нужен более длительный. После остановки автомобиля также нельзя сразу глушить мотор.
- Проявление эффекта «турбоямы». Так именуют характерный провал, когда машина вяло реагирует на нажатие педали газа. Двигатель «не тянет» на низких оборотах, в результате машина не может резко тронуться с места. При интенсивном движении и непростой дорожной обстановке в мегаполисах это достаточно опасное явление. Конструкторы предлагают для решения проблемы устанавливать на мотор две турбины, одна из которых будет работать на малых оборотах за счёт оснащения электроприводом. Это снизит риск возникновения «турбоям», но дополнительно увеличит стоимость двигателя и одновременно снизит его надёжность.
Турбированный двигатель чаще подвергается дорогостоящему ремонту и требует высококачественного топлива
Это важно! Новейшие автомобили почти избавлены от недостатка, связанного с «турбоямами» за счёт установки турбин с изменяемой геометрией. Но идеальной остроты отклика во время дозирования тяги в процессе дросселирования, которая свойственна атмосферным моторам, конструкторам добиться пока не удаётся.
Какой двигатель лучше: атмосферный или турбированный
Долгий спор поклонников атмосферных и турбированных двигателей далёк от логического завершения. У каждого варианта есть свои достоинства и недостатки. Не дают перевесить какой-либо чаше весов постоянные разработки инженеров и конструкторов, добавляющие преимущества то одному, то другому варианту.
Большинство автовладельцев сходятся во мнении, что атмосферный двигатель, хоть и уступает по мощности турбированному, но всё-таки более надёжен в эксплуатации. Он неприхотлив в выборе марки бензина и масла, может быть отремонтирован в любой автомастерской. Для турбированных моторов такие «вольности» не допустимы.
Турбированный мотор – дорогое удовольствие: он требует большего внимания, тщательного ухода, правильной эксплуатации. Сама турбина, даже при соблюдении всех рекомендаций по эксплуатации, обладает ограниченным ресурсом работы и через достаточно непродолжительный срок требует замены.
Поэтому выбирать вариант мотора необходимо по собственным материальным возможностям. Атмосферный вариант предпочтителен для автовладельцев, ограниченных в бюджете и не готовых вкладывать в машину значительные средства. Обслуживание, эксплуатация и ремонт «атмосферника» явно проще и дешевле.
Турбированный двигатель – правильный выбор для тех, кто во главу угла ставит мощность мотора и динамику передвижения. Хотя такой мотор может доставить немало проблем и расходов в процессе эксплуатации.
Немаловажный фактор выбора мотора – стиль езды автовладельца. Для водителя, предпочитающего спокойное передвижение двигатель с турбонаддувом – бесполезная «фишка». В этом случае затраты на мотор повышенной мощности не оправданы, ведь турбина не будет выполнять свои функции. Но даже без использования силовой установки по назначению, обслуживать её придётся по правилам, а значит, попросту выбрасывать деньги на ветер.
Специалисты советуют при покупке машины с турбиной останавливать выбор на новых моделях. Только в этом случае можно быть уверенным, что агрегат правильно обслуживался и эксплуатировался. Автомобиль, с «убитой» предыдущим владельцем турбиной, доставит в разы больше проблем, чем удовольствия от езды на нём.
Видео: турбо- и атмосферный моторы: в чём разница?
Увеличение в современных условиях количества автомобилей с турбированными двигателями касается, прежде всего, дизельных агрегатов. В настоящее время почти все дизельные моторы снабжены турбонаддувом, поскольку именно эта деталь придаёт мотору на дизтопливе достойные эксплуатационные характеристики.
С турбо-бензиновыми моторами дело обстоит иначе. Большинство автопроизводителей продолжают выпускать модели с простыми атмосферными двигателями, и только в некоторые линейки добавляют турбомоторы на бензине. Меньше всего таких моделей на дорогах в странах СНГ. Объясняется это отсутствием спроса и политикой автодилеров, которые стараются оградить себя от возникающих при эксплуатации машин проблем и выполнения гарантийных обязательств. Продавцы учитывают низкое качество бензина и отсутствие на территории СНГ достаточного количества высококвалифицированных автослесарей.
Ответ на вопрос, стоит ли покупать бензиновый автомобиль, оснащённый турбиной, зависит от планов автолюбителя. Если на машине планируется покататься 3–5 лет и пройти 150–200 тысяч километров, при достаточном количестве свободных средств, почему бы и нет. Но тем покупателям, которые не готовы переплачивать за мощность и тратиться на дорогостоящее обслуживание автомобиля, лучше остановить выбор на традиционном «атмосфернике».
От покупки подержанного авто с турбонаддувом стоит однозначно отказаться, памятуя об ограниченном ресурсе турбины. Такие модели часто приобретают молодёжь и «гонщики», которые «укатывают» мощную машину и практически не ухаживают за нею по правилам. После использования агрегата на «всю катушку» им проще продать его, чем вкладываться в ремонт. Приобретённый «с рук» автомобиль с турбированным бензиновым двигателем стопроцентно доставит массу хлопот новому владельцу.
Выбираем современный двигатель: почему турбо лучше, чем обычный?
Новые автомобили все реже оснащаются двигателями без наддува, благо турбины позволяют развивать большую мощность при малом объеме. Российские водители, тем не менее, относятся к турбомоторам с опаской. И очень зря.
Турбированные и атмосферные двигатели — в чем разница?
Разница в том, каким образом в цилиндры двигателя поступает воздух.
- Атмосферный мотор
Воздух идет сам туда, где ниже давление. У атмосферного мотора воздух идет в цилиндры под действием создаваемого на такте впуска разрежения — поршень опускается и втягивает за собой воздух. Проще не бывает.
- Наддувный мотор
Чтобы нагнать в цилиндры больше воздуха, в помощь разнице давлений приходит принудительный наддув. Грубо говоря, на впуске ставят «большой вентилятор». О конструкции таких систем поговорим вкратце чуть ниже.
Зачем двигателю нужен наддув?
Чтобы повысить мощность двигателя, нужно сжечь в нем больше топлива — зависимость простая. А вот чтобы сжечь больше топлива, нужно подать в цилиндры много воздуха, почти по кубометру на каждый литр бензина. Вопрос лишь в том, как заставить его это сделать? Основных способов два:
- Увеличить объем. Это напрашивается само собой, и долгое время конструкторы шли этим путем: увеличивали количество цилиндров, их объем и конфигурацию. Так появились авиационные W12 и V16 с рабочим объемом в сотню литров с гаком и американские семилитровые V8 для автомобилей.… Сейчас мы не будем вдаваться в подробности и лишь констатируем, что путь этот сложный. В определенный момент большой мотор становится слишком тяжелым, а дальнейшее увеличение — нецелесообразным.
- Увеличить количество сжигаемого топлива, не наращивая объем двигателя. Действительно, почему бы с силой не загнать в цилиндры просто побольше воздуха, чтобы можно было сжечь много бензина? Тут-то на помощь приходит наддув.
Двигатель W12 разработки Volkswagen Group ставился в разные годы на Audi A8L, Volkswagen Phaeton, Volkswagen Touareg, Bentley Continental Flying Spur и другие премиум-модели. Фото: w12cars.com
Какие есть основные типы наддувов?
В основном используют два способа повысить давление на впуске выше атмосферного.- Механический нагнетатель. На впуске стоит воздушный насос — компрессор, который приводится в движение от коленчатого вала мотора. Просто, но двигателю приходится его крутить и тратить на это часть мощности.
- Турбокомпрессор, который использует энергию выхлопных газов. Он представляет собой сдвоенный корпус из двух металлических «улиток», в котором на одном валу крутятся две крыльчатки. Одну из них раскручивает поток выхлопных газов, вырывающийся из выпускного коллектора. Вторая крутится, так как находится на одном валу с первой, — она «загоняет» атмосферный воздух во впускной коллектор.
Какие преимущества есть у наддувного мотора?
Высокая максимальная мощность. Как мы уже поняли, за счет наддува можно увеличить количество сжигаемого топлива, а значит, и повысить мощность мотора при неизменном объеме. Мощность можно увеличить в разы, но обычный показатель — 20–100% для серийных двигателей. Стабильный крутящий момент. В обычном атмосферном моторе давление на впуске, а следовательно, и количество сжигаемого топлива меняется в зависимости от оборотов мотора. На каких-то оборотах наполнение максимально, и двигатель работает с полной отдачей. На других наполнение цилиндров хуже, и момент, развиваемый двигателем, меньше. В современном турбомоторе наполнением цилиндра занимается турбина, а управляет турбиной электроника. Появляется возможность всегда подавать столько воздуха, сколько нужно для максимально эффективного сгорания смеси, и столько, чтобы «железо» двигателя выдержало нагрузку. Это позволяет создавать знаменитую «полку» крутящего момента. Такое название произошло от вида графика момента, который на турбомоторах действительно похож на ровную полку. Низкий расход топлива. Казалось бы, парадокс. Наддув позволяет впрыскивать больше топлива, но при этом обеспечивает экономичность. Каким образом? Дело в том, что рабочий объем турбомоторов меньше, и в целом они легче. С наддувом двигатель прекрасно тянет с самых низов, а на малых оборотах меньше потерь энергии на трение и выше КПД. В результате при неспешном движении турбомотор экономичнее. А при большой нагрузке расход топлива никто не считает, не зря же есть выражение «ехать на все деньги», тем более мало кто постоянно ездит в экстремальных режимах.На графике замера мощности и крутящего момента Skoda Fabia RS TSI видно, что в диапазоне с 2 000 до 4 500 оборотов двигатель развивает 250 ньютон-метров. Это и называется «полкой крутящего момента».
Почему люди боятся наддувных моторов?
С полной определенностью можно сказать, что двигатели с наддувом стоят на более высокой ступени эволюции, чем «атмосферники». И все-таки на сегодняшний момент большинство выпускаемых и продаваемых авто оснащены именно классическими двигателями, причем не только в «отсталой» России, но и в «просвещенной» Европе, не говоря уже про США. Почему же? Ресурс турбин невелик. В среднем турбина на бензиновом моторе служит максимум до 120–150 тысяч километров, а ремонт обходится недешево. Механический приводной нагнетатель в теории «неубиваем», но это умирающий вид, и там, где он применяется, о ресурсе не заботятся. Двигатель работает в более суровых условиях. Температура и давление в цилиндрах у наддувных моторов гораздо выше, а значит, и изнашиваются они сильнее. Это компенсируется тем, что турбодвигатели изначально строят с более высоким запасом прочности всех систем. Впрочем, вполне справедливо, что двигатель сложнее, у него больше датчиков, больше трубопроводов, больше всего греющегося и протекающего, и любая поломка в системе управления может повредить сам мотор или турбину. Говорят, что у турбина дает нестабильную тягу. Действительно, на старых наддувных моторах турбина «отзывалась» не сразу — нужно было время на то, чтобы выхлопные газы раскрутили крыльчатку, и получалось то, что назвали «турболагом». Теперь, с внедрением новых технологий (о них подробнее расскажем позже), эта проблема решена. «Пуристы», поборники атмосферных двигателей утверждают, что все равно нет идеальной связи между движением педали газа и тягой, но для рядовых водителей эти тонкости будут неочевидными. Говорят, что турбированные моторы звучат менее «благородно», чем атмосферные. Действительно, турбина делает звук выхлопа не столь ярким и «породистым». Но в полной мере это можно отнести разве что к «большим» моторам — рядным шестеркам или V8. Их звучание признается за некий идеал, и добавление к ним турбокомпрессора резко меняет звук. По мнению аудиофилов, «от выхлопа» звук становится нечетким и размазанным. Турбина работает как глушитель, сглаживая пики давления выхлопных газов и создавая свои собственные гармоники. Если речь об обычных рядных «четверках», то нельзя сказать, что выхлоп такого мотора изначально звучит особенно хорошо, с добавлением к нему турбины он становится тише, но вряд ли теряется уникальность. На помощь фанатам хорошего звука мотора приходят специалисты по акустике выхлопа. Выхлопные системы современных машин, что с наддувом, что без — плод серьезной работы, и особенности звука в первую очередь зависят от качества настройки системы и пожеланий покупателя.Фото: prmpt.org
Почему некоторые производители спорткаров до сих пор не признают наддува?
Действительно, без турбин и нагнетателей прекрасно обходятся такие «уважаемые» автомобили, как Toyota GT86, Renault Clio RS и Honda Civic Type R. Основных причин на то несколько:- Высокую мощность можно получить и без турбины, но при условии, что двигатель будет развивать ее только на очень высоких оборотах. Например, 201 л.с. на той же Honda Civic Type R доступны лишь при 7 800 оборотах в минуту, что очень много для негоночного мотора.
- Система наддува сильно увеличивает вес и размер маленьких моторов — ее невозможно сделать действительно компактной. Для спорткаров это немаловажно.
- Многим нравится «крутильный» характер атмосферных моторов, отсутствие всяких возможных задержек и влияния температуры воздуха, «чистота» реакций и звука.
- Во многих гоночных дисциплинах запрещены моторы с турбонаддувом, зато есть традиции форсирования атмосферных моторов.
- На «атмосферниках» — более мощное торможение двигателем под сброс газа, что заметно на малоразмерных моторах и, опять-таки, важно для спорткаров.
- В Японии и США, где в основном еще сохраняются безнаддувные «зажигалки», нет столь строгих ограничений по расходу топлива, как в Европе. Мотор с турбиной дороже, но может выдавать высокую мощность при низком расходе и на любой высоте, хоть на вершинах Альп. Мотор без турбины проще, менее требователен к обслуживанию, особенно когда очень высокая мощность не нужна, да и высоким расходом топлива и малой тягой в «негоночном» режиме можно пренебречь. И не стоит недооценивать силу традиций национального автомобилестроения.
Турбомотор — брать или не брать?
Если вы покупаете новый автомобиль, то однозначно брать. Турбодвигатель, как мы уже говорили, при прочих равных мощнее и экономичнее, а «убить» его при грамотной эксплуатации вы просто не успеете. Если же вы выбираете подержанную машину, то обратите внимание на пробег и состояние мотора. Если что-то будет указывать на то, что хозяин любил «отжигать» за рулем и километраж при этом выше 100 000 километров, то самое время присмотреться к расценкам на новые моторы и турбины. Задумайтесь, зачем был нужен двигатель с турбонаддувом первому владельцу. Некоторые машины берут с турбомотором только для того, чтобы постоянно «валить». В общем, с покупкой подержанной машины с турбодвигателем нужно быть осторожным вдвойне. О том, как правильно содержать мотор с наддувом и сколько стоит его починить, читайте в нашей следующей публикации. Если не хотите пропустить этот материал, подпишитесь на рассылку свежих статей внизу.Читайте также:
Турбированный двигатель: что это такое?
Начнем с того, что ситуация на современном рынке новых автомобилей заметно поменялась за последние 15-20 лет. Изменения в автоиндустрии коснулись как исполнения, уровня оснащения и решений в плане активной и пассивной безопасности, так и устройства силовых агрегатов. Привычные атмосферные моторы на бензине с тем или иным рабочим объемом, которые раньше фактически являлись показателем класса и престижности авто, сегодня активно вытесняются турбированным двигателем.
В случае с турбомоторами объем двигателя перестал выступать базовой характеристикой, определяющей мощность, крутящий момент, динамику разгона и т.д. В этой статье мы намерены сравнить двигатели с турбиной и атмосферные версии, а также ответить на вопрос, в чем состоит принципиальное отличие атмосферных ДВС от турбированных аналогов. Параллельно будут проанализированы основные преимущества и недостатки моторов с турбонаддувом. Также в итоге будет дана оценка, стоит ли покупать новые и подержанные бензиновые и дизельные машины с турбированным двигателем.
Читайте в этой статье
Турбированные двигатели и «атмосферники»: главные отличия
Для начала немного истории и теории. В основу работы любого ДВС положен принцип сгорания топливно-воздушной смеси в закрытой камере. Как известно, чем больше воздуха удается подать в цилиндры, тем больше горючего получается сжечь за один цикл. От количества сгоревшего топлива будет напрямую зависеть количество высвобождающейся энергии, которая толкает поршни. В атмосферных моторах забор воздуха происходит благодаря образованию разрежения во впускном коллекторе.
Другими словами, мотор буквально «засасывает» в себя наружный воздух на такте впуска самостоятельно, а объем поместившегося воздуха зависит от физического объема камеры сгорания. Получается, чем больше рабочий объем двигателя, тем больше воздуха он может уместить в цилиндрах и тем большее количество топлива получится сжечь. В результате мощность атмосферного ДВС и крутящий момент сильно зависят от объема мотора.
Рекомендуем также прочитать отдельную статью о том, что такое рабочий объем двигателя. Из этой статьи вы узнаете, какие параметры определяют данную характеристику, чем измеряется объем мотора и на что влияет данный показатель.Принципиальной особенностью двигателей с нагнетателем является принудительная подача воздуха в цилиндры под определенным давлением. Данное решение позволяет силовому агрегату развивать больше мощности без необходимости физически увеличивать рабочий объем камеры сгорания. Добавим, что системами нагнетания воздуха может быть как турбина (турбокомпрессор), так и механический компрессор.
На практике это выглядит следующим образом. Для получения мощного мотора можно пойти двумя путями:
- увеличить объем камеры сгорания и/или изготовить двигатель с большим количеством цилиндров;
- подать в цилиндры воздух под давлением, что исключает необходимость увеличивать камеру сгорания и количество таких камер;
В результате моторы от V6 до V12 с большим рабочим объемом долгое время являлись эталоном производительности. Также не стоит забывать и о надежности, так как конструкция атмосферных двигателей всегда оставалась проверенным временем решением. Параллельно с этим главными минусами мощных атмосферных агрегатов справедливо считается большой вес и повышенный расход топлива, а также токсичность. Получается, на определенном этапе развития двигателестроения увеличение рабочего объема оказалось попросту нецелесообразным.
Теперь о турбомоторах. Еще одним типом агрегатов на фоне популярных «атмосферников» всегда оставались менее распространенные агрегаты с приставкой «турбо», а также компрессорные двигатели. Такие ДВС появились достаточно давно и изначально шли по другому пути развития, получив системы для принудительного нагнетания воздуха в цилиндры двигателя.
Рекомендуем также прочитать статью о том, что лучше, механический компрессор или турбина. Из этой статьи вы узнаете о преимуществах и недостатках указанных систем нагнетания воздуха, а также о том, какой мотор выбрать, с компрессором или турбированный.Стоит отметить, что значительной популяризации моторов с наддувом и быстрому внедрению подобных агрегатов в широкие массы долгое время препятствовала высокая стоимость автомобилей с нагнетателем. Другими словами, двигатели с наддувом были редким явлением. Объясняется это просто, так как на раннем этапе машины с турбодвигателем, механическим компрессором или одновременной комбинацией сразу двух решений зачастую ставились на дорогостоящие спортивные модели авто.
Немаловажным фактором оказалась и надежность агрегатов данного типа, которые требовали повышенного внимания в процессе обслуживания и уступали по показателям моторесурса атмосферным ДВС. Кстати, сегодня это утверждение также справедливо для двигателей с турбиной, которые конструктивно сложнее компрессорных аналогов и еще дальше ушли от атмосферных версий.
Преимущества и недостатки современного турбомотора
Перед тем, как мы приступим к анализу плюсов и минусов турбодвигателя, хотелось бы еще раз обратить ваше внимание на один нюанс. Как утверждают маркетологи, доля реализуемых новых автомобилей с турбонаддувом сегодня существенно увеличилась.
Более того, многочисленные источники делают акцент на том, что турбодвигатели все больше и больше теснят «атмосферники», автолюбители зачастую выбирают именно «турбо», так как считают атмосферные двигатели безнадежно устаревшим типом ДВС и т.п. Давайте разбираться, так ли хорош турбомотр на самом деле.
Плюсы турбодвигателя
- Начнем с явных плюсов. Действительно, турбодвигатель легче по весу, меньше по рабочему объему, но при этом выдает высокую максимальную мощность. Также моторы с турбиной обеспечивают высокий крутящий момент, который доступен на низких оборотах и является стабильным в широком диапазоне. Другими словами, турбомоторы имеют ровную полку крутящего момента, доступную с самых «низов» и до относительно высоких оборотов.
- В атмосферном двигателе такой ровной полки нет, так как тяга напрямую зависит от оборотов двигателя. На низки оборотах атмомотор обычно выдает меньший крутящий момент, то есть его нужно раскручивать для получения приемлемой динамики. На высоких оборотах мотор выходит на максимум мощности, но крутящий момент снижается в результате возникающих естественных потерь.
- Теперь несколько слов об экономичности турбодвигателей. Такие моторы и правда расходуют меньше топлива по сравнению с атмосферными агрегатами в определенных условиях. Дело в том, что процесс наполнения цилиндров воздухом и топливом полностью контролируется электроникой. Получается, ЭБУ следит за тем, чтобы соотношение компонентов смеси было оптимальным на любых режимах работы турбированного ДВС, благодаря чему достигается полноценное сгорание заряда и происходит отдача максимума полезной энергии. В случае с атмосферными двигателями наполнение зависит как от оборотов коленвала, так и от температуры наружного воздуха, атмосферного давления и ряда других факторов.
- Если учесть небольшой вес самого агрегата с турбиной, доступную тягу на низких оборотах и отсутствие зависимости от внешних факторов, турбомотор закономерно расходует в штатных режимах эксплуатации меньше топлива. При этом следует помнить, что данное преимущество полностью исчезает в том случае, если постоянно ездить в режиме «газ в пол». Тогда расход топлива на турбодвигателе может оказаться даже большим, чем у атмосферных аналогов.
Минусы турбированного ДВС
Итак, с основными плюсами разобрались. Что касается минусов, они также присутствуют. Вполне очевидно, что турбомотор сложнее как в плане электроники и исполнительных устройств, так и в плане реализации самой схемы турбонаддува. Повышенные требования к качеству топлива и моторного масла тоже никуда не делись.
Дело в том, что небольшой по размерам и объему агрегат работает в условиях высоких механических и тепловых нагрузок. Давление наддува и температура в цилиндрах намного выше по сравнению с атмосферными двигателями, что означает ускоренный износ турбомотора.
Производители учитывают разные нюансы, закладывая больший запас прочности в агрегат, но во время ремонта турбодвигателя стоимость усиленных деталей получается ощутимо выше. Также двигатель с турбиной имеет большое количество датчиков и магистралей, а также дополнительных систем, что усложняет диагностику в случае возникновения неисправностей.
- Очень важным моментом является ресурс самой турбины. Турбонагнетатель повсеместно устанавливается на современные ДВС, окончательно вытеснив механический компрессор. При этом турбина на бензиновом двигателе обычно «ходит» всего около 150 тыс. км, на дизеле этот показатель в среднем составляет до 250 тыс. км. Затем турбокомпрессор нуждается в дорогом ремонте или полной замене.
- Что касается известной проблемы в виде «турбоямы» или «турболага», на современных двигателях этот недостаток практически устранен посредством установки турбин с изменяемой геометрией, путем использования технологий «би-турбо» и т.д. Почему практически, а не до конца? Дело в том, что идеальной остроты отклика во время дозирования тяги в процессе дросселирования, которая свойственна атмосферным моторам, все равно нет. Параллельно с этим более сложные системы турбонаддува требуют повышенных затрат, создают определенные затруднения, которые связаны с обслуживанием и ремонтом.
Что в итоге
Помните, в начале статьи мы говорили о том, что доля турбомоторов на рынке в последнее время заметно возросла. Да, это так, но исключительно благодаря турбодизельным агрегатам. Практически любой современный дизельный двигатель сегодня оборудован турбонаддувом. Дело в том, что именно турбина позволяет дизельному мотору обеспечить достойные эксплуатационные характеристики в сочетании с высокой топливной экономичностью. По этой причине турбодизели пользуются огромной популярностью.
Однако, ситуация с турбобензиновыми агрегатами несколько иная. Подавляющее большинство производителей продолжают выпускать модели в сегментах от «бюджет» до «премиум» с простым атмосферным двигателем. Только в отдельных случаях в линейку добавляются турбированные бензиновые версии. Что касается стран СНГ, авто с турбонаддувом на бензине продолжают заметно уступать машинам с атмосферными бензиновыми ДВС по общему количеству на дорогах. Причин для этого много, начиная от низкого спроса в результате высокой начальной стоимости «надувных» бензиновых авто и заканчивая политикой автодилеров. Последние стараются избавить себя от гарантийных обязательств перед потребителем в случае возникновения проблем с более сложной технически турбированной бензиновой машиной.
Другими словами, турбобензиновые версии завозятся намного реже, так как продавцы учитывают низкое качество горючего и недостаточное количество квалифицированных технических специалистов по ремонту и обслуживанию таких авто на территории СНГ. Добавим, что подавляющее большинство турбированных бензиновых автомобилей на отечественных дорогах представлены моделями немецкого концерна WAG (Audi, Volkswagen, Skoda и т.д.).
Подводя итоги, ответим на еще один важный вопрос. Многие автолюбители интересуются, стоит ли покупать бензиновый автомобиль с турбиной. Если вы присматриваете новую машину, планируете проездить на ней условные 3-5 лет или 100-150 тыс. км, тогда почему бы и нет. Только будьте готовы изначально переплатить за более «продвинутый» мотор и с самого начала приучите себя к мысли, что такому авто требуется частое плановое обслуживание. При этом крайне желательно выполнять регламентные работы и ремонтировать машину в официальном сервисе со всеми вытекающими допрасходами.
Если же вы хотите приобрести подержанный турбированный автомобиль, в таком случае нужно более чем основательно подумать. В случае с дизелем будет необходима глубокая диагностика состояние самого ДВС и готовность заменить изношенную турбину. Когда речь заходит о бензиновых версиях, тогда нашим ответом будет практически однозначное «нет». Дело в том, что актуальная ситуация на рынке турбобензиновых автомобилей б/у достаточно сложная.
- Всегда помните о небольшом ресурсе турбины. В том случае, если на конкретной модели их установлено сразу две или более, сумма ремонта заметно возрастает.
- Обращайте внимание на пробег и предыдущих владельцев. Зачастую турбоавтомобили берут «гонщики» или амбициозная молодежь. Если первые целенаправленно «укатывают» мощную машину, вторые, как правило, попросту не обслуживают такой автомобиль должным образом и достаточно небрежно его эксплуатируют.
В обоих случаях получается целесообразнее продать машину с пробегом 100-150 тыс. км. другому владельцу по бросовой цене, чем ремонтировать или менять высокотехнологичный турбированный двигатель. То же самое вполне справедливо и для турбированных малолитражек, например, с рабочим объемом 1.2 литра. Моторы данного типа и вовсе считаются «одноразовыми», так как имеют относительно небольшой ресурс около 150-200 тыс. км. и плохо поддаются серьезному ремонту.
Читайте также
Принцип работы турбины на дизельном двигателе
Турбонаддув обязан свои появлением пресловутой немецкой рачительности и практичности во всём. Ещё Рудольфу Дизелю и Готлибу Даймлеру, в конце XIX века, не давал покоя такой вопрос. Как же так: выхлопные газы просто так выбрасываются в трубу, а энергия, которой они обладают, не приносит никакой пользы? Непорядок… В веке двадцать первом, двигатели, оснащённые турбиной, давно перестали быть экзотикой и используются повсеместно, на самой разной технике. Почему турбины получили распространение прежде всего на дизельных двигателях и каков принцип работы этих полезных агрегатов, разберём далее – в строго научно-популярной, но наглядной и понятной каждому форме.
Об истории изобретения и внедрения турбонаддува
Итак, идея «пустить в дело» энергию отработанных выхлопных газов появилась уже вскоре после изобретения и успешных опытов применения двигателей внутреннего сгорания. Немецкие инженеры и первопроходцы автомобиле- и тракторостроения, во главе с Дизелем и Даймлером, провели первые опыты по повышению мощности двигателя и снижению расхода топлива с помощью нагнетания сжатого воздуха от выхлопов.
Готдиб Даймлер выпускал вот такие автомобили, а уже задумывался о внедрении системы турбонаддува
Но первым, кто построил первый эффективно работающий турбокомпрессор, стали не они, а другой инженер – Альфред Бюхи. В 1911 году он получил патент на своё изобретение. Первые турбины были таковы, что использовать их было возможно и целесообразно только на крупных двигателях (например, судовых).
Далее турбокомпрессоры начали использоваться в авиационной промышленности. Начиная с 30-х годов ХХ века, в Соединённых Штатах регулярно запускались в «серию» военные самолёты (как истребители, так и бомбардировщики), бензиновые двигатели которых были оснащены турбонагнетателями. А первая в истории грузовая автомашина с турбированным дизельным мотором была сделана в 1938 году.
В 60-е годы корпорация «Дженерал Моторс» выпустила первые легковые «Шевроле» и «Олдсмобили» с бензиновыми карбюраторными двигателями, оснащёнными турбонаддувом. Надежность тех турбин была невелика, и они быстро исчезли с рынка.
Oldsmobile Jetfire 1962 года – первый серийный автомобиль с турбонаддувом
Мода на турбированные моторы вернулась на рубеже 70-х/80-х, когда турбонаддув начали широко использовать в создании спортивных и гоночных автомобилей. Приставка «турбо» стала чрезвычайно популярной и превратилась в своеобразный лейбл. В голливудских фильмах тех лет супергерои нажимали на панелях своих суперкаров «магические» кнопки «турбо», и машина уносилась вдаль. В реальной же действительности турбокомпрессоры тех лет ощутимо «тормозили», выдавая существенную задержку реакции. И, кстати, не только не способствовали экономии топлива, а наоборот, увеличивали его расход.
Труженик советских полей – трактор К-701 «Кировец» с турбонаддувом
Первые действительно успешные попытки внедрения турбонаддува в производство автомобильных двигателей серийного производства осуществили в начале 80-х годов «SAAB» и «Mercedes». Этим передовым опытом не замедлили воспользоваться и другие мировые машиностроительные компании.
В Советском Союзе разработка и внедрение в «серию» турбированных двигателей была связана, прежде всего, с развитием производства тяжёлых промышленных и сельскохозяйственных тракторов – «ЧТЗ», «Кировец»; суперсамосвалов «БелАЗ» и т.п. мощной техники.Почему в итоге турбины получили распространение именно на дизельных, а не бензиновых двигателях? Потому что дизельные моторы имеют гораздо большую степень сжатия воздуха, а их выхлопные газы – более низкую температуру. Соответственно, требования к жаропрочности турбины гораздо меньше, а её стоимость и эффективность использования – гораздо больше.
Устройство системы турбонаддува
Система турбонаддува состоит из двух частей: из турбины и турбокомпрессора. Турбина служит для преобразования энергии отработанных газов, а компрессор – непосредственно для подачи многократно сжатого атмосферного воздуха в рабочие полости цилиндров. Главные детали системы – два лопастных колеса, турбинное и компрессорное (так называемые «крыльчатки»). Турбокомпрессор представляет собой технологичный насос для воздуха, приводимый в действие вращением ротора турбины. Единственная его задача – нагнетание сжатого воздуха в цилиндры под давлением.
Чем больше воздуха поступит в камеру сгорания, тем большее количество солярки дизель сможет сжечь за конкретную единицу времени. Результат – существенное увеличение мощности мотора, без необходимости наращивания объёма его цилиндров.
Составные части устройства турбонаддува:
- корпус компрессора;
- компрессорное колесо;
- вал ротора, или ось;
- корпус турбины;
- турбинное колесо;
- корпус подшипников.
Основа системы турбонаддува – это ротор, закреплённый на специальной оси и заключённый в особый жаропрочный корпус. Беспрерывный контакт всех составных частей турбины с чрезвычайно раскалёнными газами определяет необходимость создания как ротора, так и корпуса турбины из специальных жаропрочных металлосплавов.
Крыльчатка и ось турбины вращаются с очень высокой частотой и в противоположных направлениях. Это обеспечивает плотный прижим одного элемента к другому. Поток отработанных газов проникает вначале в выпускной коллектор, откуда попадает в специальный канал, что расположен в корпусе турбо-нагнетателя. Форма его корпуса напоминает панцирь улитки. После прохождения этой «улитки» отработанные газы с разгоном подаются на ротор. Так и обеспечивается поступательное вращение турбины.
Ось турбонагнетателя закреплена на специальных подшипниках скольжения; смазка осуществляется подачей масла из системы смазки моторного отсека. Уплотнительные кольца и прокладки препятствуют утечкам масла, а также прорывам воздуха и отработанных газов, а также их смешиванию. Конечно, полностью исключить попадание выхлопа в сжатый атмосферный воздух не удаётся, но в этом и нет большой необходимости…
Как работает турбина дизельного двигателя
Мощность любого двигателя и производительность его работы зависит от целого ряда причин. А именно: от рабочего объёма цилиндров, от количества подаваемой воздушно-топливной смеси, от эффективности её сгорания, а также от энергетической части топлива. Мощность двигателя возрастает пропорционально росту количества сжигаемого в нём за определённую единицу времени горючего. Но для ускорения сгорания топлива необходимо увеличение запаса сжатого воздуха в рабочих полостях мотора.
То есть, чем больше за единицу времени сжигается горючего, тем большее количество воздуха потребуется «впихнуть» в мотор (не очень красивое слово «впихнуть» здесь, тем не менее, очень хорошо подходит, поскольку сам мотор не справится с забором избыточного количества сжатого воздуха, и фильтры нулевого сопротивления в этом ему не помогут).
В этом, повторимся, и состоит основное назначение турбонаддува – в наращивании подачи воздушно-топливной смеси в камеры сгорания. Это обеспечивается нагнетанием сжатого воздуха в цилиндры, которое происходит под постоянным давлением. Оно происходит вследствие преобразования энергии отработанных газов, проще говоря, из бросовой и утерянной – в полезную. Для этого, прежде чем выхлопные газы должны быть выведены в выхлопную трубу, а далее и, соответственно, в атмосферу, их поток направляется через систему турбокомпрессора.
Этот процесс обеспечивает раскручивание колеса турбины («крыльчатки»), снабжённого специальными лопастями, до 100-150ти тысяч оборотов в минуту. На одном валу с крыльчаткой закреплены и лопасти компрессора, которые нагнетают сжатый воздух в цилиндры двигателя. Полученная от преобразования энергии выхлопных газов сила используется для значительного увеличения давления воздуха. Благодаря чему и появляется возможность впрыскивания в рабочие полости цилиндров гораздо большего количества топлива за фиксированное время. Это даёт значительное увеличение как мощности, так и КПД дизеля.
Дизельная турбина в разрезе
Проще говоря, турбосистема содержит две лопастных «крыльчатки», закреплённых на одном общем валу. Но находящихся при этом в отдельных камерах, герметично отделённых друг от друга. Одна из крыльчаток вынуждена вращаться от постоянно поступающих на её лопасти выхлопных газов двигателя. Поскольку вторая крыльчатка с нею жёстко связана, то и она также начинает вращаться, захватывая при этом атмосферный воздух и подавая его в сжатом виде в цилиндры двигателя.
Необходимые дополнения в состав системы турбонаддува: клапаны, интеркулер
Не один десяток лет потребовался инженерам, чтобы создать действительно эффективно работающий турбокомпрессор. Ведь это только в теории всё выглядит гладко: от преобразования энергии отработанных газов можно «вернуть» утерянный процент КПД и значительно увеличить мощность двигателя (например, со ста до ста шестидесяти лошадиных сил). Но на практике подобного почему-то не получалось.
Кроме того, при резком нажатии на акселератор приходилось ждать увеличения оборотов мотора. Оно происходило только через некоторую паузу. Рост давления выхлопных газов, раскрутка турбины и загонку сжатого воздуха происходили не сразу, а постепенно. Данное явление, именуемое «turbolag» («турбояма») никак не удавалось укротить. А справиться с ним получилось, применив два дополнительных клапана: один – для перепускания излишнего воздуха в компрессор через трубопровод из двигательного коллектора. А другой клапан – для отработанных газов. Да и в целом, современные турбины с изменяемой геометрией лопаток даже своей формой уже значительно отличаются от классических турбин второй половины ХХ века.
Дизельный турбокомпрессор «Бош»
Другая проблема, которую пришлось решать при развитии технологий дизельных турбин, состояла в избыточной детонации. Детонация эта возникала из-за резкого увеличения температуры в рабочих полостях цилиндров при нагнетании туда дополнительных масс сжатого воздуха, особенно на завершающей стадии такта. Решать данную проблему в системе призван промежуточный охладитель наддувочного воздуха (интеркулер).
Интеркулер – это не что иное, как радиатор для охлаждения наддувочного воздуха. Кроме снижения детонации, он снижает температуру воздуха ещё и для того, чтоб не снижать его плотность. А это неизбежно во время процесса нагрева от сжатия, и от этого эффективность всей системы в значительной степени падает.
Кроме того, современная система турбонаддува двигателя не обходится без:
- регулировочного клапана (wastegate). Он служит для поддержания оптимального давления в системе, и для его сброса , при необходимости, в приёмную трубу;
- перепускного клапана (bypass-valve). Его предназначение – отвод наддувочного воздуха назад во впускные патрубки до турбины, если нужно снизить мощность и дроссельная заслонка закрывается;
- и/или «стравливающего» клапана (blow-off-valve). Который стравливает наддувочный воздух в атмосферу в том случае, если дроссель закрывается и датчик массового расхода воздуха отсутствует;
- выпускного коллектора, совместимого с турбокомпрессором;
- герметичных патрубков: воздушных для подачи воздуха во впуск, и масляных – для охлаждения и смазки турбокомпрессора.
Применение турбонаддува в мировом машиностроении
На дворе двадцать первый век, и никто уже не гонится за тем, чтобы название его легкового автомобиля было с модной в веке ХХ-м приставкой «турбо». Никто и не верит более в «магическую силу турбины» для резкого ускорения автомобиля. Смысл применения и эффективность работы системы турбонаддува всё-таки не в этом.
Вот это «улитка»!
Разумеется, наиболее эффективен турбонаддув при его использовании на двигателях тракторов и тяжёлых грузовиков. Он позволяет добавить мощности и крутящего момента без возникновения перерасхода топлива, что очень важно для экономических показателей эксплуатации техники. Там он и используется. Нашли своё широкое применение турбосистемы также на тепловозных и судовых дизелях. И это наиболее мощные из созданных человеком турбин для дизельного двигателя.
Турбокомпрессор — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 2 июля 2018; проверки требуют 6 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 2 июля 2018; проверки требуют 6 правок. Турбореактивный двигательТурбокомпрессор (разговорное «турбина», фр. turbine от лат. turbo — вихрь, вращение) — это устройство, использующее отработавшие газы (выхлопные газы) для увеличения давления внутри камеры сгорания.
Схема турбовентиляторного двигателя1 — Вентилятор.
2 — Компрессор низкого давления.
3 — Компрессор высокого давления.
4 — Камера сгорания.
5 — Турбина высокого давления.
6 — Турбина низкого давления.
7 — Сопло.
8 — Вал ротора высокого давления.
9 — Вал ротора низкого давления.
Основной агрегат, состоящий из доцентрового или осевого компрессора и газовой турбины для его привода, установленных на одном валу, называется турбокомпрессором. Основным назначением турбокомпрессора является повышение давления рабочего тела газотурбинного двигателя за счёт его нагнетания компрессором, который получает мощность от турбины. Турбокомпрессор в совокупности с камерой сгорания, расположенной между турбиной и компрессором, называется газогенератором. Турбокомпрессор низкого давления турбореактивного двигателя (ТРД), состоящий из компрессора низкого давления (вентилятора) и турбины, иногда называют турбаком.[1][2]
Разрез автомобильного турбокомпрессораВ автомобилях турбокомпрессор используется для нагнетания воздуха или топливовоздушной смеси в двигатель внутреннего сгорания за счет энергии выхлопных газов для улучшения его характеристик.
Для двигателей малой мощности[источник не указан 2988 дней] применяют турбокомпрессоры с центростремительной турбиной, а на двигателях большой мощности[источник не указан 2988 дней] (тракторные, тепловозные, судовые) — с осевой турбиной.[источник не указан 2988 дней] Компрессор всегда центробежный,[источник не указан 2988 дней] так как осевой компрессор имеет более сложную конструкцию и склонность к помпажу. Наименьшие размеры имеют турбокомпрессоры для двигателей легковых автомобилей — диаметр их колёс порядка 50 мм. Наибольшие размеры у судовых турбокомпрессоров — диаметр колёс — до 1,2 м.
Поток отработанных газов, имеющих значительную температуру и давление, через выпускной коллектор поступает в корпус турбины. За счёт давления газов на лопасти колесо турбины вращается (около 15-30 000 об/мин у крупных ТК, до 100 000 об/мин у ТК легковых автомобилей), а поскольку оно напрямую соединено валом с колесом компрессора — компрессор также начинает крутиться, нагнетая воздух во впускной коллектор.
Вал турбокомпрессора вращается в подшипниках, смазываемых маслом под давлением от системы смазки двигателя. Для двигателей небольшой мощности в турбокомпрессорах используют золотниковый механизм. Большая часть отработанных газов поступает через золотник, поступает на турбину, а остаток газов через специальный канал в кожухе обходит колесо турбины. Из-за большого давления воздух сильно нагревается, для его охлаждения был разработан интеркулер.
Направляющий аппарат[править | править код]
Направляющий аппарат (спрямляющий аппарат, англ. Inlet guide vanes) — набор лопаток, закрепленных на статоре, задача которых выравнивать воздушный поток между вентиляторными ступенями. Выравнивание шаговой неравномерности потока за лопаточным венцом рабочего колеса производится для повышения аэродинамической эффективности вентиляторных ступеней и снижения уровня шума.[3]Увеличение площади поверхности спрямляющего аппарата повышает аэродинамическое сопротивление и снижает КПД компрессора, так как часть энергии затрачивается на отклонение потока.
Турбина — Википедия
Монтаж паровой турбины, произведённой Siemens, Германия.Турби́на (фр. turbine от лат. turbo — вихрь, вращение) — лопаточная машина, в которой происходит преобразование [1]кинетической энергии и/или внутренней энергии рабочего тела (пара, газа, воды) в механическую работу на валу. Струя рабочего тела воздействует на лопатки, закреплённые по окружности ротора, и приводит их в движение.
Применяется в качестве привода электрического генератора на тепловых, атомных и гидро электростанциях, как составная часть приводов на морском, наземном и воздушном транспорте, привода компрессора в газотурбинном двигателе, а также гидродинамической передачи, гидронасосах.
Звук небольшой пневматической турбины, использовавшейся для привода генератора немецкой шахтёрской лампы 1940-х гг. Древнеримская турбинная мельница в Чемту, Тунис. Тангенциально направленный поток воды вращал погруженное в воду горизонтальное колесо на вертикальной осиПопытки создать механизмы, похожие на турбины, делались очень давно. Известно описание примитивной паровой турбины, сделанное Героном Александрийским (1 в. н. э.). По словам И. В. Линде[2], XIX век породил «массу проектов», которые остановились перед «материальными трудностями» их выполнения. Лишь в конце XIX века, когда развитие термодинамики (повышение КПД турбин до сравнимого с поршневой машиной), машиностроения и металлургии (увеличение прочности материалов и точности изготовления, необходимых для создания высокооборотных колёс), Густаф Лаваль (Швеция) и Чарлз Парсонс (Великобритания) независимо друг от друга создали пригодные для промышленности паровые турбины.[3]
Хронология[править | править код]
- I в. н. э.: Паровая турбина Герона Александрийского (эолипил) — на протяжении столетий рассматривалась как игрушка и её полный потенциал не был изучен.
- 1500: В чертежах Леонардо да Винчи встречается «дымовой зонт». Горячий воздух от огня поднимается через ряд лопастей, которые соединены между собой и вращают вертел для жарки.
- 1551: Таги-аль-Дин придумал паровую турбину, которая использовалась для питания самовращающегося вертела.
- 1629: Сильная струя пара вращала турбину, которая затем вращала ведомый механизм, позволяющий работать мельнице Джованни Бранка.
- 1678: Фердинанд Вербейст построил модель повозки на основе паровой машины.
- 1791: Англичанин Джон Барбер получил патент на первую настоящую газовую турбину. Его изобретение имело большинство элементов, присутствующих в современных газовых турбинах. Турбина была разработана для приведения в действие безлошадной повозки.
- 1832: Французский ученый Бюрден создал первую водяную турбину[4].
- 1837: Создана первая в России водяная турбина И.Е. Сафоновым[4].
- 1872: Франц Столц разработал первый настоящий газотурбинный двигатель.
- 1887: русский инженер и изобретатель Павел Дмитриевич Кузьминский сконструировал первую в мире газовую реверсивную турбину, которая работала на «газопаророде» – парогазовой смеси, получаемой в созданной им же в 1894 году камере сгорания.[5]
- 1894: Сэр Чарльз Парсонс запатентовал идею корабля, приводимого в действие паровой турбиной и построил демонстрационное судно Турбиния. Этот принцип тяги используется до сих пор.
- 1895: Три четырёхтонных 100 кВт генераторов радиального потока Парсонса были установлены на электростанции в Кембридже и использовались для электрического освещения улиц города.
- 1903: Норвежец, Эджидиус Эллинг (англ.)русск., смог построить первую газовую турбину, которая отдавала больше энергии, чем затрачивалось на обслуживание внутренних компонент турбины, что рассматривалось как значительное достижение в те времена, когда знания о термодинамике были ограничены. Используя вращающиеся компрессоры и турбины, она производила 11 л. с. (существенная мощность для того времени). Его работа впоследствии была использована сэром Фрэнком Уиттлом.
- 1913: Никола Тесла запатентовал турбину Тесла, основанную на эффекте граничного слоя.
- 1918: General Electric, один из ведущих производителей турбин в настоящее время, запустил своё подразделение газовых турбин.
- 1920: Практическая теория протекания газового потока через каналы была переработана в более формализованную (и применяемую к турбинам) теорию течения газа вдоль аэродинамической поверхности доктором Аланом Арнольдом Грифицем.
- 1930: Сэр Фрэнк Уиттл запатентовал газовую турбину для реактивного движения. Впервые этот двигатель был успешно использован в авиации в апреле 1937.
- 1934: Рауль Патерас Пескара запатентовал поршневой двигатель в качестве генератора для газовой турбины.
- 1936: Ханс фон Охайн и Макс Хан в Германии разработали собственный патентованный двигатель в то же самое время, когда сэр Фрэнк Уиттл разрабатывал его в Англии.
Разработки Густафа Лаваля[править | править код]
Первую паровую турбину создал шведский изобретатель Густав Лаваль в 1883 году. По одной из версий, Лаваль создал её для того, чтобы приводить в действие сепаратор молока собственной конструкции. Для этого нужен был скоростной привод. Двигатели того времени не обеспечивали достаточную частоту вращения. Единственным выходом оказалось сконструировать скоростную турбину. В качестве рабочего тела Лаваль выбрал широко используемый в то время пар. Изобретатель начал работать над своей конструкцией и в конце концов собрал работоспособное устройство. В 1889 году Лаваль дополнил сопла турбины коническими расширителями, так появилось знаменитое сопло Лаваля, которое стало прародителем будущих ракетных сопел. Турбина Лаваля стала прорывом в инженерии. Достаточно представить себе нагрузки, которые испытывало в ней рабочее колесо, чтобы понять, как нелегко было изобретателю добиться стабильной работы турбины. При огромных оборотах турбинного колеса даже незначительное смещение в центре тяжести вызывало сильную вибрацию и перегрузку подшипников. Чтобы избежать этого, Лаваль использовал тонкую ось, которая при вращении могла прогибаться.
Разработки Чарлза Парсонса[править | править код]
Схема активной и реактивной турбин, где ротор — вращающаяся часть, а статор — неподвижная.В 1884 году английский инженер Чарлз Парсонс получил патент на многоступенчатую турбину. Турбина предназначалась для приведения в действие электрогенератора. В 1885 году он разработал усовершенствованную версию, которая получила широкое применение на электростанциях. В конструкции турбины был применен выравнивающий аппарат, представляющий из себя набор неподвижных венцов (дисков) с лопатками, имевшими обратное направление. Турбина имела три ступени разного давления с разной геометрией лопаток и шагом их установки. Таким образом, в турбине использовался как «активный», так и «реактивный» принцип.
В 1889 году уже около трехсот таких турбин использовалось для выработки электроэнергии. Парсонс старался расширить сферу применения своего изобретения и в 1894 году он построил опытовое судно «Турбиния» с приводом от паровой турбины. На испытаниях оно продемонстрировало рекордную скорость — 60 км/ч.
Невозможность получить большую агрегатную мощность и очень высокая частота вращения одноступенчатых паровых турбин Лаваля (до 30 000 об/мин у первых образцов) привели к тому, что они сохранили своё значение только для привода вспомогательных механизмов. Активные паровые турбины развивались в направлении создания многоступенчатых конструкций, в которых расширение пара осуществлялось в ряде последовательно расположенных ступеней. Это позволило значительно повысить единичную мощность, сохранив умеренную частоту вращения, необходимую для непосредственного соединения вала турбины с вращаемым ею механизмом.
Реактивная паровая турбина Парсонса некоторое время применялась (в основном, на военных кораблях), но постепенно уступила место более компактным комбинированным активно-реактивным турбинам, у которых реактивная часть высокого давления заменена одно- или двухвенчатым активным диском. В результате уменьшились потери на утечки пара через зазоры в лопаточном аппарате, турбина стала проще и экономичнее.
Модель одной ступени паровой турбины Паровая турбина с раскрытым статором. На верхней части статора видны лопатки соплового аппарата.Ступень турбины состоит из двух основных частей. Рабочего колеса — лопаток установленных на роторе(подвижная часть турбины), которое непосредственно создаёт вращение. И Соплового аппарата — лопаток установленных на статоре (неподвижная часть турбины), которые поворачивают рабочее тело для придания потоку необходимого угла атаки по отношению к лопаткам рабочего колеса.
По направлению движения потока рабочего тела различают аксиальные паровые турбины, у которых поток рабочего тела движется вдоль оси турбины, и радиальные, направление потока рабочего тела в которых перпендикулярно оси вала турбины. Центробежные турбины (турбокомпрессоры) также выделяют как отдельный тип турбин.
По числу контуров турбины подразделяют на одноконтурные, двухконтурные и трёхконтурные. Очень редко турбины могут иметь четыре или пять контуров. Многоконтурная турбина позволяет использовать большие тепловые перепады энтальпии, разместив большое число ступеней разного давления.
По числу валов различают одновальные, двухвальные, реже трёхвальные, связанных общностью теплового процесса или общей зубчатой передачей (редуктором). Расположение валов может быть как коаксиальным так и параллельным с независимым расположением осей валов.
В местах прохода вала сквозь стенки корпуса установлены концевые уплотнения для предупреждения утечек рабочего тела наружу и засасывания воздуха в корпус.
На переднем конце вала устанавливается предельный центробежный регулятор (регулятор безопасности), автоматически останавливающий (замедляющий) турбину при увеличении частоты вращения на 10—12 % сверх номинальной.
По типу рабочего тела[править | править код]
- ↑ Техническая энциклопедия / Главный редактор Л. К. Мартенс. — М: Государственное словарно-энциклопедическое издательство «Советская энциклопедия», 1934. — Т. 24. — 31 500 экз.
- ↑ И. В. Линде. Паровые турбины, вентиляторы и центробежные насосы высокого давления системы инженера А. Рато. // Записки Московскаго отделения Императорского русского технического общества, 1904. С. 563—641.
- ↑ Константин Владиславович Рыжов. [lib.aldebaran.ru/author/ryzhov_konstantin/ryzhov_konstantin_100_velikih_izobretenii/ 100 великих изобретений]. — М., 2006. — ISBN 5‑9533‑0277‑0.
- ↑ 1 2 Билимович Б. Ф. Законы механики в технике. — М.: Просвещение, 1975. — Тираж 80000 экз. — С. 169.
- ↑ Меркулов И. А. Газовая турбина / под ред. проф. А. В. Квасникова. — Москва: Государственное издательство технико-теоретической литературы, 1957. — С. 25 – 26.