Работа двигателя роторного: описание, устройство и принцип работы

Содержание

Проходной роторно-поршневой двигатель — Энергетика и промышленность России — № 08 (124) апрель 2009 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 08 (124) апрель 2009 года

Однако бурный рост потребления таких мощностей требует высокого качества преобразователей энергии, поскольку их работа связана с нагрузкой на окружающую среду.

Поршневые ДВС сейчас уже не справляются с требованиями, которые предъявляются к тепловым преобразователям индивидуального пользования. В поисках подходящей им замены изобретатели все чаще обращаются к роторным машинам. Но пока из всех автомобильных фирм только «Мазда» решилась поставить на поток роторный двигатель Ванкеля.

По массогабаритным показателям такой двигатель значительно превосходит поршневые двигатели, имеет меньше деталей. Однако его широкое использование сдерживается рядом существенных причин. К главным из них можно отнести малый ресурс работы двигателя, которого хватает от силы на 100 000 километров пробега.

В то же время основные технические характеристики роторного варианта теплового преобразователя близки к характеристикам газотурбинной техники и при этом обладают экономичностью поршневого двигателя.

Это заставляет изобретателей искать варианты, в которых будут совмещены преимущества различных систем.

Как известно, роторно-порш­невой двигатель Ванкеля состоит из корпуса, в котором вершины треугольного ротора совершают эпитрохоидную траекторию, обеспечивая необходимые замкнутые полости переменного объема для сжатия рабочего тела, системы подвода тепловой энергии и механизма преобразования последней в энергию вращающегося вала.

Анализируя работу двигателя Ванкеля, можно заметить, что вершины треугольного ротора совершают свою траекторию под воздействием линии эпитрохоиды корпуса – в отличие от ДВС, где смену направления движения поршня определяет коленчатый вал.

Массивный же ротор, имея большую скорость, оказывает значительное сопротивление на сложных поворотах линии эпитрохоиды и, несмотря на обильную смазку, быстро изнашивает трущиеся детали двигателя. Помимо этого, вершины ротора, имеющие малую контактную поверхность, скользят под разными углами по трущейся поверхности корпуса, что ведет к еще большей скорости разрушения уплотнений.

Однако, к сожалению, линия эпитрохоиды совместно с эксцентриковым механизмом является конструктивной особенностью роторного поршневого двигателя Ванкеля, и на сегодняшний день схема Ванкеля лучшее решение для роторно-поршневого двигателя, несмотря на невысокий ресурс. Приходится признать, что дальнейшее улучшение характеристик двигателя Ванкеля может быть осуществлено лишь с помощью применения еще более дорогостоящих материалов – при незначительной эффективности самого двигателя.

Но есть и другое решение проблемы создания замкнутых полостей переменного объема, в полной мере использующее все преимущества роторно-поршневого механизма.

Оно осуществляется путем установки плотной разделительной стенки в радиальной плоскости цилиндрического корпуса. Стенка откроется в нужный момент и пропустит рабочую часть ротора в точку начала оборота.

В этом случае ротор жестко связан с выходным валом, определяющим траекторию движения ротора без возвратно поступательной составляющей. Трение вращающегося ротора по цилиндрическому корпусу позволит создать большую площадь контакта трущихся поверхностей с неизменным углом касания. В итоге трущиеся поверхности не испытывают паразитного давления; параллельно с этим значительно улучшается уплотнение за счет увеличения поверхности контакта и снижается вибрация двигателя.

Здесь единственным относительно сложным узлом двигателя, который требует технической проработки и испытания, является уплотнительная стенка, пропускающая зуб ротора после завершения цикла.

Реализовать ее можно, установив на пути ротора дополнительный синхронно вращающийся цилиндр, охваченный корпусом. Он работает как вращающаяся часть подшипника скольжения, имеющего паз, который, развернувшись, пропускает зуб ротора словно через турникет.

Работа пропускного цилиндра при совершении рабочего хода заключается только в создании надежных уплотнений между камерами – в двух направлениях цилиндра.

Одно проходит по линии скольжения цилиндра в корпусе с характеристиками подшипника скольжения – и здесь уплотнительная способность цилиндра сомнений не вызывает.

На втором направлении уплотнения цилиндр катится по поверхности малого радиуса ротора. Это наиболее сложный участок уплотнения с характеристиками, подобными роликовому или игольчатому подшипнику, который и является основой работы над пропускным РПД.

Автору представляется, что, с технической точки зрения, на пути к созданию перспективного роторного двигателя, свободного от недостатков РПД Ванкеля, стоит лишь вопрос уплотнения между катящимися цилиндрами. Переход же зуба через паз цилиндра происходит в технологическое время при отсутствии давления между камерами. Схема боковых уплотнений успешно решается в РПД Ванкеля, и ее можно позаимствовать.

Вторым отличием проходного РПД является компоновка функциональных узлов по схеме газотурбинного двигателя.

Выделение компрессора камеры сгорания и преобразователя в отдельные конструктивные узлы может значительно улучшить экологические показатели выхлопных газов, поскольку топливо будет сгорать в специально приспособленной камере, где легко можно поддерживать расход температуры и давление рабочего тела. Учитывая разные условия работы компрессора и преобразователя, появится возможность оптимизации узлов под конкретную задачу сжатия воздуха или преобразования энергии полученного горячего газа.

Работа двигателя роторного


Все о роторных двигателях — виды и принцип работы

Главное отличие внутреннего устройства и принципа работы роторного двигателя от ДВС заключается в полном отсутствии двигательной активности, при этом удается добиться высоких оборотов работы мотора. У роторного двигателя или иначе двигателя Ванкеля, есть и ряд других преимуществ, их мы и рассмотрим подробнее.

Общий принцип устройства роторного двигателя

РПД облачен в овальный корпус для оптимального размещения ротора, имеющего треугольную форму. Отличительная особенность ротора в отсутствии шатунов и валов, что значительно упрощает конструкцию. По сути, ключевыми деталями РД являются ротор и статор. Основная двигательная функция в таком типе мотора осуществляется за счет движения ротора, расположенного внутри корпуса, имеющего схожесть с овалом.

Принцип действия основан на высокоскоростном движении ротора по окружности, в результате создаются полости для запуска устройства.

Почему роторные двигатели не пользуются спросом?

Парадокс роторного двигателя заключается в том, что при всей простоте конструкции он не столь востребован, как двигатель внутреннего сгорания, имеющий весьма сложные конструктивные особенности и сложности при осуществлении ремонтных работ.

Разумеется, роторный двигатель не лишен недостатков, иначе он бы нашел широкое применение в современном автопроме, а возможно мы бы и не узнали про существование ДВС, ведь роторный был сконструирован значительно раньше. Так зачем же так усложнять конструкцию, попытаемся разобраться.

Явными недочетами роторного мотора можно считать отсутствие надежной герметизации в камере сгорания. Это легко объяснить конструктивными особенностями и условиями работы мотора. В ходе интенсивного трения ротора со стенками цилиндра происходит неравномерный нагрев корпуса и, как следствие, металл корпуса расширяется от нагрева лишь частично, что и приводит к выраженным нарушениям герметизации корпуса.

Для усиления герметичных свойств, особенно при условии выраженной разницы температурных режимов между камерой и системой впуска или выпуска, сам цилиндр изготавливают из разных металлов и размещают их в разных частях цилиндра, для улучшения герметичности.

Для запуска мотора используют всего две свечи, это связано с конструктивными особенностями мотора, позволяющими выдавать на 20% больше КПД, в сравнении с двигателем внутреннего сгорания, за одинаковый промежуток времени.

Роторный двигатель Желтышева — принцип работы:

Преимущества роторного двигателя

При малых габаритах он способен развивать высокую скорость, однако есть в этом нюансе и большой минус. Несмотря на малые габариты, именно роторный двигатель потребляет огромное количество горючего, а вот ресурс работы мотора составляет всего 65 000 км.

Так, двигатель всего в 1,3 л потребляет до 20 л. топлива на 100 км. Возможно, это и стало основной причиной отсутствия популярности данного вида моторов для массового потребления.

Цена на бензин во все времена считается актуальной проблемой человечества, учитывая, что мировые запасы нефти расположены на Ближнем востоке, в зоне постоянных боевых конфликтов, цены на бензин остаются достаточно высокими, и в ближайшей перспективе нет тенденций для их снижения. Это приводит к поиску решений по минимальному потреблению ресурсов не в ущерб мощности, в чем и заключается главный довод в пользу ДВС.

Все это в совокупности определило положение роторных двигателей, как подходящий вариант для спорткаров. Однако известный по всему миру производитель авто «Мазда», продолжил дело изобретателя Ванкеля. Японские инженеры всегда стараются извлекать из невостребованных моделей максимум пользы путем модернизации и применения инновационных технологий, что позволяет сохранять лидирующие позиции на мировом автомобильном рынке.

Принцип работы роторного двигателя Ахриевых на видео:

Новая модель «Мазда», оснащенная роторным двигателем, по мощности не уступает передовым немецким моделям, выдавая до 350 лошадиных сил. При этом расход топлива был несравнимо высоким. Инженерам-конструкторам «Мазда» пришлось уменьшить мощность до 200 лошадиных сил, что позволило нормализовать потребление топлива, однако компактные размеры двигателя позволили наделить авто дополнительными преимуществами и составить достойную конкуренцию европейским моделям авто.

В нашей стране роторные двигатели не прижились. Были попытки установить их на транспорт специализированных служб, но этот проект не был профинансирован в должном объеме. Поэтому все успешные разработки в данном направлении принадлежат японским инженерам из компании «Мазда», намеренной в ближайшее время показать новую модель авто с модернизированным двигателем.

Как работает роторный мотор Ванкеля на видео

Принцип работы роторного двигателя

РПД работает за счет вращения ротора, так идет передача мощности на коробку передач через сцепление. Преобразующий момент заключается в передаче энергии топлива колесам за счет вращения ротора, изготовленного из легированной стали.

Механизм работы роторного-поршневого двигателя:

  • сжатие горючего;
  • впрыск топлива;
  • обогащение кислородом;
  • горение смеси;
  • выпуск продуктов сгорания топлива.

Как работает роторный двигатель показано на видео:

Ротор закреплен на специальном устройстве, при вращении он образует независимые друг от друга полости. В первой камере происходит наполнение воздушно-топливной смесью. В дальнейшем она тщательно перемешивается.

Затем смесь переходит в другую камеру, где происходит сжатие и воспламенение, благодаря наличию двух свечей. В дальнейшем смесь перемещается в следующую камеру, из нее вытесняются части переработанного топлива, которые выходят из системы.

Так происходит полный цикл работы роторного-поршневого двигателя, основанного на трех тактах работы за всего лишь один оборот ротора. Именно японским разработчикам удалось существенно модернизировать роторный двигатель и установить в нем сразу три ротора, что позволяет значительно увеличить мощность.

Принцип работы роторного двигателя Зуева:

На сегодня, усовершенствованный двухроторный двигатель сравним с двигателем внутреннего сгорания с шестью цилиндрами, а трехроторный по мощности не уступает 12-ти цилиндровому двигателю внутреннего сгорания.

Не стоит забывать и про компактный размер двигателя и простоту устройства, позволяющую при необходимости осуществлять ремонт или полную замену основных агрегатов мотора. Таким образом, инженерам компании «Мазда» удалось подарить вторую жизнь этого простого и производительного устройства.

2auto.su

Роторный двигатель. Устройство, принцип работы. Плюсы и минусы ротора.

Изобретение двигателя внутреннего сгорания дало толчок к производству автомобилей, передвигающихся на жидком виде топлива. Двигатели эти на протяжении всей истории автомобилестроения эволюционировали: появлялись различные конструкции моторов. Одной из прогрессивных, но так и не получивших распространение конструкций двигателей стал роторно-поршневой агрегат. Об особенностях этого типа двигателя, его достоинствах и недостатках мы поговорим в сегодняшнем материале.

История

Разработчиком роторно-поршневого двигателя стал дуэт инженеров компании NSU – Феликс Ванкель и Вальтер Фройде. И хотя основная роль в создании роторного двигателя принадлежит именно Фройде (второй участник проекта в это время работал над конструкцией иного двигателя), в автомобильной среде силовой агрегат известен как мотор Ванкеля.

Феликс Ванкель и роторный двигатель

Эта силовая установка была собрана и испытана в 1957 году. Первым автомобилем, на который установили роторно-поршневой двигатель, стал спорткар NSU Spider, который развивал скорость 150 км/час при мощности мотора 57 лошадиных сил. Производилась эта модель на протяжении трех лет (1964-1967 годы).

NSU Spider

По настоящему массовым автомобилем с роторным двигателем стало второе детище компании NSU – седан Ro-80.

NSU Ro-80

В названии автомобиля указывалось, что модель оснащается роторным агрегатом. Впоследствии роторные двигатели устанавливались на автомобили Citroen (GS Birotor), Mercedes-Benz (С111), Chevrolet (Corvette), ВАЗ (21018) и так далее. Но самый массовый выпуск моделей с роторным двигателем был налажен японской компанией Mazda. Начиная с 1964 года, компания произвела несколько автомобилей с подобным типом силовой установки, а пионером в этом деле стала модель Cosmo Sport. Самая известная модель с роторно-поршневым двигателем, которая выпускалась этим производителем – RX (Rotor-eXperiment). Производство последней модели из этого семейства, Mazda RX8 в специальной версии Spirit R, было свернуто в середине 2012 года. Впрочем, не все экземпляры роторной «восьмерки» еще распроданы – официальный дилер Mazda в Индонезии еще продает эти автомобили.

Mazda RX-8

Устройство

Особенностью роторно-поршневого двигателя внутреннего сгорания стало присутствие в его конструкции трехгранного ротора – поршня. Он вращается в цилиндре, который имеет специальную форму. Ротор насажен на вал, и соединен с зубчатым колесом, которое, в свою очередь, имеет сцепление со статором – шестерней. Ротор вращается вокруг статора по так называемой эпитрохоидальной кривой, его лопасти попеременно перекрывают камеры цилиндра, в которых происходит сгорание топлива.

Роторный двигатель

В конструкции роторного двигателя отсутствует газораспределительный механизм – его функцию выполняет сам ротор, который при помощи своих лопастей распределяет поступающую горючую смесь и выпускает отработанные в цилиндре газы. Подобная конструкция двигателя позволяет обойтись без множества узлов, крайне необходимых для простого поршневого двигателя (например, коленчатый вал, шатуны), что, во-первых, позволяет уменьшить размер и массу силового агрегата, а во-вторых – уменьшить стоимость его производства.

Достоинства и недостатки

Роторно-поршневой двигатель не зря привлек внимание многих именитых автомобильных компаний. Его конструкция и принцип действия позволяли получить несколько довольно весомых преимуществ перед обычными двигателями.

Во-первых, роторно-поршневой мотор в силу своей конструкции обладал лучшей среди остальных типов силовых установок сбалансированностью, и был подвержен минимальным вибрациям.

Во-вторых, у этой силовой установки отмечались отменные динамические характеристики: без существенной нагрузки на двигатель, авто с роторно-поршневым мотором легко можно разогнать до 100 км/час и более на низкой передаче при высоких оборотах двигателя.

роторный двигатель Мазда RX-8

В-третьих, роторный двигатель компактнее и легче, чем стандартный поршневой силовой агрегат. Эта особенность позволяла конструкторам добиться практически идеальной развесовки по осям, что влияло на устойчивость автомобиля на дороге.

В-четвертых, в нем используется намного меньшее количество узлов и агрегатов, чем в обычном двигателе.

Наконец, в-пятых, роторный двигатель обладает высокой удельной мощностью.

Недостатки

К минусам роторно-поршневого двигателя, из-за которых он так и не смог получить массового применения и не используется сегодня в автомобилях всех брендов, относится, во-первых, большой расход топлива на низких оборотах. На некоторых моделях он достигает 20 литров на 100 км пробега, что, согласитесь, совсем не экономично и бьет по карману владельца авто с роторным двигателем.

Во-вторых, недостатком этого типа двигателей является сложность изготовления его деталей: чтобы ротор правильно прошел эпитрохоидальную кривую, необходима высокая геометрическая точность при создании как самого ротора, так и цилиндра. Для этого производители роторных двигателей используют высокоточное и дорогостоящее оборудование, а стоимость производства закладывают в цену автомобиля.

В-третьих, роторный двигатель склонен к перегреву из-за особенности конструкции камеры сгорания: она имеет линзовидную форму, а не сферическую, как у обычных поршневых моторов. Топливная смесь, сгорая в такой камере, превращается в тепловую энергию, которая расходуется в большей части неэффективно – ее избыток нагревает цилиндр, что в конечном итоге приводит к износу и выходу его из строя.

В-четвертых, высокий износ уплотнителей между форсунками ротора из-за перепадов давления в камерах сгорания двигателя. Именно поэтому ресурс таких двигателей составляет 100-150 тысяч км, после чего, как правило, требуется капитальный ремонт силового агрегата.

В-пятых, роторно-поршневой двигатель нуждается в своевременной и четко соблюдаемой процедуре смены моторного масла: мотор потребляет примерно 600 мл моторного масла на 1000 км, так что менять его приходится раз в 5000 км пробега. Если его вовремя не заменить, это чревато выходом из строя узлов и агрегатов мотора, что повлечет за собой дорогостоящий ремонт. То есть, к эксплуатации и обслуживанию роторно-поршневых двигателей следует подходить более ответственно, чем к обслуживанию обычных моторов, вовремя проводя их техническое обслуживание и капитальный ремонт.

avtoexperts.ru

Роторный двигатель внутреннего сгорания

Словосочетание «двигатель внутреннего сгорания» у большинства людей вызывает ассоциации с цилиндрами и поршнями, системой газораспределения и кривошипно-шатунным механизмом. Все потому, что подавляющее большинство автомобилей снабжено классическим и ставшим наиболее популярным типом двигателей – поршневым.


Сегодня речь пойдет о роторно-поршневом двигателе Ванкеля, который обладает целым набором выдающихся технических характеристик, и в свое время должен был открыть новые перспективы в автомобилестроении, но не смог занять достойного места и массовым не стал.

История создания

Самым первым тепловым двигателем роторного типа принято считать эолипил. В первом веке нашей эры его создал и описал греческий механик-инженер Герон Александрийский.

Конструкция эолипила довольна проста: на оси, проходящей через центр симметрии, расположена вращающаяся бронзовая сфера. Водяной пар, используемый как рабочее тело, истекает из двух сопел, установленных в центре шара друг напротив друга и перпендикулярно оси крепления.


Механизмы водяных и ветряных мельниц, использующих в качестве энергии силу стихии, тоже можно отнести к роторным двигателям древности.

Классификация роторных двигателей

Рабочая камера роторного ДВС может быть герметично замкнутой или иметь постоянную связь с атмосферой, когда от окружающей среды ее отделяют лопасти роторной крыльчатки. По такому принципу построены газовые турбины.

Среди роторно-поршневых двигателей с замкнутыми камерами сгорания специалисты выделяют несколько групп. Разделение может происходить по: наличию или отсутствию уплотнительных элементов, по режиму работы камеры сгорания (прерывисто-пульсирующий или непрерывный), по типу вращения рабочего органа.


Стоит отметить, что у большинства описываемых конструкций нет действующих образцов и они существуют на бумаге.
Классифицировал их русский инженер И.Ю. Исаев, который сам занят созданием совершенного роторного двигателя. Он произвел анализ патентов России, Америки и других стран, всего более 600.
Роторный ДВС с возвратно-вращательным движением

Ротор в таких двигателях не вращается, а совершает возвратно-дуговые качания. Лопатки на роторе и статоре неподвижны, и между ними происходят такты расширения и сжатия.

С пульсирующе-вращательным, однонаправленным движением

В корпусе двигателя расположены два вращающихся ротора, сжатие происходит между их лопастей в моменты сближения, а расширение в момент удаления. Из-за того что вращение лопастей происходит неравномерно, требуется разработка сложного механизма выравнивания.

С уплотнительными заслонками и возвратно-поступательными движениями

Схема с успехом применяемая в пневмомоторах, где вращение осуществляется за счет сжатого воздуха, не прижилась в двигателях внутреннего сгорания по причине высокого давления и температур.

С уплотнителями и возвратно-поступательными движениями корпуса

Схема аналогична предыдущей, только уплотнительные заслонки расположены не на роторе, а на корпусе двигателя. Недостатки те же: невозможность обеспечить достаточную герметичность лопаток корпуса с ротором сохраняя их подвижность.

Двигатели с равномерным движением рабочего и иных элементов

Наиболее перспективные и совершенные виды роторных двигателей. Теоретически могут развивать самые высокие обороты и набирать мощность, но пока не удалось создать ни одной работающей схемы для ДВС.

С планетарным, вращательным движением рабочего элемента

К последним относится наиболее известная широкой общественности схема роторно-поршневого двигателя инженера Феликса Ванкеля.

Хотя существует огромное количество других конструкций планетарного типа:

  • Умплеби (Umpleby)
  • Грея и Друммонда (Gray & Dremmond)
  • Маршалла (Marshall)
  • Спанда (Spand)
  • Рено (Renault)
  • Томаса (Tomas)
  • Веллиндера и Скуга (Wallinder & Skoog)
  • Сенсо (Sensand)
  • Майлара (Maillard)
  • Ферро (Ferro)

История Ванкеля

Жизнь Феликса Генриха Ванкеля не была простой, рано оставшись сиротой (отец будущего изобретателя погиб в первой мировой войне), Феликс не мог собрать средства для обучения в университете, а рабочую специальность не позволяла получить сильная близорукость.

Это побудило Ванкеля на самостоятельное изучение технических дисциплин, благодаря чему в 1924 году ему пришла в голову идея создать роторный двигатель с вращающейся камерой внутреннего сгорания.


В 1929 году он получает патент на изобретение, которое и стало первым шагом к созданию знаменитого РПД Ванкеля. В 1933 году изобретатель, оказавшись в рядах противников Гитлера, проводит полгода в тюрьме. После освобождения разработками роторного двигателя заинтересовались в компании BMW и стали финансировать дальнейшие исследования, выделив для работы мастерскую в Ландау.

После войны она достается в качестве репарации французам, а сам изобретатель попадает в тюрьму, как пособник гитлеровского режима. Лишь в 1951 году, Феликс Генрих Ванкель устраивается на работу в компанию по производству мотоциклов «NSU» и продолжает исследования.


В том же году он начинает совместную работу с главным конструктором «NSU» Вальтером Фройде, который и сам давно занимается изысканиями в области создания роторно-поршневого двигателя для гоночных мотоциклов. В 1958 году первый образец двигателя занимает место на испытательном стенде.

Как работает роторный двигатель

Сконструированный Фройде и Ванкелем силовой агрегат, представляет собой ротор, выполненный в форме треугольника Рело. Ротор планетарно вращается вокруг шестерни, закрепленной в центре статора — неподвижной камеры сгорания. Сама камера выполнена в форме эпитрохоиды, которая отдаленно напоминает восьмерку с вытянутым наружу центром, она выполняет роль цилиндра.

Совершая движение внутри камеры сгорания, ротор образует полости переменного объема, в которых происходят такты двигателя: впуск, сжатие, воспламенение и выпуск. Камеры герметично отделены друг от друга уплотнителями – апексами, износ которых является слабым место роторно-поршневых двигателей.

Воспламенение топливо-воздушной смеси осуществляется сразу двумя свечами зажигания, поскольку камера сгорания имеет вытянутую форму и большой объем, что замедляет скорость горения рабочей смеси.

На роторном двигателе используется угол запоздания а не опережения, как на поршневом. Это необходимо чтобы воспламенение происходило чуть позже, и сила взрыва толкала ротор в нужном направлении.

Конструкция Ванкеля позволила значительно упростить двигатель, отказаться от множества деталей. Отпала необходимость в отдельном газораспределительном механизме, существенно уменьшились вес и размеры мотора.

Преимущества

Как говорилось ранее, роторный двигатель Ванкеля не требует такого большого количества деталей как поршневой, поэтому имеет меньшие размеры, вес и удельную мощность (количество «лошадей» на килограмм веса).

Нет кривошипно-шатунного механизма (в классическом варианте), что позволило снизить вес и вибронагруженность. Из-за отсутствия возвратно-поступательных движений поршней и малой массы подвижных частей, двигатель может развивать и выдерживать очень высокие обороты, практически мгновенно реагируя на нажатие педали газа.

Несмотря на все достижения японцы не останавливаются на достигнутом. Вопреки утверждениям большинства специалистов о том, что РПД не имеет будущего, они не прекращают совершенствовать технологию, и не так давно представили концепт спортивного купе RX-Vision, с роторным двигателем SkyActive-R.

znanieavto.ru

Роторный двигатель: принцип работы

Как работает роторный двигатель. Роторный двигатель изобретен и разработан доктором Феликсом Ванкелем и иногда называется двигатель Ванкеля или роторный двигатель Ванкеля.

Роторный двигатель, как и традиционный поршневой, является двигателем внутреннего сгорания, но работает он совершенно иначе. В поршневом двигателе, в одном и том же объеме пространства (в цилиндре) попеременно происходят четыре различные работы — впуск, сжатие, сгорание и выпуск (такты).

Роторный двигатель делает эти четыре такта в одном и том же объеме(камере), но каждый из этих тактов происходит в своей отдельной части этой камеры. Как будто для каждого цикла используется отдельный цилиндр, а поршень перемещается от одного цилиндра к другому.

В этой статье мы подробно расскажем, как работает роторный двигатель. Давайте начнем с основных принципов его работы.

Принцип работы роторного двигателя.

Как и поршневой, роторный двигатель использует давление которое создается при сжигании смеси воздуха и топлива. В поршневых двигателях, это давление создается в цилиндрах, и двигает поршни вперед и назад. Шатуны и коленчатый вал преобразуют возвратно-поступательные движения поршня во вращательное движение, которое может быть использовано для вращения колес автомобиля.

В роторном двигателе, давление сгорания содержится в камере, образованной частью объема камеры закрытой стороной треугольного ротора, который используется в данном случае вместо поршней.

Роторный двигатель

Ротор и корпус роторного двигателя от Mazda RX-7: Эти детали заменяют поршни, цилиндры, клапаны, шатуны и распредвалы в поршневых двигателях.

Ротор соединен со стенками камеры каждой из трех своих вершин, создавая три отдельных объема газа. Ротор вращается, и каждый из этих объемов попеременно расширяется и сжимается. Цепная реакция всасывает воздух и топливо в рабочую камеру, сжимает смесь, она расширяясь делает полезную работу, затем выхлопные газы выталкиваются, новая порция воздуха и топлива всасывается, и так далее.

Мы заглянем внутрь роторного двигателя, чтобы познакомится с его устройством, но сначала давайте взглянем на новые модели автомобилей с роторным двигателем.

Mazda RX-8

Mazda стала пионером в массовом производстве автомобилей, использующих роторные двигатели. Спорткар RX-7, который поступил в продажу в 1978 году, был, пожалуй, наиболее успешным автомобилем с роторным двигателем. Но ему предшествовал целый ряд автомобилей, грузовиков и даже автобусов с роторной силовой установкой, начиная с Cosmo Sport выпуска 1967 года.

Однако RX-7 не продается с 1995 года, но идея роторного двигателя не умерла. Mazda RX-8, последний спорткар от Mazda, имеет у себя под капотом новейший роторный двигатель под названием RENESIS. Названный лучшим двигателем 2003 года, этот атмосферный двух-роторный двигатель производит около 250 лошадиных сил.

Строение роторного двигателя.

Роторный двигатель имеет систему зажигания и систему впрыска топлива, весьма похожие на те, что установлены на поршневых двигателях. Однако, если вы никогда не видели внутренности роторного двигателя, то будьте готовы удивиться, потому что вы не увидите ничего знакомого.

Ротор

Ротор имеет три выпуклых стороны, каждая из которых действует как поршень.
Каждая сторона ротора имеет углубление в ней, что повышает скорость вращения ротора в целом, предоставляя больше пространства для топливо-воздушной смеси.

На вершине каждой грани находится по металлической пластине, которые и формируют камеры, в которых происходят такты двигателя. Два металлических кольца на каждой стороне ротора формируют стенки этих камер. В середине ротора находится круг, в котором имеется множество зубьев. Они соединены с приводом, который крепится к выходному валу. Это соединение определяет путь и направление, по которому ротор движется внутри камеры.

Камера

Камера двигателя приблизительно овальной формы (но если быть точным — это Эпитрохоида, которая в свою очередь представляет собой удлиненную или укороченную эпициклоиду, которая является плоской кривой, образуемой фиксированной точкой окружности, катящейся по другой окружности). Форма камеры разработана так, чтобы три вершины ротора всегда находились в контакте со стенкой камеры, образуя три закрытых объемах газа.

В каждой части камеры происходит один из четырех тактов:

  • Впуск
  • Сжатие
  • Сгорание
  • Выпуск

Отверстия для впуска и выпуска находятся в стенках камеры, и на них отсутствуют клапаны. Выхлопное отверстие соединено непосредственно с выхлопной трубой, а впускное напрямую подключено к газу.

Выходной вал

Выходной вал имеет полукруглые выступы-кулачки, размещенные несимметрично относительно центра, что означает, что они смещены от осевой линии вала. Каждый ротор надевается на один из этих выступов. Выходной вал является аналогом коленчатого вала в поршневых двигателях. Каждый ротор движется внутри камеры и толкает свой кулачок.

Так как кулачки установлены несимметрично, сила с которой ротор на него давит, создает крутящий момент на выходном валу, заставляя его вращаться.
Теперь давайте посмотрим, как эти части взаимодействуют.

Строение роторного двигателя

Роторный двигатель состоит из слоев. Двухроторный двигателя состоят из пяти основных слоев, которые удерживаются вместе благодаря длинным болтам, расположенным по кругу. Охлаждающая жидкость протекает через все части конструкции.

Два крайних слоя закрыты и содержат подшипники для выходного вала. Они также запечатаны в основных разделах камеры, где содержатся роторы. Внутренняя поверхность этих частей очень гладкая и помогает роторам в работе. Отдел подачи топлива расположен на конце каждой из этих частей.

Следующий слой содержит в себе непосредственно сам ротор и выхлопную часть.

Центр состоит из двух камер подачи топлива, по одной для каждого ротора. Он также разделяет эти два ротора, поэтому его внешняя поверхность очень гладкая.

В центре каждого ротора крепится две большие шестерни, которые вращаются вокруг более маленьких шестерней и крепятся к корпусу двигателя. Это и является орбитой для вращения ротора.

Мощность роторного двигателя

Роторные двигатели используют четырехтактный цикл сгорания, как и в обычном поршневом. Но в роторном это происходит совсем по-другому.

Сердце роторного двигателя — это ротор. Он чем-то эквивалентен поршню в поршневом двигателе. Ротор установлен на большой округлом лепестке на выходном вале. Этот лепесток смещается от осевой линии вала и действует как заводная ручка на лебедку, давая ротору пространство для поворота выходного вала. Пока ротор вращается внутри корпуса, он толкает лепесток внутри жестких кругов, вращаясь 3 раза за каждый оборот ротора.

В то время как ротор вращается в корпусе, три отсека внутри изменяют свой размер. Изменение размера этих камер создает давление. Давайте пройдем по всем 4 отсекам двигателя.

Подача

Первая фаза начинается тогда, когда вершина ротора находится на уровне отсека подачи. В момент когда камера подачи открыта для основного отсека, объем этой камеры близок к минимуму. Как только ротор проходит мимо камеры подачи, объем камеры расширяется и вливает воздух/топливо в основной отсек. Как только ротор проходит камеру подачи, отсек становится полностью изолированным и начинается компрессия.

Компрессия

В то время как ротор продолжает свое движение по основному отсеку, пространство в отсеке становится меньше, смесь из воздуха/топлива сжимается. Как только ротор проходит отсек со свечами зажигания, объем камеры снова сводится к минимуму. В это время происходит возгорание смеси.

Возгорание

Большинство роторных двигателей имеет две свечи зажигания. Камера возгорания достаточно длинная, поэтому одной свечи будет недостаточно. Как только свечи воспламеняет топливно-воздушную смесь, давление в отсеке сильно увеличится, приводя ротор в движение. Давление в камере возгорания продолжает расти, заставляя ротор двигаться, а отсек расти в объеме. Газы от возгорания продолжают расширяться, перемещая ротор и создавая мощность, до того момента, пока ротор не пройдет выхлопной отсек.

Выхлоп

После того, как ротор проходит выхлопной отсек, высокое давление газа сгорания свободно выходит в выхлопную трубу. Так как ротор продолжает движение, камера начинает сжиматься, выдавливая оставшиеся выхлопные газы в свободный отсек. К тому времени объем камеры опять падает к минимуму и цикл начинается сначала.

Разница и Проблемы

У роторного двигателя достаточно много различий с обычным поршневым двигателем.

Меньше движущихся частей

Роторный двигатель имеет намного меньше частей, чем скажем 4-ех цилиндровый поршневой движок. Двух роторный двигатель имеет три главные движущиеся части: два ротора и выходной вал. Даже самый простой 4-ех цилиндровый поршневой двигатель имеет как минимум 40 движущихся частей, включая поршни, шатуны, стержень, клапаны, рокеры, клапанные пружины, зубчатые ремни и коленчатый вал. Минимизация движущихся частей позволяет получить роторным двигателям более высокую надежность. Именно поэтому некоторые производители самолетов (к примеру Skycar) используют роторные двигатели вместо поршневых.

Мягкость

Все части в роторном двигателе непрерывно вращаются в одном направлении, в отличие от постоянно изменяющих направление поршней в обычном двигателе. Роторный движок использует сбалансированные крутящиеся противовесы, служащие для подавления любых вибраций. Подача мощности в роторном двигателе также более мягкая. Каждый цикл сгорания происходит за одни оборот ротора в 90 градусов, выходной вал прокручивается три раза на каждое прокручивание ротора, каждый цикл сгорания проходит за 270 градусов за которые проворачивается выходной вал. Это значит, что одно роторный двигатель вырабатывает мощность в три четверти . Если сравнивать с одно-цилиндровым поршневым двигателем, в котором сгорание происходит каждые 180 градусов каждого оборота, или только четверти оборота коленчатого вала.

Неспешность

В связи с тем, что роторы вращаются на одну треть вращения выходного вала, основные части двигателя вращаются медленней, чем части в обычном поршневом двигателе. Это также помогает и в надежности.

Проблемы

Самые главные проблемы при производстве роторных двигателей:

Достаточно сложно (но не невозможно) подстроиться под регламент выброса CO2 в окружающую среду, особенно в США.

Производство может стоить намного дороже, в большинстве случаев из-за небольшого серийного производства, по сравнению с поршневыми двигателями.

Они потребляют больше топлива, так как термодинамическое КПД поршневого двигателя снижается в длинной камере сгорания, а также благодаря низкой степени сжатия.

Источник: Авто Релиз.ру.

autorelease.ru

Роторно — поршневой двигатель (двигатель Ванкеля)

Роторно-поршневой двигатель или двигатель Ванкеля представляет собой мотор, где главным рабочим элементом осуществляются планетарные круговые движения. Это принципиально другой вид двигателя, отличный от поршневых собратьев в семействе ДВС.

В конструкции такого агрегата используется ротор (поршень) с тремя гранями, внешне образующим треугольник Рело, осуществляющий круговые движения в цилиндре особого профиля. Чаще всего поверхность цилиндра исполнена по эпитрохоиде (плоской кривой, полученной точкой, которая жестко связана с окружностью, осуществляющей движение по внешней стороне другой окружности). На практике можно встретить цилиндр и ротор иных форм.

Составные элементы и принцип работы

Устройство двигателя типа РПД предельно проста и компактна. На ось агрегата устанавливается ротор, который крепко соединяется с шестерней. Последняя сцепляется со статором. Ротор, имеющий три грани, двигается по эпитрохоидальной цилиндрической плоскости. В результате чего сменяющиеся объемы рабочих камер цилиндра отсекаются с помощью трех клапанов. Уплотнительные пластины (торцевого и радиального типа) прижимаются к цилиндру под действием газа и за счет действия центростремительных сил и ленточных пружин. Получаются 3 изолированные камеры разные по объемным размерам. Здесь осуществляются процессы сжимания поступившей смеси горючего и воздуха, расширения газов, оказывающих давление на рабочую поверхность ротора и очищающих камеру сгорания от газов. На эксцентриковую ось передается круговое движение ротора. Сама ось находится на подшипниках и передает момент вращения на механизмы трансмиссии. В этих моторах осуществляется одновременная работа двух механических пар. Одна, которая состоит из шестерен, регулирует движение самого ротора. Другая — преобразует вращающиеся движение поршня во вращающиеся движения эксцентриковой оси.

Детали Роторно-поршневого двигателя

   Принцип работы двигателя Ванкеля

На примере двигателей, установленных на автомобилях ВАЗ, можно назвать следующие технические характеристики:
— 1,308 см3 – рабочий объем камеры РПД;
— 103 кВт/6000 мин-1 – номинальная мощность;
— 130 кг масса двигателя;
— 125000 км – ресурс двигателя до первого полного его ремонта.

Смесеобразование

В теории в РПД применяют несколько разновидностей смесеобразования: внешнее и внутреннее, на основе жидких, твердых, газообразных видов топлива.
Касательно твердых видов топлива стоит отметить, что их первоначально газифицируют в газогенераторах, так как они приводят к повышенному золообразованию в цилиндрах. Поэтому большее распространение на практике получили газообразные и жидкие топлива.
Сам механизм образования смеси в двигателях Ванкеля будет зависеть от вида применяемого топлива.
При использовании газообразного топлива его смешение с воздухом происходит в специальном отсеке на входе в двигатель. Горючая смесь в цилиндры поступает в готовом виде.

Из жидкого топлива смесь приготавливается следующим образом:

  1. Воздух смешивается с жидким топливом перед поступлением в цилиндры, куда поступает горючая смесь.
  2. В цилиндры двигателя жидкое топливо и воздух поступают по отдельности, и уже внутри цилиндра происходит их смешивание. Рабочая смесь получается при соприкосновении их с остаточными газами.

Соответственно, топливно-воздушная смесь может готовиться вне цилиндров или внутри их. От этого идет разделение двигателей с внутренним или внешним образованием смеси.

Особенности РПД

Преимущества

Преимущества двигателей роторно-поршневого типа по сравнению со стандартными бензиновыми двигателями:

— Низкие показатели уровня вибрации.
В моторах типа РПД отсутствует преобразование возвратно-поступательного движения во вращательное, что позволяет агрегату выдержать высокие обороты с меньшими вибрациями.

— Хорошие динамические характеристики.
Благодаря своему устройству такой мотор, установленный в машине, позволяет ее разогнать выше 100 км/ч на высоких оборотах без избыточной нагрузки.

— Хорошие показатели удельной мощности при малой массе.
Из-за отсутствия в конструкции двигателя коленчатого вала и шатунов достигается небольшая масса движущихся частей в РПД.

— В двигателях такого типа практически отсутствует система смазки.
Непосредственно в топливо добавляется масло. Топливно-воздушная смесь сама осуществляет смазывание пар трения.

— Мотор роторно-поршневого типа имеет небольшие габаритные размеры.
Установленный роторно-поршневой мотор позволяет максимально использовать полезное пространство моторного отсека автомобиля, равномерно распределить нагрузку на оси автомашины и лучше рассчитать расположение элементов коробки передач и узлов. Например, четырехтактный двигатель такой же мощности будет в два раза больше роторного двигателя.

Недостатки двигателя Ванкеля

— Качество моторного масла.
При эксплуатации такого типа двигателей необходимо уделять должное внимание к качественному составу масла, применяемого в двигателях Ванкеля. Ротор и находящаяся внутри камера двигателя имеют большую площадь соприкосновения, соответственно, износ двигателя происходит быстрее, а также такой двигатель постоянно перегревается. Нерегулярная смена масла наносит огромный урон двигателю. Износ мотора возрастает в разы из-за наличия абразивных частиц в отработанном масле.

— Качество свечей зажигания.
Эксплуатантам таких двигателей приходится быть особо требовательным к качественному составу свечей. В камере сгорания из-за ее небольшого объема, протяженной формы и высокой температуры затруднен процесс зажигания смеси. Следствием является повышенная рабочая температура и периодическая детонация камеры сгорания.

— Материалы уплотнительных элементов.
Существенной недоработкой мотора типа РПД можно назвать ненадежную организацию уплотнений промежутков между камерой, где сгорает топливо, и ротором. Устройство ротора такого мотора достаточно сложное, поэтому уплотнения требуются и по граням ротора, и по боковой поверхности, имеющей соприкосновение с крышками двигателя. Поверхности, которые подвергаются трению, необходимо постоянно смазывать, что выливается в повышенный расход масла. Практика показывает, что мотор типа РПД может потребить от 400 гр до 1 кг масла на каждые 1000 км. Снижаются экологичные показатели работы двигателя, так как горючее сгорает вместе с маслом, в результате в окружающую среду выбрасывается большое количество вредных веществ.

Из-за своих недоработок такие моторы не получили широкого распространения в автомобилестроении и в изготовлении мотоциклов. Но на базе РПД изготавливаются компрессоры и насосы. Авиамоделисты часто используют такие двигатели для конструирования своих моделей. Из-за невысоких требований к экономичности и надежности конструкторы не применяют сложную систему уплотнений в таких моторах, что значительно снижает его себестоимость. Простота его конструкции позволяет без проблем встроить в авиамодель.

КПД роторно-поршневой конструкции

Не смотря на ряд недоработок, проведенные исследования показали, что общий КПД двигателя Ванкеля довольно-таки высокий по современным меркам. Его значение составляет 40 – 45%. Для сравнения, у поршневых двигателей внутреннего сгорания КПД составляет 25%, у современных турбодизелей – около 40%. Самый высокий КПД у поршневых дизельных двигателей составляет 50%. До настоящего времени ученые продолжают работу по изысканию резервов для повышения КПД двигателей.

Итоговый КПД работы мотора состоит из трех основных частей:

  1. Топливная эффективность (показатель, характеризующий рациональное использование горючего в моторе).

Исследования в этой области показывают, что только 75% горючего сгорает в полном объеме. Есть мнение, что данная проблема решается путем разделения процессов сгорания и расширения газов. Необходимо предусмотреть обустройство специальных камер при оптимальных условиях. Горение должно происходить в замкнутом объеме, при условии нарастания температурных показателей и давления, расширительный процесс должен происходить при невысоких показателях температур.

  1. КПД механический (характеризует работу, результатом которой стало образование переданного потребителю крутящего момента главной оси).

Порядка 10% работы мотора расходуется на приведение в движение вспомогательных узлов и механизмов. Исправить данную недоработку можно путем внесения изменений в устройство двигателя: когда главный движущийся рабочий элемент не прикасается к неподвижному корпусу. Постоянное плечо крутящего момента должно присутствовать на всем пути следования основного рабочего элемента.

  1. Термическая эффективность (показатель, отражающий количество тепловой энергии, образованной от сжигания горючего, преобразующейся в полезную работу).

На практике 65% полученной тепловой энергии улетучивается с отработанными газами во внешнюю среду. Ряд исследований показал, что можно добиться повышения показателей термической эффективности в том случае, когда конструкция мотора позволяла бы осуществлять сгорание горючего в теплоизолированной камере, чтобы с самого начала достигались максимальные показатели температуры, а в конце эта температура понижалась до минимальных значений путем включения паровой фазы.

Современное состояние роторно-поршневого двигателя

На пути массового применения двигателя встали значительные технические трудности:
— отработка качественного рабочего процесса в камере неблагоприятной формы;
— обеспечение герметичности уплотнения рабочих объемов;
— проектировка и создания конструкции корпусных деталей, которые надежно прослужат весь жизненный цикл работы двигателя без коробления при неравномерном нагрева этих деталей.
В результате огромной проделанной научно-исследовательской и опытно-конструкторской работы этим фирмам удалось решить почти все наиболее сложные технические задачи на пути создания РПД и выйти на этап их промышленного производства.

Первый массовый автомобиль NSU Spider с РПД начала выпускать фирма NSU Motorenwerke. Вследствие частых переборок двигателей из-за выше сказанных технических проблем на раннем этапе развития конструкции двигателя Ванкеля, взятые NSU гарантийные обязательства привели ее к финансовому краху и банкротству и последовавшему слиянию с Audi в 1969 году.
Между 1964 и 1967 годом произведено 2375 автомобилей. В 1967 году Spider был снят с производства и заменён на NSU Ro80 с роторным двигателем второго поколения; за десять лет производства Ro80 выпущено 37398 машин.

Наиболее успешно с данными проблемами справились инженеры фирмы Mazda. Она и остается единственным массовым производителем машин с роторно-поршневыми двигателями. Доработанный мотор серийно начался ставить на автомобиль Mazda RX-7 с 1978 года. С 2003 преемственность приняла модель Mazda RX-8, она и является на данный момент массовой и единственной версией автомобиля с двигателем Ванкеля.

Российские РПД

Первое упоминание о роторном двигателе в Советском Союзе относится к 60-м годам. Исследовательские работы по роторно-поршневым двигателям начались в 1961 году, соответствующим постановлением Минавтопрома и Минсельхозмаша СССР. Промышленное же изучение с дальнейшем выводом на производство данной конструкции началось в 1974 году на ВАЗе. специально для этого было создано Специальное конструкторское бюро роторно-поршневых двигателей (СКБ РПД). Поскольку лицензию купить не было возможности, был разобран и скопирован серийный «ванкель» от NSU Ro80. На этой основе разработали и собрали двигатель Ваз-311, а произошло это знаменательное событие в 1976 году. На ВАЗе разрабатывали целую линейку РПД от 40 до 200 сильных двигателей. Доработка конструкции тянулась почти шесть лет. Удалось решить целый ряд технических проблем связанные с работоспособностью газовых и маслосъемных уплотнений, подшипников, отладить эффективный рабочий процесс в камере неблагоприятной формы. Свой первый серийный автомобиль ВАЗ с роторным двигателем под капотом представил публике в 1982 году, это был Ваз-21018. Машина внешне и конструктивно была как и все модели данной линейки, за одним исключением, а именно, под капотом стоял односекционный роторный двигатель мощностью 70 л.с. Длительность разработки не помешала случиться конфузу: на всех 50 опытных машинах при эксплуатации возникли поломки мотора, заставившие завод установить на его место обычный поршневой.

Ваз 21018 с Роторно-поршневым двигателем

Установив, что причиной неполадок являлись вибрации механизмов и ненадёжность уплотнений, конструкторы предприняли спасти проект. Уже в 83-ем появились двухсекционные Ваз-411 и Ваз-413 (мощностью, соответственно, 120 и 140 л.с.). Несмотря на низкую экономичность и малый ресурс, сфера применения роторного двигателя всё-таки нашлась – ГАИ, КГБ и МВД требовались мощные и незаметные машины. Оснащённые роторными двигателями «Жигули» и «Волги» легко догоняли иномарки.

С 80-ых годов 20 века СКБ был увлечён новой темой – применение роторных двигателей в смежной отрасли — авиационной. Отход от основной отрасли применения РПД привело к тому, что для переднеприводных машин роторный двигатель Ваз-414 создаётся лишь к 1992 году, да ещё три года доводится. В 1995 году Ваз-415 был представлен к сертификации. В отличие от предшественников он универсален, и может устанавливаться под капотом как заднеприводных («классика» и ГАЗ), так и переднеприводных машин (ВАЗ, Москвич). Двухсекционный «Ванкель» имеет рабочий объём 1308 см3 и развивает мощность 135 л.с. при 6000об/мин. «Девяносто девятую» он ускоряет до сотни за 9 секунд.

Роторно-поршневой двигатель ВАЗ-414

На данный момент проект по разработке и внедрения отечественного РПД заморожен.

Ниже представлено видео устройства и работы двигателя Ванкеля.

zewerok.ru

Видео, в котором показано как работает роторный двигатель изнутри

Посмотрите, как работает роторный двигатель Ванкеля в замедленной съемке

Редчайшее видео, которое мы никогда не увидели бы, если бы не рукастость владельца и по совместительству ведущего YouTube канала «Warp Perception».

 

Смотрите также: Самый необычный двигатель, созданный Роллс-Ройс

 

Этот технически подкованный гражданин, похоже, самостоятельно сделал работающий мини-роторный двигатель внутреннего сгорания, поместил вместо крышки прозрачный пластиковый колпак и, подсоединив шланг с бензином и свечу накаливания, принялся за дело.

 

Отснятый материал просто не описать словами. Это настолько завораживающее зрелище! Работа миниатюрного роторного двигателя видна изнутри, в замедленной съемке! Вы когда-нибудь сталкивались с чем-то подобным? Вряд ли.

 

Создатель по ходу съемок рассказывает о своем творении. Он называет крошечный мотор «авиадвигателем Ванкеля». То есть этот нестандартный двигатель, похоже, будет установлен на радиоуправляемую модель самолета. Но как игрушку такой шедевр просто невозможно воспринимать. Вот как он выглядит и самое главное – как работает:

 

В видео ясно показано, как ротор, вращающийся на эксцентриковом валу, втягивает внутрь воздух через впускное отверстие, увеличивает давление в камере сгорания перед воспламенением воздушно-топливной смеси*, с одной стороны, и, напротив, создавая разряженное давление на такте выпуска, с другой.

 

*В отличие от реальных двигателей Ванкеля, смесь поджигается свечой накаливания.

 

Учитывая, что карбюратор/впуск находится в левой нижней части изображения, источник зажигания – справа, а выхлоп – справа вверху, можно составить визуальную схему, показывающую процесс работы ДВС, начиная с впуска топливо-воздушной смеси:

Затем ротор проворачивает эксцентриковый вал и повышает давление в камере сгорания:

Источник зажигания (или две свечи, как в случае с многими двигателями Ванкеля) начинает процесс возгорания:

Это сгорание топлива и воздуха закручивает ротор во время рабочего такта:

И наконец, двигатель выплевывает газы и остатки несгоревшего топлива наружу:

На этот работающий шедевр можно смотреть вечно!

1gai.ru

Изобретатели роторного двигателя нового типа заключили контракт с DARPA / Habr

Компания LiquidPiston получила для финансирования своего проекта средства от DARPA. Проект представляет собой улучшенный мотор внутреннего сгорания роторного типа под названием X1. Во главе компании, работающей в городе Блумфилд штата Коннектикут, стоят инженеры, отец и сын, Николай и Александр Школьники.

Изобретатели заявляют множество уникальных свойств своего изделия. Например, тепловой КПД их мотора равен 50% (по сравнению с 20-30% обычного бензинового ДВС). Правда, если взять дизельный двигатель, добавить в него турбонаддув и промежуточное охлаждение, мы также получим КПД порядка 50%. Но при этом дизельный двигатель будет очень много весить.

Как утверждает Александр Школьник, типичный дизельный генератор на 3 кВт имеет размеры 100х60х60 см и весит более 70 кг. При этом генератор на основе двигателя X1 аналогичной мощности будет весить 15 кг (сам мотор – 4 кг), а размер его будет составлять 30х30 см. Фактически, такой генератор будет умещаться в рюкзаке.

Изобретатели постарались взять лучшее от разных тепловых циклов и уменьшить потери энергии двигателя. Теоретический предел КПД нового двигателя – 75%, но пока инженеры трудятся над достижением реального показателя в 57%.

Работа двигателя X1 напоминает процесс работы известного роторного двигателя Ванкеля, вывернутый наизнанку. Ротор закреплён на эксцентрическом валу, и содержит в себе каналы для впуска газовой смеси и выпуска отработавших газов. Расположенные по углам равностороннего треугольника свечи отрабатывают по разу за один оборот вала.

Двигатель работает на прямом впрыске и обеспечивает высокую степень сжатия — 18:1. Не меняющийся во время сгорания объём камеры позволяет сжигать топливо дольше и полнее. Отработавшие газы достигают почти атмосферного давления перед выходом, в связи с чем успевают отдать почти всю свою энергию ротору.

Высокая эффективность также позволяет отказаться от водяного охлаждения двигателя. Работая под нагрузкой, двигатель может пропускать циклы зажигания и засасывать воздух, который будет охлаждать его. Рассматривается даже вариант впрыска в камеру сгорания воды, которая будет охлаждать двигатель, уменьшать выбросы отработавших газов и одновременно превращаться в пар, толкающий ротор.


Слева — двигатель Ванкеля, справа — X1

Компактность и мощность двигателя заинтересовали военных, которым требуются портативные энергетические системы. В случае успешного внедрения двигатель найдёт множество применений — переносной электрогенератор, двигатель для беспилотных аппаратов, и многое другое.

Инженеры придумали новый двигатель ещё в 2003 году. К 2012 году был построен первый прототип, о котором написали в журнале «Популярная механика». В 2015 году компания не только заключила контракт с DARPA, но и приступила к разработкам мини-версии двигателя.

habr.com

Классификация роторных двигателей | Роторные двигатели

Ни в традиционной книжно – журнальной литературе, ни в обширных залежах интернет – сайтов нет серьезных и развернутых исследований в отношении такой перспективно продуктивной области технических устройств как роторные двигатели. Настоящий сайт усилиями его автора попытается заполнить этот пробел в истории техники и в сфере её нынешнего развития.


Безраздельно властвующие сегодня в мировой технике поршневые двигатели с линейным возвратно — поступательным движением поршня имеют огромные недостатки, которые невозможно преодолеть в принципе никакими конструкционными ухищрениями, никакими «электронными обвесами», никаким тюнингом. Поэтому мировая техническая мысль не менее ста лет пытается найти достойную альтернативу поршневым двигателям внутреннего сгорания. Надо сказать, что в области машин с выводом мощности на вал вращения (не реактивные двигатели) поршневой мотор уже давно вытеснен из многих сфер применения. В стационарных установках это место давно и прочно занял электрический мотор, а в авиации — газотурбинный двигатель, в энергетических установках больших мощностей – на крупных электростанциях и в быстроходных судовых силовых машинах надежно работают паровые турбины. Надо сказать, что все эти типы двигателей относятся к роторным машинам – в них главный рабочий орган совершаетпростое вращательное движение. С точки зрения кинематики механической схемы и динамики термодинамических процессов – это самый простой, эффективный тип движения. Но вот в области поршневых двигателей внутреннего сгорания, которые безраздельно господствуют в области мобильных моторов малой и средней мощности, все еще безальтернативно применяется малоэффективный метод движения главных рабочих органов – поршней в цилиндрах по типу возвратно – поступательного движения. При этом подобные моторы для преобразования возвратно – поступательного движения поршня во вращательное движение рабочего вала используют кривошипно — шатунный механизм. Главные характеристики такого механизма- высокая динамическая нагруженность знакопеременными нагрузками от возвратно – поступательных движений, значительные размеры и сложность в изготовлении. Именно несовершенный способ организации технологических процессов в поршневом двигателе и своеобразный режим работы кривошипно-шатунного механизма, приводят к плохому (пульсирующему) режиму крутящего момента поршевых моторов. Именно обладание таким некачественным типом крутящего момента требует от поршневых ДВС обязательногоприменения на транспортных средствах коробки передач.
Массовый потребитель неудовлетворён тяговыми и стартовыми возможностями традиционных поршневых двигателей, поэтому многие из владельцев автомобилей прибегают к разным типам «тюнинга двигателя«, чтобы повысить мощность и приемистость своих моторов.

Надо сказать, что подобная организация рабочих процессов и типов движений досталась современным двигателям внутреннего сгорания от паровых машин 19-го века, которые по своей сути были крайне малоэффективными машинами, а первые двигатели внутреннего сгорания в 60-х и 70-х годах позапрошлого века были именно копиями паровых машин, которые унаследовали от паровиков очень многие их родовые недостатки…
Выражаясь современным языком — создатель первого ДВС французский техник Ленуар в 60-х годах 19-го века совершил средней сложности тюнинг парового поршневого двигателя и у него получился поршневой атмосферный ДВС, работающий без сжатия.


Постараемся ответить на трудный вопрос — почему же наиболее массовая область техники – транспортное двигателестроение до сих пор оказывается в положении заповедника устаревших инженерных решений и архаических конструкций? И возможно ли мировому техническому прогрессу выбраться из этого более чем векового застоя?

Ответ на такие сложные вопросы таков – выбраться из такого незавидного положения возможно, но сложно. Именно такая изначальная сложность инженерной задачи и объясняет причину, по которой более ста лет в этой области массовой техники применяются устаревшие и малоэффективные, но технологически легко исполнимые и конструктивно надежные технические решения.

Возможность совершить технический прорыв, и выйти на новый уровень инженерных решений, возможен в области все тех же роторных машин, то есть использовать принцип простого вращения главного рабочего органа, как это используется в электродвигателях или в силовых турбинах. Но вся сложность заключается в том, что организовать рабочий цикл из четырёх тактов полноценного двигателя внутреннего сгорания вокруг простого вращения главного рабочего органа очень сложно. И именно вокруг этой сложной инженерной задачи вращались все усилия и творческие порывы конструкторской мысли не один десяток лет. Но сложность темы оказалась настолько велика, что до сегодняшнего дня массового вывода на рынок роторных двигателей и достойной их конкуренции с традиционными поршневыми двигателями так и не произошло. Сверх прогрессивной конструкции роторного двигателя внутреннего сгорания, которая бы по всем параметрам превосходила традиционные поршневые моторы до сих пор так и не создано.

Задачу настоящего сайта его автор видит как раз в том, чтобы исследовать саму возможность решения такой задачи, ввести читателя в круг уже имеющихся разработок и перспективных инженерных изысканий. Познакомить посетителей сайта как с мировыми новациями на эту тему, так и представить собственные разработки в этой области.

 

 

Классификация роторных двигателей весьма важна, так как она сразу очерчивает весьма обширный круг потенциально возможных конструкций, и главное — позволяет с первого шага выбрать наиболее перспективные и эффективные конструкции среди прочих мало работоспособных и не технологичных типов роторных машин.

Классификация роторных двигателей будет излагаться на основе авторского понимания этой схемы, которое опирается на систематизацию роторных машин, изложенную в разных аспектах в двух весьма обстоятельных книгах, которые, к сожалению, выходили мизерными тиражами, очень давно и не имели переизданий. Это Акатов, Бологов «Судовые роторные двигатели», Ленинград, 1967г. и Н.Ханин, С.Чистозвонов «Автомобильные роторно – поршневые двигатели», Москва, 1964г.

 

1) Роторные двигатели с неравномерным разнонаправленным (возвратно-вращательным) движением главных рабочих элементов.

Данный тип двигателя характеризуется тем, что в нем нет вращения ротора, а происходит его возвратно — дуговые качания вокруг оси. Процессы сжатия и расширения происходят между неподвижными лопатками ротора и статора, которые и не позволяют совершать ротору непрерывное вращение. По своим очертаниям этиот двигатель выглядит роторным, но по организации кинематики движения он по сути дела ближе к поршневым машинам с кривошипным механизмом, так как требует применения для преобразования колебательных движений вала во вращетельные особых сложных механизмов. В этом заключен главный недостаток его конструкции, поэтому данная схема не получила распространения. Кроме того в этой схеме возможны ударные столкновения лопастей между собой.

 

2) Роторные двигатели с неравномерным однонаправленным (пульсирующе-вращательным) движением главного рабочего элемента.  

Внутри корпуса вращаются два ротора с неравномерным вращением, которые пульсируя как бы «догоняют друг друга». Такты сжатия и расширения происходят меджу лопастями этих двух роторов во время их сближения и удаления. Главный недостаток этой роторной схемы — два вала двух роторов вращаются неравномерно — рывками, толчковыми импульсами. Поэтому требуется применение сложного, нагруженного знакопеременными нагрузками механизма для выравнивания скорости вращения валов мотора. Кроме того в этой схеме возможны ударные столкновения лопастей между собой.

 
3) Роторные двигатели с уплотнительными заслонками — лопастями, которые движутся роторе совершая возвратно-поступательные или качающиеся движения. Частный случай – с заслонками – лопастями, отклоняющимися на шарнирах на роторе;

Надо сказать, что подобная схема роторных машин давно и широко применяется в пневмомоторах, где сжатый воздух вращает лопатки таких устройств.Поэтому у многих инженеров и изобретателей при взгляде на такие роторные пневмомоторы появляется понятная мысль приспособить такую машину под двигатель внутреннего сгорания. Для этого нужно лишь встроить такт сжатия в кинематическую схему такой машины. И пытливые умы меняют форму внутренней камеры мотора — получается теоретическая схема, которая на бумаге вполне может качественно работать…. Но на практике все не так просто, реализация в жизнь этой схемы сталкивается с огромными сложностями. Первая трудность — в условиях высоких температур и давлений в ДВС очень сложно обеспечить подвижность лопаток ротора и практически невозможно обеспечить герметичность линий их контакта с корсусом…

При этом лопатки должны постоянно двигаться — под действием центробежной силы вращения и пружин или приводом от специального механизма — но оба варианта реализовать очень сложно. Поэтому в технике до сих пор нет работоспособных образцов этого типа роторных двигателей внутреннего сгорания.

 

Ниже приведены две различные теоретические схемы роторных ДВС этого типа, взятые из патентной литературы.

4) Роторные двигатели с уплотнительными заслонками, которые движутся в совершая возвратно — поступательные или качающиеся движения корпусе.

 

Данная схема по принципу работы похожа на предыдущую, только заслонки — лопасти, разделяющие камеры двигателя выдвигаются не из ротора, а из корпуса. При этом ротор должен иметь сложную форму с лопастями — лопатками, которые и будут воспринимать на себя давление газов, которые должны отсекать от других объемов рабочей камеры лопатки- заслонки в корпусе. Эта схема имеет примерно те же принципиальные недостатки, что и предыдущая схема.

 

5) Роторные двигатели с простым и равномерным вращательным движением главного рабочего и всех иных элементов.

По своей концепции такие схемы двигателей — наиболее перспективные и наиболее технически совершенные. В таких конструкциях нет ни одной детали совершающей возвратно — поступательные, качательные или планетарно- вращательные движения. Поэтому двигатели этого типпа могут без труда достигать скоростей вращения в десятки тысяч оборотов в минуту с соотвествующим набором мощности. В 19-м веке были созданы несколько типов роторных паровых двигателей этой схемы и они показывали значительно лучшие характеристики, чем поршневые паровые двигатели.

Но вот работоспособных двигателей внутреннго сгорания этой схемы построено не было, даже на уровней идей, отраженных в патентных заявках обнаружено буквально несколько единиц, да и те — малореализуемых конструкций.

 

6) Роторные двигатели с планетарным вращательным движением главного рабочего элемента. 

 

Наиболее известные широкой общественности роторные двигатели Ванкеля относятся именно к последней классификационной группе. О нем речь пойдет на отдельной страничке этого сайта.

 

 

И ещё немного

 

 

 

ТАБЛИЦА КЛАССИФИКАЦИИ

 

 


 

 

Подводя итог

 

Конечно, не все потенциально конструкции различных типов роторных двигателей из представленного перечня обладают выраженными достоинствами и обладают хорошей технической перспективой. Ибо принципиальным достоинством роторных моторов – абсолютным отсутствием возвратно поступательных движений обладают лишь роторные машины двух последних типов – классификационных групп № 5) и № 6). Но вот главным и безоговорочным преимуществом роторных механизмов – полным отсутствием знакопеременных, пульсирующих инерционным нагрузок и абсолютной уравновешенностью не обладают даже роторные двигатели типа Ванкеля. Такое идеальное положение характерно лишь для классификационной группы № 5), которую с полным правом и можно назвать совершенным роторным двигателем. Именно с позиций такого совершенного роторного двигателя будут рассматриваться все преимущества моторов роторной схемы и производится сравнения, как с традиционными поршневыми двигателями, так и с двигателями Ванкеля – роторными моторами с планетарным вращением главного рабочего органа.Тем более что автор этих строк прикладывает немалые усилия по реализации в жизнь именно такой схемы и надеется, что ему удастся создать действующий и промышленно применимый двигатель внутреннего сгорания именно такого типа.

www.rotor-motor.ru

Двигатель Ванкеля | Роторные двигатели

Единственной на сегодняшний день выпускаемой в промышленных масштабах моделью роторного мотора является двигатель Ванкеля, который относится к типу роторных двигателей с планетарным круговым движением главного рабочего элемента. Такая конструктивная компоновка роторного двигателя является, несомненно, самойпростой по своему техническому устройству, но не самой оптимальной по способу организации рабочих процессов и поэтому имеет свои неотъемлемые и серьезные недостатки.

Роторных двигателей с планетарным движением главного рабочего элемента существует достаточно много разновидностей, но по существу они отличаются друг от друга лишь количеством граней ротора и соотвествующей формой внутренней поверхности корпуса . Приведенные схемы разных компоновок подобных моторов взяты из книги «Судовые роторные двигатели», издания 1967 года, авторов Е.Акатов, В.Бологов и др. и подготовлены к публикаци в электронном виде автором этого сайта.

Роторный двигатель

   Кратко рассмотрим саму конструкцию двигателя этого типа вместе с историей его появления и сферой применения.   История создания роторных двигателей с планетарным вращательным движением главного рабочего элемента начинается в 1943 году, когда изобретатель Майлар предложил первую подобную схему. Потом в течение короткого времени было подано еще несколько патентов на двигатели подобной схемы. В том числе и разработчик германской фирмы NSU – В. Фреде. Но главным слабым местом этой схемы роторного двигателя были системы уплотнений между ребрами на стыке соседних граней вращающегося треугольного ротора и стенками неподвижного корпуса. Вот к решению к этой сложной инженерной задачи и был подключен Р.Ванкель как специалист по уплотнениям. Вскоре, благодаря своей энергичности и инженерному мышлению он стал лидером группы разработчиков. В 1957 году в лаборатории фирмы NSU построили прототип роторного двигателя типа «DKM», с треугольным ротором и рабочей камерой в форме капсулы, в которой ротор был неподвижным, а корпус вращался вокруг него. Гораздо более практичным был вариант компоновки типа «KKM» с нормальной схемой — рабочая камера в корпусе была неподвижной, а в ней вращался ротор. Этот мотор появился годом позже, в 1958-м. В ноябре 1959 года NSU официально объявила о создании работающего роторного двигателя. За короткое время около 100 компаний во всём мире приобрели лицензии на эту технологию, при этом 34 из них были японскими.  

Мотор оказался очень небольшим, мощным и имел мало деталей. В Европе начались продажи машин с роторными двигателями, но как оказалось у них мал моторесурс, они потребляли много топлива и имели очень токсичный выхлоп. Нефтяной кризис 1973 года из-за очередной арабо-израильской войны, когда цены на бензин увеличились в несколько раз, резко поставил вопрос об экономичности автомобильных моторов. Из-за этого в Европе и Америке попытки довести роторный двигатель Ванкеля до нужной степени совершенства были прекращены. И только японская компания Mazda упорно продолжала работы в этом направлении. А еще советский завод ВАЗ – так как бензин в то время в СССР стоил копейки, а мощный, хотя и с малым ресурсом, мотор был нужен силовым ведомствам. Но в 2004 году малосерийное производство на ВАЗе было закрыто и на сегодняшний момент Mazda является единственным автопроизводителем, который серийно выпускает автомобили с роторным двигателем.   В настоящее время в мире серийно выпускается лишь один автомобиль с роторным двигателем системы Ванкеля – это спортивное купе Mazda RX-8. На этой машине устанавливается мотор «RENESIS» с двумя роторными секциями общим объемом 1,3 литра. Двигатель исполняется в нескольких вариантах с мощностью от 200 до 250 л.с.

.

 

После краткого обзора истории роторного двигателя с планетарным движением ротора остановимся на рассмотрении его преимуществ и недостатков.   ПРЕИМУЩЕСТВА роторного двигателя Ванкеля по сравнению с традиционными поршневыми моторами:   1) Повышенная удельная мощность (л.с./кг), она практически в два раза превышает этот показатель поршневых 4-х тактных двигателей. Масса неравномерно движущихся частей в двигателе Ванкеля гораздо меньше, чем в аналогичных по мощности поршневых двигателях, и амплитуда таких неуравновешенных движений заметно меньше. Это происходит из-за того, что в «поршневике» осуществляются возвратно- поступательные движения, а в двигателе Ванкеля- вращательные, планетарной схемы. К тому же в двигателе Ванкеля отсутствуют коленчатый вал и шатуны.

На повышенную мощность Ванкеля играет и то, что такой двигатель однороторной конструкции выдаёт мощность в течение трёх четвертей каждого оборота выходного вала. В отличие от одноцилиндрового 4-х тактного поршневого двигателя, который выдаёт мощность только в течение одной четверти каждого оборота выходного вала.   Именно по этим причинам с единицы объема камеры сгорания в серийном роторном моторе Ванкеля снимается гораздо большая мощность. При объёме рабочей камеры 1300 см Mazda RX-8 имеет мощность 200 л.с – 250 л.с., а прежняя модель Mazda RX-7, с мотором такого же объема, но с турбокомпрессором выдавала 350 л.с.

Именно поэтому особым признаком Mazda RX являются отличные динамические характеристики:

  • на низкой передаче возможно без излишней нагрузки на двигатель разогнать машину выше 100 км/ч на более высоких оборотах двигателя (8000 об/мин и более).
  •  двигатель Ванкеля гораздо легче механически уравновесить и избавиться от вибрации, что позволяет повысить комфортность лёгких транспортных средств типа микроавтомобилей;
  •  габаритные размеры роторно-поршневого двигателя меньше в 1,5—2 раза в соотношении со сравнимым по мощности поршневым мотором.

В двигателе Ванкеля на 35 — 40 % меньшее количество деталей.

 Недостатки:

1) Малая длина рабочего хода грани треугольного ротора, Хотя эти показатели напрямую с поршневым мотором сравнивать сложно – слишком различны типы движений поршня и ротора, но у двигателя Ванкеля примерно на пятую часть меньше длина рабочего хода. Тут есть одно коренное отличие Ванкеля от поршневого мотора- у «поршневика» идет увеличение объема в направлении одного линейного направления, которое совпадает с направлением рабочего хода. А у Ванкеля – это движение сложное и только часть траектории перемещения треугольного ротора с планетарным движением становится собственно линией рабочего хода. (РИС.) Именно поэтому у двигателя Ванкеля топливная эффективность хуже, чем у поршневых моторов. Поэтому из-за малой длины рабочего хода очень высока температура выхлопных газов – рабочие газы не успевают передать основное свое давление на ротор, как уже открывается выхлопное окно и горячие газы высокого давления с еще не прекратившими горение объемными фрагментами рабочей смеси выходят в выхлопную трубу. Поэтому температура выхлопных газов у двигателя Ванкеля очень высока.

 

2) Сложная форма камеры сгорания «серповидной» формы. У такой камеры сгорания большая поверхность контакта газов со стенками корпуса и ротором. Поэтому значительная честь тепла уходит на нагрев деталей мотора, а это снижает тепловой КПД и усиливает нагрев мотора. Кроме того, такая форма камеры сгорания приводит к ухудшению смесеобразования и замедлению скорости горения рабочей смеси. Поэтому на моторе Mazda RX-8 стоят 2 свечи зажигания на одной роторной секции. Эти особенности так же отрицательно влияют на уровень термодинамического КПД.

3) Потенциально невысокий для роторного мотора крутящий момент. Для того чтобы снять вращение с движущегося ротора, центр вращения которого сам непрерывно осуществляет планетарное вращение по круговой траектории вокруг геометрического центра рабочей камеры, в этом двигателе применяется эксцентрично расположенные на главном валу диски. По сути дела – это элементы кривошипного устройства. То есть двигатель Ванкеля так и не смог полностью избавиться от главного недостатка классических поршневых ДВС – кривошипно – шатунного механизма. Хоть он и представлен в моторе Ванкеля в своем облегченном варианте – в виде эксцентрикового вала, но самые главные пороки этого механизма: рваный, пульсирующий режим крутящего момента и малое плечо главного элемента, воспринимающего крутящий момент – так и остались «не излеченными». (РИС.) Именно поэтому односекционный Ванкель малоработоспособен и нужно делать 2 или 3 роторные секции для получений нормальных рабочих характеристик, еще желательно ставить на вал дополнительно и маховик.   Кроме наличия в двигателе Ванкеля кривошипного механизма, на малый для роторного двигателя крутящий момент еще влияет и то, что кинематическая схема такого мотора устроена очень нерационально с точки зрения восприятия поверхностью ротора давления рабочих газов расширения. Поэтому лишь некоторая часть давления – около трети – переводится в рабочее вращение ротора и создает крутящий момент. Подробнее крутящем моменте поговорим в специальном разделе сайта.

Подробно о принципе возникновения крутящего момента в роторном двигателе Ванкеля Смотри на страничке сайта КРУТЯЩИЙ МОМЕНТ

4) Присутствие в корпусе вибраций. Дело в том, что система роторного мотора с планетарным движением рабочего элемента предполагает неравновесное движение этого органа. Т.е. при вращении центр масс ротора совершает непрерывное вращательное движение вокруг центра масс корпуса и радиус этого вращения равен плечу эксцентрика главного вала мотора. Именно поэтому на корпус мотора действует изнутри постоянно вращающийся вектор силы, равный центробежной силе, возникающей на роторе. То есть ротор при вращении на вращающемся в свою очередь эксцентриковом валу имеет в характере своего движения неизбежные и выраженные элементы колебательного движения. Что и приводит к неизбежности вибраций. (РИС.)

5) Быстрый износ торцевых радиальных уплотнений на углах треугольника ротора, так как на них идет сильная радиальная нагрузка, неизбежная в двигателе Ванкеля по самому его принципу работы. (РИС.)

6) Постоянная угроза прорыва газов высокого давления из полости одного рабочего такта в полость другого такта. Это происходит потому, что контакт радиального уплотнения ребра ротора и стенки камеры сгорания происходит по одной тонкой линии. При этом еще существует проблема прорыва газов через гнезда установки свечей, когда над ними проходит ребро ротора.

7) Сложная система смазки вращающегося ротора. В моторе Mazda RX-8 специальные форсунки впрыскивают масло в камеры сгорания для смазки трущихся при вращении о стенки камеры сгорания ребер ротора. Это усиливает токсичность выхлопа и одновременно делает мотор очень требовательным к качеству масла. Кроме того, при высоких оборотах возникает повышенные требования к смазке цилиндрической поверхности эксцентриковой части главного вала, вокруг которой вращается ротор, и которая снимает главное усилие с ротора и переводит во вращение вала. Именно эти две технические трудности, решить которые весьма непросто, приводили к недостаточной смазке на высоких оборотах наиболее нагруженных трением деталей такого мотора, а это, соответственно, резко уменьшало моторесурс двигателя. Именно недостаточное решение таких технических задач приводило к очень малому ресурсу моторов Ванкеля, которые выпускал отечественный АвтоВАЗ. (РИС.- указать цилиндрическую поверхность контакта внутреннего гнеда ротора и эксцентр диска вала)

8) Высокие требования к точности исполнения деталей сложной формы делают такой мотор сложным в производстве. Такое производство требует высокоточного и дорогого оборудования — станков, способных создавать сложные объемы рабочей камеры с криволинейной эпитрохоидальной поверхностью. Сам ротор так же имеет форму сложного треугольника с выпуклыми поверхностями.

 

***

Как видно из содержания этого раздела сайта, роторный двигатель Ванкеля имеет выраженные преимущества, так и большое количество практически непреодолимых недостатков, которые так и не позволили этому типу двигателей вытеснить поршневые моторы из арсенала современной техники. Хотя такие перспективы всерьез обсуждались в конце 60-х и начале 70-х годов прошлого века, и в аналитических обзорах высказывались мнения, что к концу 80-х годов 20-го века более половины автомобилей планеты будут уже иметь роторные двигатели разных типов….   И, несмотря на наличие отрицательных черт и технических трудностей, роторный двигатель Ванкеля смог появиться технически и состоятся как коммерчески дееспособный вид продукции, потому что недостатки его главных конкурентов – поршневых моторов с кривошипно – шатунными механизмами оказываются еще серьезнее и многочисленнее.И это, не смотря на более века попыток их совершенствования.

 

 

 

*** 

ПРОДОЛЖЕНИЕ РАЗГОВОРА О РОТОРНОМ ДВИГАТЕЛЕ ВАНКЕЛЯ

сентябрь 2016г.    Одна из самых трудных проблем всех типов роторных двигателей- это создание эффективной системы уплотнений, которая должна создавать замкнутый объём в рабочих камерах роторного двигателя. Пока в схеме типа Тверской это является одной из главных трудностей. Там предстоит сделать эффективную и непростую в изготовлении систему уплотнений.И чтобы потренировать руку и получить положительный опыт в таком деле, я решил создать небольшой рабочий экземпляр двигателя Ванкеля прямо с «ноля». Работа уже идет к концу- прилагаю фото такого моторчика.

Уплотнения

Ориентировочная мощность одной такой роторной секции предполагается около 35-40 л.с.. Мотор из 2-х роторных секций ожидается мощностью в 70-80 л.с..

***

ДВИГАТЕЛЬ ВАНКЕЛЯ — ДЕКАБРЬ
25 декабря 2016г    Изготовлене малого Ванкеля идет в оптимальном ритме. Двигатель готов на 95%, остаются небольшие мелочи.
Так как на некоторых площадких в интернете эти мои фото уже обсуждаются и вокруг них накручиваются немало фантазий- сообщаю.
Двигатель создан с «НОЛЯ», ни одной детали из посторонних моделей в нем нет. В нем нет ни деталей от Sachs Wankel, которые уже не выпускаются лет 30, ни от современных малых современных aixro и пр. и др.
Кормпус двигателя выполнен из конструкционной легированной термостойкой стали, подвергнутой термохимическому упрочнению.Твердость поверхностного слоя имеет показатель в 70 HRC. Глубина термоупроченного слоя состовляет в среднем 1,5 мм.Точно так же обработаны и до таких же показателей твердости и износоустойчивости доведены радиальные и торцевые уплотнения.Двигатель имеет воздушное охлаждение, масло для смазки будет подаваться в камеру сжатия через 2-е специальные форсунки. Т.е. не нужно будет мешать масло с бензином как в 2-х тактных моторах.

Двиигатель Ванкеля

Двигатель Ванкеля на холодной обкатке.

 

 

 

 

 

 

 

 

 

Двигатель поставлен на токарный станок и в течение нескольких часов подвергался холодной обкатке. Это позволило оценить работу уплотнений и герметичность получаемых секций в двигателе как вполне благополучную. В ближайшее время будет замеряно давление, которое получается в секторе сжатия мотора.
Запуск двигателя планируется на конец января.

ВОЗОБНОВЛЕНИЕ РАБОТЫ ПОСЛЕ  ПАУЗЫ

После некоторого перерыва активные работы возобновлены. Сейчас (март-май 18г) идут активные пробные прокрутки малой опытной модели двигателя. По ее итогам идет доработка уплотнений — самого трудного и деликатного элемента в роторных двигателях. Результаты весьма обнадеживающие.

www.rotor-motor.ru

Роторно-лопастной двигатель Вигриянова — Википедия

Роторно-лопастной двигатель

Статья или раздел содержит противоречия и не может быть понята однозначно.

Следует разрешить эти противоречия, используя более точные авторитетные источники или корректнее их цитируя. На странице обсуждения должны быть подробности.

Роторно-лопастной двигатель Иванова (Вигриянова) — роторно-лопастной двигатель внутреннего сгорания. Особенность двигателя — применение вращающегося сложносоставного ротора, размещённого внутри цилиндра и состоящего из четырёх лопастей.

Роторно-лопастная схема двигателя была предложена ещё в 1910 году. Предлагалось только придумать к ней механизм, позволяющий двигаться лопастям по определённой закономерности. В шестидесятых годах прошлого века немецкая фирма Клёкнер-Хумбольд-Дойц (нем. Klöckner-Humboldt-Deutz) провела исследование этого двигателя с механизмом Кауэрца (нем. Eugen Kauertz). Результаты были отрицательными. Одним из отрицательных факторов была работа самого механизма преобразования движения лопастей.

В 1973 году была разработана идея нового механизма преобразования движения лопастей. Идея пришла одновременно О. М. Иванову (Томск) и группе людей из Бердска (Новосибирская область) независимо друг от друга. М. С. Вигриянов к этому не имел ни малейшего отношения.[источник не указан 3409 дней][нейтральность?] Информацию о возможности изготовления роторно-лопастного двигателя он получил лишь в 1978 году, когда Иванов по приезде в Бердск изготовил первый макет этого двигателя.

Бердская группа не стала дальше работать над двигателем по причине внутренних разногласий. Иванов же создал группу из трёх человек: О. М. Иванов — автор идеи, М. С. Вигриянов — инженер-патентовед, В. А. Перемитин — слесарь.

На бердском опытно-механическом заводе (БОМЗ) был изготовлен рабочий образец, который не удалось запустить по простейшим причинам, которые стали понятны позже. За время работы с образцом стали видны некоторые недостатки этого механизма. Иванов предложил новый механизм преобразования движения, который можно было легко изготовить на доступном оборудовании. Двигатель с этим механизмом был изготовлен в Институте теплофизики СО РАН. Из бракованных деталей был собран макет, демонстрируемый Вигрияновым на фотографиях.[источник не указан 3409 дней]

Разработкой интересовались в России и за рубежом: немцы, американцы, бразильцы. Предполагалось просто проверить на работоспособность данную схему, и если бы мотор проработал всего лишь пять минут, авторов схемы это вполне удовлетворило бы. Испытания показали, что в принципе мотор работоспособен, но требует больших доработок. Иванов предложил применить пластинчатые уплотнения вместо канальных в версии Вигриянова и выполнить их из графита. Нерешённой осталась схема уплотнений и смазки торцов валов.

Больше этот двигатель не изготавливался. Директор Института теплофизики СО РАН академик Владимир Накоряков создал акционерное общество для производства данного двигателя.[источник не указан 3409 дней] Интересы Иванова в данном деле не присутствовали. Без автора мотор дальше дорабатывать было некому. Авторство Вигриянова в некоторой степени ставится под сомнение, так как по сути никаких кардинальных изменений в конструкции двигателя с его стороны не было,[нейтральность?] тем более не мог продолжить разработку.

Роторно-лопастной двигатель: цикл работы

На паре соосных валов установлены по две лопасти, разделяющие цилиндр на четыре рабочие камеры. Каждая камера за один оборот совершает четыре рабочих такта (набор рабочей смеси, сжатие, рабочий ход и выброс отработанных газов). Таким образом, в рамках данной конструкции возможно реализовать любой четырёхтактный цикл.

Роторно-лопастной двигатель, который изначально планировалось применять на Ё-мобиле

Преимущества двигателя Иванова (Вигриянова) (роторного двигателя с неравномерным однонаправленным (пульсирующе-вращательным) движением главного рабочего элемента) характерны для любого роторного двигателя:

Недостатки этого типа роторных двигателей связаны с принципом организации рабочих процессов в конструкционной схеме процессов. Схема подразумевает снятие мощности с двух разных валов (каждый соединён со своим «коромыслом» с лопастями), движущихся неравномерно — то затормаживаясь, то ускоряясь, поочередными импульсами (при этом как бы то догоняя, то останавливая друг друга). Снятие мощности с таких «пульсирующих» валов было крайне затруднительно. Требуется также согласование их движения друг относительно друга. Согласование выполняется крайне сложным и громоздким механизмом синхронизации и схемой движения-вращения с двух валов. На фотографии этот механизм виден на задней части корпуса — его диаметр и ширина больше, чем сам диск рабочей камеры, где происходят рабочие циклы. Именно эта неравномерность вращения двух рабочих валов, их неравномерное, пульсирующее движение и определяют все трудности создания работоспособных типов этого подкласса роторных двигателей. В созданных прототипах этих двигателей огромные инерционные нагрузки быстро разрушали применяемые механизмы согласования вращения двух валов и связанных с ними роторных лопастей. По этой причине реально и эффективно работающих моделей этого типа до сих пор не создано.

К недостаткам можно, в частности, отнести высокую тепловую напряженность ротора, особенно его лопастей. Для мощных РЛДВС обязательна эффективная принудительная система охлаждения ротора.

В работе двигатель Иванова (Вигриянова) равнозначен восьмицилиндровому поршневому двигателю, поскольку за один оборот реализует четыре рабочих цикла.

Отношение М. Вигриянова к перспективам развития РЛДВС[править | править код]

Сообщаю заверительно, что тема роторно-лопастной машины объёмного вытеснения мною хорошо изучена, найдены все решения, необходимые и достаточные для реализации РЛДВС, но окончательный вариант конструкции РЛДВС получается слишком усложнённым, и я принимаю решение не продолжать дальше работу над РЛДВС. Правда, есть другая, и, пожалуй, основная причина – нахождение другого варианта двигателя, отличающегося от РЛДВС простотой и вдвое большим КПД.[1].

В 2002 году в СМИ появилась статья[2] о том, что проблема механизма преобразования попеременного движения лопастей в постоянное движение вала якобы была решена: упоминается, что решение достигнуто с помощью некого «дифференциального механизма». Однако, в приведённой статье какие-либо строгие подтверждения этого факта отсутствуют, но при этом указано, что изготовить двигатель не удалось, по словам автора, из-за отсутствия финансов.

ru.wikipedia.org

Что случилось с двигателем Ванкеля и куда он исчез с авторынка: Движение: Ценности: Lenta.ru

В этом году отмечается полувековой юбилей сразу двух знаковых для истории автомобилестроения моделей. Немецкий NSU Ro 80 и «японка» Mazda Cosmo стали первыми автомобилями с роторным двигателем, подходившими под определение «массовые». Но, увы, изобретенному инженерами фирмы NSU Ванкелем и Фройде новому типу двигателя внутреннего сгорания так и не удалось завоевать мир.

После создания в конце XIX столетия поршневого двигателя внутреннего сгорания прогресс в этой области пошел по пути разработки уже имеющейся концепции. Инженеры создавали все более мощные и совершенные двигатели, но суть оставалась все той же — в цилиндрическую камеру тем или иным способом попадало топливо, образовывавшиеся после сгорания топлива газы толкали поршень. И только в конце 1950-х два немецких инженера, работавшие в известной тогда своими мотоциклами фирме NSU Феликс Ванкель и Вальтер Фройде, предложили принципиально новую конструкцию.

В их двигателе цилиндры отсутствовали как класс: установленный на валу трехгранный ротор был жестко соединен с зубчатым колесом, входившим в зацепление с неподвижной шестерней — статором. По сравнению с обычным поршневым мотором внутреннего сгорания, двигатель Ванкеля (как он стал известен по имени одного из создателей) имел меньшие в 1,5-2 раза габариты, большую удельную мощность, меньшее число деталей (два-три десятка вместо нескольких сотен), а также — за счет отсутствия коленвала и шатунов — более высокие динамические показатели. Впрочем, были и недостатки, с которыми так и не удалось справиться за все время выпуска автомобилей с роторными двигателями: довольно высокий расход топлива на низких оборотах, повышенное потребление масла и сложность в производстве (из-за необходимости точности геометрических форм деталей).

NSU Spider

Фото: Science Museum / Globallookpress.com

Любопытно, что сам Ванкель не умел водить автомобиль и не имел водительских прав — поскольку с раннего детства страдал сильной близорукостью. Это, впрочем, не помешало ему доработать первоначально мотоциклетный движок под нужды автопрома, и в 1964 году NSU выпустила первый в мире серийный роторный автомобиль — кабриолет NSU Spider на базе заднеприводной модели Sport Prinz. Машина выпускалась ограниченной серией (за три года было собрано 2375 экземпляров) и была довольно дорога, в пересчете на нынешние деньги — около 22 тысяч долларов за двухместную малолитражку длиной 3,6 метра.

В 1967 году на рынок вышли сразу две модели с роторными двигателями, ставшие действительно массовыми. NSU представила топовый седан Ro 80, а японская фирма Mazda — спортивное купе Cosmo, первое в полувековой череде машин с двигателем Ванкеля в своей линейке. Немецкая машина, увы, оказалась довольно капризной и «сырой», хотя и была признана «автомобилем года-1968» в Европе. Постоянные рекламации и необходимость дорогостоящего ремонта уже проданных авто привели компанию практически к банкротству — в 1969 году она была куплена концерном Volkswagen и слита в одно подразделение с маркой Audi. Производство Ro 80 тем не менее продолжалось до 1977 года; всего было выпущено более 37 тысяч автомобилей. Передовой для конца 1960-х дизайн кузова, сперва не оцененный потребителями, оказал впоследствии влияние, в частности, на популярную модель Audi 100.

NSU Ro 80

Фото: CPC Collection / Alamy / Diomedia

Кстати, лицензию на «ванкель» купил и СССР. 140-сильным роторным двигателем оборудовались версии вазовских «пятерок» и «семерок» для милиции и КГБ. Внешне они не отличались от серийных машин, но на дороге демонстрировали необходимую резвость. В 1990-е малой серией выпускались и «гражданские» 2108 и 21099 с роторным мотором ВАЗ-415, также абсолютно идентичные по дизайну кузова с «нормальными». Обманчивая внешность породила множество шоферских легенд: неприметная «девятка» вдруг срывалась с места и обгоняла солидный BMW (разгон до сотни у роторной версии занимал 9 секунд, а максимальная скорость достигала 190 километров в час).

Экспериментировали с двигателем Ванкеля и французы из Citroen. Однако модель GS Birotor с двухроторным двигателем вышла на рынок в октябре 1973 года — точно в месяц начала крупнейшего нефтяного кризиса. Машина стоила на 70 процентов дороже стандартной модели GS с четырехцилиндровым мотором, а топлива потребляла больше, чем представительская DS. В результате удалось с большим трудом продать 847 экземпляров, после чего производство было свернуто.

В конечном счете на рынке «ванкелей» осталась только Mazda, продолжавшая совершенствовать двигатель и выпустившая около 20 моделей с роторным двигателем. Инженерам японской компании удалось повысить экономичность и снизить объем токсичных выхлопов (еще одна «врожденная болезнь» роторных двигателей), но даже со всеми усовершенствованиями последняя выпускавшаяся роторная модель, RX-8, не соответствовала нормам Евросоюза. В 2010 году ее прекратили продавать в Европе, а в 2012-м было свернуто производство и для других рынков. Спортивные роторные модели Mazda, однако, за почти полвека производства успели завоевать поклонников во многих странах, включая нашу. Вот что рассказывает о своей RX-8 москвич Олег, автолюбитель со стажем:

«Приобрести RX-8 я решил вовсе не из-за роторного двигателя, а скорее вопреки ему. Но ничего похожего на рынке тогда не было: полноценное четырехместное купе с дверями, которые по старой памяти именуют suicide doors — разве что Rolls-Royce. А еще эти «надбровные дуги» над передними колесами… Однако все, с кем я делился идеей, крутили пальцем у виска: «больше 30 тысяч ротор не ходит», «масла жрет столько же, сколько и бензина», «а бензина — как американский грузовик», «ниже нуля не заводится» и так далее. «Зато не угонят», — решил я. Машина пришла зимой, и первые же недели показали, что перемещение по заснеженной Москве не то что бы совсем невозможно, но требует очень крепких нервов — машина норовила уйти в занос в каждом повороте или забуксовать там, где легко проезжала любая переднеприводная малолитражка. Но, как назло, даже в лютый мороз заводилась исправно. Да и сколько той зимы.

Mazda RX-8

Фото: National Motor Museum / Heritage Images / Getty Images

Снег сошел, и Mazda, наконец, оказалась в своей стихии. Да, масло (каждую тысячу приходилось открывать капот и доливать до рисочки), да, расход (в особенно хорошие дни бывало и больше 20 литров на сотню), но все это компенсировалось возможностью обмануть слух окружающих и, раскрутив двигатель до 9000 оборотов, прикинуться гоночным мотоциклом. Точный руль, задний привод и 230 лошадиных сил превращали любую, еще не изобиловавшую тогда камерами дорогу, в гоночный трек практически без моего участия. Даже стоя под окном, машина, казалось, куда-то ехала. Из-под этого окна, разоблачив тем самым еще один миф, ее и угнали. К тому времени, несмотря на то, что роторного двигателя побаивались даже «официалы», машина прошла 70 тысяч километров без намеков на какие-либо неполадки.

Audi A1 E-Tron Concept

Фото: Adrian Moser / Bloomberg / Getty Images

Хотя производство серийных автомобилей с роторным двигателем прекратилось еще пять лет назад, разработчики, похоже, не собираются навсегда расставаться с «ванкелем». Перспективными в этом смысле представляются гибридные силовые установки — благодаря малому размеру роторно-поршневого двигателя. Так, Audi в 2010 году продемонстрировала в Женеве гибридный прототип A1 e-tron concept с 60-сильным электромотором и двигателем Ванкеля рабочим объемом всего 250 кубических сантиметров, развивающим мощность 20 лошадиных сил и выполняющим фактически функцию генераторной установки.

Какие бывают двигатели и что они едят

На сегодняшний день наиболее распространённым двигателем является поршневой двигатель внутреннего сгорания с искровым зажиганием, или Отто-мотор. Он установлен на большинстве автомобилей в мире. Это легкий, дешевый, тихий и хорошо изученный двигатель. Однако человечество постоянно пытается придумать ему альтернативу как по устройству, так и использованию другого рабочего тела – топлива. И иногда у инженеров получаются весьма занятные экземпляры.

Гибридный двигатель на сжатом воздухе

В 2013 году французский концерн PSA представил систему Hybrid Air, работающую на сжатом воздухе. Однако они были далеко не первыми. Motor Development International на Женевском автосалоне 2009 года представили пневмоколяску MDI AIRpod и ее более серьезный вариант MDI OneFlowAir. В 2011 году японцы провели тест-драйв концепт-кара Toyota Ku Rin, который проехал 3,2 км на одном «заряде» сжатого воздуха. А в 2012 году Tata Motors представила трехместный и трехколесный автомобиль Tata AIRPod.

В отличие от предшественников, разработка PSA оказалась элегантнее и проще. Два баллона со сжатым воздухом, компрессор, нагнетающий воздух, и гидравлический мотор, передающий энергию сжатого воздуха в КПП. Система сама пополняла воздушные запасы (например, Tata Airpod требовалось «накачивать» каждые 200 км). Помимо установки со сжатым воздухом, под капотом Hybrid Air предполагалось устанавливать классический 3-цилиндровый двигатель внутреннего сгорания, который бы играл роль насоса и вспомогательного мотора.

В городе машина с Hybrid Air может до 80% времени ехать только на воздухе, не загрязняя атмосферу. Топливная экономичность варьируется от нулевых значений расхода и выбросов до 2,9 л/100 км и 69 г/км при использовании двигателя внутреннего сгорания соответственно. В компании планировали ставить систему Hybrid Air начиная с 2016 года, но – не сложилось.

Водородные топливные элементы

Существует три типа двигателей, использующих водород: одни работают как обычный двигатель внутреннего сгорания, другие – газотурбинные, третьи – агрегаты, использующие химическую реакцию водорода.

Первый двигатель внутреннего сгорания, работающий на водороде, появился в 1806 году, водород в нем использовался как обычный бензин. Однако использовать такие оригинальные двигатели накладно. В газотурбинных двигателях газ сжимается и нагревается, затем выделяемая энергия преобразуется в механическую. В качестве топлива можно использовать практически любое горючее.

Но самые интересные из водородных силовых установок – «химические». Концерны BMW и Toyota представили кроссовер i Hydrogen NEXT на базе последнего X5. Его силовая установка состоит из электродвигателя и литий-ионной батареи, стеков с водородными топливными элементами, химического преобразователя и двух баков, в которых под давлением 700 бар хранится 6 кг водорода. Стек специальных ячеек, наполненных водородом, конвертирует химическую энергию газа в электричество, которое аккумулируется в батарее, а она в свою очередь питает электромотор. Электрохимический генератор в составе топливного элемента выдает мощность 125 кВт (170 л.с.), а пиковая мощность силовой установки — 275 кВт (374 л.с.). В качестве топлива используется смесь водорода и кислорода из окружающего воздуха, вместо вредных выбросов система вырабатывает водяной пар. В BMW заявляют, что к 2022 году планируют выпустить первую партию водородомобилей.

Дизельный двигатель

Более ста лет назад, 23 февраля 1892 года Рудольф Дизель получил патент на свой двигатель. Принципиальным отличием его двигателя от Отто-мотора было то, что топливо в нем нагревалось быстрым сжатием, а не поджогом. Удивительно, но первые двигатели Дизеля работали на растительных маслах или легких нефтепродуктах. Кроме того, первоначально в качестве идеального топлива он предлагал использовать каменноугольную пыль, так как в Германии не было запасов нефти.

Спектр видов топлива для дизельных двигателей весьма широк. Сюда включаются все фракции нефтеперегонки от керосина до мазута и ряд продуктов природного происхождения: рапсовое масло, фритюрный жир, пальмовое масло и многие другие. Дизельный двигатель может с определенным успехом работать даже на сырой нефти.

Кстати, в 1898 году на Путиловском заводе в Петербурге был построен первый в мире «бескомпрессорный нефтяной двигатель высокого давления» – агрегат, аналогичный мотору Дизеля. Наша конструкция оказалась более совершенной и перспективной. Но под давлением владельцев лицензий Дизеля все работы над отечественным аналогом дизельного двигателя были остановлены.

Роторный двигатель

Самый престарелый из всех тепловых двигателей именно роторный. С древности известны колеса ветряных и водяных мельниц, которые можно отнести к примитивным роторным двигательным механизмам. В 19 веке стали активно использовать роторные паровые двигатели.

В 1957 года Феликс Ванкель и Вальтер Фройде показали общественности полностью работоспособный роторно-поршневой двигатель (РПД) внутреннего сгорания. Через 7 лет этот движок установили на спорткар NSU Spider, который стал первым серийником с роторно-поршневой двигатель. Такой двигатель лишен большого количества движущихся частей, он проще, а особая конструкция мотора позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Но из-за конструктивных особенностей у роторных двигателей крайне низкий ресурс, высокий расход масла и топлива, хотя и большая отдача с меньшего объема.

Из-за этих особенностей единственной компанией, которая массово, помимо NSU, выпускала автомобили с роторно-поршневым движком была Mazda. И легендарная Mazda RX-8 была скорее имиджевой моделью, нежели коммерческой. В итоге в начале 2000-х работу с роторно-поршневыми двигателями свернули.

По материалам портала «Популярная механика»

Mazda вернёт на рынок роторные двигатели в составе гибридов в 2022 году

Принцип устройства роторного двигателя внутреннего сгорания известен многим по школьному курсу физики, а вот на практике с ним сталкиваются единицы. Японская компания Mazda выпускала серийные автомобили с роторными ДВС с 1967 по 2012 годы, но собирается вернуть их на рынок в 2022 году уже в составе гибридных автомобилей.

Источник изображения: Википедия

По замыслу японских инженеров, как отмечает издание Nikkei Asian Review, в составе гибридной силовой установки роторный двигатель сможет служить приводом генератора, вырабатывающего электроэнергию для вращения колёс посредством электродвигателей. Первым носителем необычной силовой установки станет компактный кроссовер MX-30, который будет модернизирован в 2022 году.

Источник изображения: Mazda

Базовая версия MX-30 продаётся с 2020 года в качестве электромобиля, обеспечивающего запас хода не более 200 км. Подобная характеристика вынуждает многих потенциальных потребителей терять интерес к этому электромобилю, но Mazda рассчитывает удвоить запас хода за счёт добавления в состав силовой установки роторного двигателя внутреннего сгорания. Он характеризуется высокими оборотами и высокой удельной мощностью, компактными размерами и низким уровнем вибрации. Отдельной проблемой является компоновка дверей модели MX-30 — задняя створка распахивается против хода, что делает проблематичным её использование в узких пространствах, а для женщин с детьми, нередко выбирающих компактные кроссоверы, дверь получилась слишком тяжёлой. Что будет сделано для устранения данной проблемы, источник не конкретизирует.

Дальнейшая эволюция модельного ряда Mazda будет придерживаться двух параллельных траекторий. К малым транспортным средствам будут отнесены электромобили и все типы гибридов, включая варианты с роторным двигателем. В «большом» классе Mazda будет делать упор на применение ДВС с шестью цилиндрами объёмом более трёх литров, включая дизели. Такими силовыми установками будут оснащаться крупные седаны с задним приводом и большие кроссоверы. С их помощью Mazda рассчитывает приблизиться к премиальному ценовому сегменту, вот только останется ли к 2025 году достаточное количество ценителей классических ДВС, остаётся большим вопросом, с учётом ужесточения экологических норм во всём мире. Чтобы формально удовлетворять этим требованиям, свои флагманские модели Mazda превратит в «мягкие» гибриды.

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

Роторный двигатель — устройство, особенности и принцип работы

Когда автомобили с поршневыми двигателями внутреннего сгорания уже широко распространились по всему миру, некоторые инженеры попытались разработать роторные двигатели, такие же эффективные и мощные. Существенных успехов добились специалисты из Германии, что неудивительно, ведь именно в этой стране изобрели автомобиль.

Немного истории

В 1957 году свет увидел первый роторно-поршневой двигатель. Впоследствии он был назван именем одного из разработчиков — Феликса Ванкеля. Второй человек, Вальтер Фройде, участвующий в процессе изобретения, незаслуженно попал в тень соавтора. Оба инженера были представителями немецкой компании NSU, производившей авто и мототехнику.

Годом позднее выпустили первый автомобиль с РПД. К сожалению, даже главных конструкторов модель новой машины не удовлетворила. Дви́гатель доработали, и в конце 60-х годов на свет появился седан, получивший звание «Авто года». Это был Ro-80 той же компании NSU. До 100 км он разгонялся всего за 12,8 с, развивал скорость до 180 км/ч, а весил немногим больше тонны. По тем временам это были грандиозные показатели. Лицензию на производство роторных моторов стали сразу же приобретать одна автомобильная компания за другой.

Неизвестно, как сложилась бы судьба изобретения Ванкеля, если бы в 1973 году не начался энергетический кризис, и цены на нефть резко повысились. Роторный двигатель внутреннего сгорания съедал слишком много топлива, поэтому от его применения начали отказываться.

В конце 90-х авто с моторами Ванкеля выпускали только Россия и Япония. Российские автомобили ВАЗ, оснащенные РПД, малоизвестны, а вот японским моделям удалось добиться мировой популярности.

В настоящее время автомобили с роторными двигателями производит лишь компания Mazda. Японским специалистам удалось усовершенствовать автомобильный мотор до такой степени, что он стал потреблять в 2 раза меньше масла и на 40% меньше топлива. Токсичность выхлопов также сократилась, и двигатель теперь соответствует европейским экологическим стандартам. Новым витком в развитии РПД стало применение водорода в качестве топлива.

Основы устройства роторного двигателя

Чтобы понять, как работает роторный двигатель, надо разобраться с его устройством. Две важные детали РПД — ротор и статор. Ротор, установленный на валу, вращается вокруг неподвижной шестерни — статора. Соединение с шестерней происходит посредством зубчатого колеса. Делают ротор из легированной стали и помещают в цилиндрический корпус.

Ротор двигателя в поперечном срезе имеет треугольную форму, его грани выпуклые, а три вершины постоянно контактируют с внутренней поверхностью корпуса. Таким образом, пространство цилиндра разделяется на три камеры. В результате вращения объем камер меняется. В определенный момент, из-за особенностей формы профиля корпуса, камер становится четыре.

  • На первом этапе в одну из камер через отверстие (впускное окно) запускается топливо.
  • Далее объем камеры с топливом уменьшается, впускное окно полностью закрывается и начинается сжатие топлива.
  • На следующем этапе образуется четыре камеры, срабатывают свечи (их две), происходит возгорание топлива, и совершается полезная работа мотора.
  • При дальнейшем вращении ротора открывается выпускное окно, в которое выходят продукты горения (выхлопные газы).

Как только выпускное окно закрывается, открывается впускное отверстие и цикл повторяется.

Один рабочий цикл совершается за один полный оборот вала. Чтобы поршневой двигатель совершил такую же работу, он должен быть двухцилиндровым.

Для обеспечения герметичности на вершинах ротора устанавливают уплотнительные пластины. К цилиндру их придавливают пружины и центробежная сила, добавляется также давление газа.

Чтобы лучше понять, как устроен роторный двигатель, и что это такое вообще, необходимо изучить схему. На ней представлено поперечное сечение агрегата и процессы, происходящие при движении ротора. Схема роторного мотора показывает, какие этапы проходит ротор, играющий роль поршня.

Типы роторных двигателей

Древнейшие роторные двигатели — это водяные мельницы, в которых колесо вращается от действия воды и передает энергию валу. Устройство современно роторного двигателя, работающего на топливе, значительно сложнее. В нем камера может быть:

  • герметично закрыта;
  • постоянно контактировать с внешней средой.

Первый тип устройств применяют на средствах передвижения, а второй в газовых турбинах. Двигатели с закрытой камерой в свою очередь разделяются на несколько видов. Классификация роторных моторов следующая.

  1. Ротор вращается попеременно то в одну, то в другую сторону, его движение неравномерно.
  2. Вращение происходит в одну сторону, но скорость меняется, движение пульсирующее.
  3. Двигатели с уплотнительными заслонками, сделанными в виде лопастей.
  4. Равномерно вращающийся ротор с заслонками, которые движутся вместе с ротором и выполняют функцию уплотнителя.
  5. Двигатели с ротором, совершающим планетарное движение.

Существует также еще два вида типа роторных двигателей, в которых главный элемент равномерно вращается. Они отличаются организацией рабочей камеры и конструкцией уплотнителей. Двигатель Ванкеля относится к пятому пункту из представленного выше списка.

Преимущества РПД

Рассмотрев устройство роторного двигателя и принцип работы, можно понять, что он полностью отличается от поршневого. Роторный двигатель внутреннего сгорания более компактный, состоит из меньшего количества деталей, а его удельная мощность больше, чем у поршневого мотора.

РПД легче уравновесить, чтобы свести вибрации к минимуму. Это позволяет устанавливать его на легкий транспорт, например, микроавтомобили.

Количество деталей меньше, чем у поршневого двигателя почти в 2 раза. Размеры тоже значительно меньше, и такое преимущество упрощает развесовку по осям, позволяет добиться большей устойчивости на дороге.

Традиционный поршневой двигатель совершает полезную работу только за два оборота вала, а в роторном двигателе полезная работа совершается за один оборот ротора. Это является причиной быстрого разгона автомобилей с РПД.

Высокий расход топлива РПД

Устройство и принцип работы роторного двигателя на удивление просты, понятны и остроумны. Почему же он не получил распространения подобно поршневому ДВС? Не последнее место здесь занимает экономичность.

Роторный двигатель внутреннего сгорания потребляет слишком много топлива. При объеме всего 1,3 литра на каждые 100 км уходит почти 20 литров бензина. По этой причине запускать массовое производство автомобилей с РПД решились не многие компании.

В свете последних событий на Ближнем Востоке, когда за ресурсы ведется ожесточенная война, а цены на нефть и газ остаются по-прежнему довольно высокими, ограниченное применение РПД вполне понятно.

Другие важные недостатки

Следующим недостатком роторно-поршневого двигателя является быстрый износ уплотнителей, расположенных по ребрам ротора. Износ этот происходит по причине быстрого вращения, и как следствие, трения ребер о стенки камеры.

В дополнение к этому усложняется система смазки ребер. Компания Мазда сделала форсунки, которые впрыскивают масло в камеру сгорания. В связи с этим требования к качеству масла повысились. Постоянной обильной смазки также требует главный вал, вокруг которого происходит движение.

Техническое решение вопросов смазки требовало особого подхода, и справиться с задачей смогли только японские инженеры после долгих лет экспериментов.

Температура выхлопных газов у РПД выше, чем у поршневого двигателя. Это связано с относительно малой длиной рабочего хода грани ротора. Процесс горения едва успевает закончиться, как грань уже переместилась настолько, что открывается выпускное окно. В результате в выхлопную трубу выходят газы, которые полностью не передали давление ротору, и температура их высока. В атмосферу также попадает небольшая часть недогоревшей топливной смеси, что отрицательно сказывается на окружающей среде.

В роторном двигателе сложно обеспечить герметичность камеры сгорания. В процессе работы стенки статора неравномерно разогреваются и расширяются. В результате возможны утечки газа. Особенно нагревается та часть, в которой происходит сгорание. Чтобы справить с этой проблемой, различные части делают из разных сплавов. Это в свою очередь усложняет и удорожает процесс производства двигателей.

На стоимость производства роторно-поршневых двигателей Ванкеля не лучшим образом влияет сложная форма камеры. На самом деле у цилиндра не овальное сечение, как иногда говорят. Сечение имеет форму эпитрохоида и требует высокоточного исполнения.

Итак, становится понятно, что у роторного двигателя есть плюсы и минусы. Их можно свести в следующую таблицу.

Достоинства

Недостатки

Хорошая сбалансированность Высокий расход топлива, особенно на малых оборотах
Минимальные вибрации Нарушение герметичности из-за перегрева
Быстрый разгон Требует частой замены масла (каждые 5 тысяч км)
Компактные размеры Быстрый износ уплотнителей
Высокая мощность Дороговизна производства некоторых деталей
Небольшое количество основных деталей Повышенный уровень выброса CO2

Из-за быстрого износа деталей ресурс роторного двигателя составляет около 65 тыс. км. Для сравнения ресурс традиционного двигателя внутреннего сгорания в 2, а то и в 3 раза больше. Обслуживание роторно-поршневых двигателей требует большей ответственности, поэтому они привлекают внимание преимущественно профессионалов. Частично инженерам удалось устранить недостатки автомобилей с РПД, но некоторые из них все же остались.

Роторно-поршневые двигатели Мазды

В то время как другие мировые производители отказались от производства роторных двигателей, корпорация Mazda продолжила работу над ними. Ее специалисты усовершенствовали конструкцию и получили мощный мотор, способный конкурировать с лучшими европейскими агрегатами.

Работать с роторно-поршневым двигателем японцы начали еще в 1963 году. Они выпустили несколько моделей автобусов, грузовиков и легковых авто.

С 1978 по 2003 год компания производила знаменитый спорткар RX-7. Его приемником стала модель RX-8, получившая более 30 наград на международных моторных выставках.

На RX-8 был установлен двигатель Renesis (Rotary Engine Genesis). В разной комплектации автомобиль продавался по всему миру. Самые мощные модели (250 л. с., 8,5 тыс. оборотов в минуту) продавали в Северной Америке и Японии. В 2007 годы в Токио на автосалоне представили концепт кар с мотором Renesis II мощность 300 л. с.

В 2009 году автомобили Мазда с роторным мотором были запрещены в Европе, поскольку выброс углекислого газа превышал существующие на тот момент нормы. В 2102 году массовое производство японских автомобилей с роторными двигателями было прекращено. На данный момент РПД от компании Mazda устанавливают только на спортивные гоночные автомобили.

Принцип работы роторного двигателя авто, разновидности, плюсы и минусы

 Принцип работы «обычного» ДВС знаком, наверное, почти всем. Именно такими моторами оснащается подавляющее число автомобилей, и мало кто знает о, так сказать, «параллельных» изысканиях конструкторов, ищущих другие пути создания двигателей.
В силу ряда причин, многие «новинки» в среде ДВС так и остались неизвестными широкой публике, хотя некоторые из таких «необычных» двигателей устанавливались на серийные автомобили.
Речь пойдёт о роторно-поршневых двигателях (РПД). Наибольшее внимание мы уделим описанию принципов работы роторного двигателя Ванкеля – ведь машины с именно его роторными двигателями выпускались на некоторых автозаводах (в частности, на ВАЗе).

Содержание статьи

Устройство обычного двигателя

В обычном двигателе ударная волна расширяющихся в результате вспышки газов толкает поршень, который передаёт усилие на коленчатый вал.

Всем известно что, в обычном двигателе ударная волна расширяющихся в результате вспышки газов толкает поршень, который передаёт усилие через кривошипно-шатунный механизм на коленчатый вал, который под воздействием усилия, передаваемого шатунами, начинает вращаться. Для того, чтобы впуск топлива/выпуск отработанных газов и момент воспламенения топлива были согласованы, требуется достаточно сложный газораспределительный механизм.

Работа роторного двигателя

 

 

Сам ротор, напоминающий по форме треугольник, имеет внутри зубчатое колесо, которое сцеплено с валом двигателя.

Сам ротор, напоминающий по форме треугольник, имеет внутри зубчатое колесо, которое сцеплено с валом двигателя, приводимым во вращение за счёт расширяющихся газов, воздействующих на ротор. Для обеспечения сжатия-расширения топливной смеси камера («цилиндр»), в которой вращается ротор, имеет сложную форму. Такую форму поверхности называют эпитрохоидальной, и для её точного изготовления требуется высокоточное оборудование. Более того, зубцы ротора и вала расположены таким образом, чтобы поршень (имеющий вид треугольника Рело), вращался по этой сожной траектории, «углами» прижимаясь к поверхности «цилиндра» – иначе не избежать прорыва газов в процессе работы двигателя.
Рисунок наглядно демонстрирует, как работает роторный двигатель. Взрывающаяся топливная смесь, впрыснутая через специальное «окно», толкает ротор, а впускное окно автоматически перекрывается стенкой поршня.
Точно также, в нужные моменты, закрывается и открывается «выпускной клапан».

Плюсы и минусы роторного двигателя

 

 

Помимо прочих достоинств РПД достаточно динамичен и быстро развивает высокие обороты.

Как видите, вся конструкция достаточно изящна. Как подсчитали эксперты, в РПД используется примерно на 1000 деталей меньше, чем в «привычных» ДВС (например, отпадает сложная конструкция газораспределительного механизма и его привода). К тому же РПД, имеющий две рабочих камеры (и, соответственно, два ротора), может за одно и то же время совершить такое же число циклов, как и V-образная «восьмёрка».
Хоть на схематическом рисунке предоставлена работа роторного двигателя внутреннего сгорания с воспламенением от искрового разряда, в РПД можно реализовать практически любой рабочий цикл – включая дизельный.
К несомненным достоинствам, такая конструкция двигателя, все вращающиеся детали работают соосно, придаёт непревзойдённую плавность работе роторного двигателя и отсутствие разрушительных вибраций.
Помимо прочих достоинств РПД достаточно динамичен и быстро развивает высокие обороты. Правда, «на холостых» он достаточно «прожорлив». Если мотор имеет два цилиндра, один из них при необходимости отключают.
КПД роторного двигателя является рекордным – 40%, но, к сожалению, он имеет также рекордно низкий ресурс некоторых деталей (зачастую вызванных «резвостью» двигателя), но частая замена моторного масла способна значительно продлить жизнь механизмов и ресурс роторного двигателя. Пока конструкторам удаётся справиться с чрезмерным износом «граней» «треугольника» путем применения высоколегированных сталей.

Другие виды роторных двигателей

Двигатель Ванкеля не явился единственной попыткой (притом, весьма удачной!) создания роторного двигателя – существуют и другие, менее известные, их варианты.

Двигатель Зуева

 

 
По сравнению с двигателем Ванкеля, двигатель Зуева достаточно громоздкая конструкция:

Роторно-лопастной двигатель

Господинн Прохоров именно роторно-лопастными двигателями планировал оснащать «Ё-мобили».

Конструкция оригинальная, но почему-то создатели данного мотора так и не явили миру её безупречно действующий образец. Кстати, г-н Прохоров именно такими моторами планировал оснащать «Ё-мобили».

Автомобили с роторным двигателем

Среди автопроизводителей, оснастивших машины РПД, наиболее известна Mazda RX-8. Но были и другие. В частности, советскими спецслужбами всячески поощрялось создание ВАЗ именно с роторными двигателями. Видимо, оперативные службы заинтересовались «резвостью» мотора.
Впрочем, кроме вышеперечисленных, роторно-поршневые двигатели уже давно «прошли обкатку» на многих авто.
 

Как работают роторные двигатели | HowStuffWorks

Роторные двигатели используют четырехтактный цикл сгорания, который является тем же циклом, что и четырехтактные поршневые двигатели. Но в роторном двигателе это делается совершенно по-другому.

Этот контент несовместим с этим устройством.

Если вы посмотрите внимательно, вы увидите, что лепесток смещения на выходном валу вращается три раза за каждый полный оборот ротора.

Сердце роторного двигателя — это ротор. Это примерно эквивалент поршней в поршневом двигателе. Ротор установлен на большом круглом выступе выходного вала. Этот выступ смещен от центральной линии вала и действует как рукоятка кривошипа на лебедке, давая ротору рычаг, необходимый для поворота выходного вала. Когда ротор вращается внутри корпуса, он толкает лопасть по узким кругам, поворачивая три раза на за каждый оборот ротора.

По мере того, как ротор перемещается через корпус, три камеры, создаваемые ротором, изменяют размер. Это изменение размера вызывает перекачивающее действие. Давайте рассмотрим каждый из четырех тактов двигателя, глядя на одну сторону ротора.

Впуск

Фаза впуска цикла начинается, когда кончик ротора проходит через впускное отверстие. В момент, когда впускное отверстие выходит в камеру, объем этой камеры близок к своему минимуму.Когда ротор движется мимо впускного отверстия, объем камеры увеличивается, втягивая топливно-воздушную смесь в камеру.

Когда пик ротора проходит через впускной канал, камера закрывается и начинается сжатие.

Сжатие

По мере того, как ротор продолжает движение вокруг корпуса, объем камеры становится меньше, и топливно-воздушная смесь сжимается. К тому времени, когда поверхность ротора приблизилась к свечам зажигания, объем камеры снова близок к своему минимуму.Это когда начинается горение.

Горение

Большинство роторных двигателей имеют две свечи зажигания. Камера сгорания длинная, поэтому пламя распространялось бы слишком медленно, если бы была только одна заглушка. Когда свечи зажигания воспламеняют топливно-воздушную смесь, давление быстро растет, заставляя ротор двигаться.

Давление сгорания заставляет ротор двигаться в направлении увеличения объема камеры.Газы сгорания продолжают расширяться, перемещая ротор и создавая мощность, пока пик ротора не пройдет через выхлопное отверстие.

Выхлоп

Как только пик ротора проходит через выхлопное отверстие, газообразные продукты сгорания под высоким давлением могут свободно выходить из выхлопа. По мере того как ротор продолжает двигаться, камера начинает сжиматься, вытесняя оставшийся выхлоп из порта. К тому времени, когда объем камеры приближается к своему минимуму, пик ротора проходит через впускное отверстие, и весь цикл начинается снова.

Особенность роторного двигателя заключается в том, что каждая из трех сторон ротора всегда работает в одной части цикла — за один полный оборот ротора будет три такта сгорания. Но помните, что выходной вал вращается три раза за каждый полный оборот ротора, что означает, что на каждый оборот выходного вала приходится один ход сгорания.

Как работает роторный двигатель?

► Как работает двигатель Ванкеля
► Чем они отличаются от 4-тактного
► Почему они возвращаются

Как и более обычные бензиновые двигатели, роторный двигатель использует топливо, воспламеняемое искрой для выработки энергии, но, помимо этого, он во многом отличается от обычного автомобильного двигателя; прежде всего, как он берет расширяющиеся газы и тепло сгорания и превращает их в движение, чтобы толкать вашу машину.

Как работает роторный двигатель?

В обычном двигателе сгорание действует на набор поршней, которые производят линейное движение внутри цилиндров двигателя. Поршни поднимаются и опускаются, как ноги велосипедиста-толкача, и прикреплены к коленчатому валу, который является компонентом, преобразующим это движение вверх и вниз в круговое движение, приводящее в движение колеса.

В роторном двигателе все основные внутренние компоненты вращаются в основном круговыми движениями, поэтому это более простой и эффективный способ передачи энергии от сжигания бензина до вращения колес.Таким образом, роторный двигатель имеет меньше движущихся частей, он меньше, легче и мощнее для своей производительности.

В то время как Mazda, без сомнения, является чемпионом по роторным двигателям, японский бренд — не единственный производитель, который баловался этой идеей.

Также, как и в обычных поршневых двигателях, роторная компоновка роторного двигателя может быть продублирована для увеличения мощности и мощности. Большинство роторных моделей было «сдвоенным» ротором, но Mazda создала версии с тремя и четырьмя роторами.

Однако, как и следовало ожидать, у этой гениальной идеи есть недостатки.

Запечатанная судьба

Во-первых, изнашиваются специальные уплотнения (их можно услышать, называемые торцевыми, концевыми или верхними уплотнениями), которые помогают создавать сжатие, необходимое для горения. Когда это происходит, роторные двигатели начинают терять мощность и могут сжигать масло. Замена уплотнителей — большая работа.

Выбросы и экономика

В то время как характеристики мощности роторного двигателя очень хороши, они не так хороши, когда дело доходит до экономии топлива, и влияние на выбросы также отрицательное.Турбонаддув и каталитические нейтрализаторы в последних разработках помогли в определенной степени, но не настолько, чтобы сохранить принцип с сегодняшними строгими правилами.

Абсолютная мощность

В то время как роторный двигатель со свободными оборотами делает автомобили, приводимые в движение им, увлекательными и увлекательными, это достигается за счет низкой мощности и особенно крутящего момента. Эта уникальная производительность ограничивает двигатель для конкретных приложений и в основном для спортивных автомобилей.

Многие автопроизводители возились с роторными двигателями, но только Mazda начала их массовое производство.А когда это произошло в 1960-х и 1970-х, низкая надежность роторного двигателя чуть не поставила компанию на колени. Но современные технологии и материалы означают, что у роторного двигателя может быть будущее, и если вы когда-либо ездили на нем, вы знаете, насколько они восхитительно плавные и полные характера.

Что дальше?

С тех пор, как Mazda прекратила выпуск RX-8 в 2012 году, автомобили с роторным двигателем не были доступны в течение длительного времени, казалось, что так и останется из-за присущих роторным конструктивным недостаткам.

Тем не менее, Mazda недавно подтвердила, что возродит культовый роторный двигатель и что она нашла способы решения своих инженерных задач.

Детали по-прежнему очень легкие, и модель, знаменующая возрождение, еще не объявлена, но вы, возможно, снова сможете путешествовать с помощью этого необычного силового агрегата.

Как работает роторный двигатель Ванкеля

Одна из проблем обычных автомобилей двигатель дизайн заключается в том, что поршни двигаться по прямой вверх и вниз в своих цилиндры , производить то, что есть известный как возвратно-поступательное движение .

Внутри двухроторного двигателя Ванкеля

В NSU Ro80 и более современных автомобилях Mazda с двигателями Ванкеля используются сдвоенные роторы. Роторы приводят в движение выходной вал, проходящий через их центр. Этот вал соединен с маховиком для сглаживания импульсов мощности двигателя. Преимущество сдвоенных роторов заключается в том, что, когда они настроены на поворот на 180 ° в противофазе друг с другом, один ротор компенсирует любые вибрации, производимые другим ротором, что обеспечивает исключительно плавную работу двигателя.

Но опорные колеса требуют другого движения — вращательное движение . К преобразовать возвратно-поступательное движение во вращательное движение, поршни связаны с коленчатый вал так что при движении поршней вверх и вниз коленчатый вал повернуть. Тогда вращательное движение коленчатого вала может передаваться на дорогу. колеса, чтобы вести их.

Автомобильный двигатель был бы намного проще, если бы поршни могли вращаться вместо движение вверх и вниз, потому что вращательное движение, создаваемое таким образом, может быть передается непосредственно на опорные колеса (хотя передача все равно будет нужный).

Еще одно преимущество такого роторный двигатель было бы что поршни бы всегда двигаться в одном направлении — по кругу. Ни один из двигателей мощность будет потрачена впустую, остановив поршни в конце их Инсульт и снова ускоряя их в обратном направлении, как это происходит в Поршневой двигатель.

Емкости Ванкеля

Дизайн Двигатель Ванкеля делает его намного более мощным, чем поршневой двигатель такой же мощности.NSU Wankel Spyder с двигателем объемом 498 куб. См, обеспечивающим максимальную скорость почти 100 миль в час, это один из примеров. Еще совсем недавно купе Mazda RX-7 оснащалось двигателем всего 1308 куб. См (654 куб. См на ротор), но имеет аналогичные рабочие характеристики Porsche 924S объемом 2479 куб. См. Чтобы уравнять мощности двигателей Ванкеля и поршневых двигателей в с точки зрения производительности, мощность двигателя Ванкеля должна быть увеличена на 1.8. Это означает, что двигатель RX-7 объемом 1308 куб. См имеет такую ​​же выходную мощность, что и поршневой двигатель объемом 2354 куб. см.

Разработка

Несмотря на привлекательность идеи, когда-либо применялся только один тип роторного двигателя. успешно применяется в автомобилях. Это двигатель Ванкеля, разработанный Феликсом. Ванкель.

Он начал исследования роторных компрессоры в 1938 году. После Второй мировой войны он объединился с NSU (немецкий производитель автомобилей, позже ставший частью VW Audi) превратить его компрессоры в практичный двигатель внутреннего сгорания .

К 1957 году Ванкель построил экспериментальный роторный двигатель, работавший на испытательный стенд, и в 1964 году этот двигатель был предложен публике в NSU Wankel Spyder.Этот небольшой спортивный автомобиль с задним расположением двигателя имел двигатель Ванкеля объемом 498 куб. мог развивать 50 л.с. и иметь максимальную скорость 95 миль в час (152 км в час).

Spyder так и не завоевал популярность у публики, и автомобиль, который действительно прославил двигатель Ванкеля NSU R080, который был признан автомобилем Год 1968. Он имеет двухроторный двигатель 995c и может развивать скорость 110 миль в час. (176км в час).

Внутри Ванкеля

Сердце двигателя Ванкеля — трехсторонний поршень, называемый ротором. вращающийся внутри корпус ротора .На каждой стороне корпуса есть торцевая пластина.

Боковые стороны ротора изогнуты на три лопасти, а корпус ротора в форме толстой восьмерки, так что при вращении ротора зазор между каждой стороной ротора и корпусом попеременно увеличивается и меньше. Этот постоянно меняющийся разрыв — ключ к горение процесс.

топливо / воздушная смесь поступает в корпус в момент, когда в ловушке объем между стенкой корпуса и одним из лопастей ротора увеличивается.По мере увеличения этого объема создается пылесос , рисование в топливно-воздушная смесь через отверстия в корпусе и на концевой пластине.

По мере вращения ротора этот объем начинает сокращаться, сжимая топливно-воздушная смесь. Затем эта смесь проходит через свеча зажигания , установлен в стенка корпуса. В Искра загорается загорание смеси, в результате чего она развернуть и вращать ротор вокруг его цикл . На данный момент объем между ротор и корпус увеличиваются, чтобы обеспечить расширение газов.Наконец, объем снова уменьшается, вытесняя отработанные газы через выхлопные отверстия.

Таким образом, ротор совершает тот же четырехтактный цикл, что и поршневой двигатель — индукция , сжатие , мощность и выхлоп — но каждый из трех лепестки ротора проходят через этот процесс непрерывно, поэтому есть три силовые удары за каждый оборот ротора.

Через центр ротора проходит выходной вал , к которому ротор связан системой планетарные передачи аналогично автоматическому коробка передач (см. Системы 44 и 45).Зубчатая передача позволяет ротору следовать эксцентричный орбите так, чтобы три конца ротора постоянно касались Корпус.

Когда ротор вращается, он вращает этот вал. Вал несет это вращательное движение к коробка передач и так с опорными катками.

Рабочий цикл роторного двигателя Ванкеля

Индукция

Когда кончик ротора проходит через впускное отверстие, следующая камера начинает увеличиваться в размерах из-за эксцентрической орбиты ротора.Это приводит к засасыванию топливно-воздушной смеси в камеру.

Сжатие

По мере того как ротор продолжает вращаться, камера начинает уменьшаться в размерах, сжимая топливно-воздушную смесь, готовую к воспламенению.

Зажигание

Когда камера проходит над свечами зажигания, они загораются, чтобы воспламенить смесь. Все современные двигатели Ванкеля имеют две свечи зажигания, обеспечивающие равномерное сгорание топливно-воздушной смеси по всей камере.

Выхлоп

Расширение горящих газов заставляет ротор совершать полный цикл, проходя через выхлопное отверстие, где газы вытесняются из камеры. Этот цикл продолжается во всех трех камерах одновременно.

Отличия

Конструкция двигателя Ванкеля означает, что он не имеет клапаны — топливо / воздух смесь просто входит и выходит из камеры через отверстия в корпусе ротора и торцевую пластину.Поэтому и качелей нет, распредвал или толкатели.

Это означает, что Ванкель имеет примерно половину количества частей Поршневой двигатель. Кроме того, он легче и компактнее. Однако все равно нуждается во многих из тех же вспомогательных устройств, что и другие двигатели — стартер , генератор , система охлаждения , карбюратор или же впрыск топлива , масляный насос и так далее. Однажды двигатель установлен со всем этим, он теряет большую часть своего преимущества компактность и меньший вес.

Тем не менее, двигатель Ванкеля в Ro80 получил широкую оценку за плавность хода и отсутствие вибрации.Отчасти это было из-за неисправности двигателя. с двумя роторами, установленными на одной линии друг с другом, но в отдельных корпусах. Каждый вращались примерно на том же выходном валу, но их синхронизация была выставлена ​​на 180 ° наружу, так что любой дисбаланс сила произведенные одним ротором, будут аннулированы тем же сил другого ротора, и чтобы они совместно производили более равномерный поворотное движение.

Ограничения Ванкеля

Хотя проблема уплотнения теперь в значительной степени разобрались, он до сих пор не удалось полностью использовать потенциал двигателя Ванкеля для использования в транспортных средствах из-за ограниченного срока службы компонентов двигателя.Еще одна проблема заключается в том, что двигатель обычного поршневого автомобиля хорошо работает в довольно широком диапазоне скоростей и нагрузок, тогда как Двигатель Ванкеля лучше всего работает только в гораздо более узком диапазоне.

Ранние проблемы

Как только основная конструкция Ванкеля была определена, вскоре возникнут проблемы. стало очевидным. Один из них — износ уплотнений. Роторы герметизированы со всех сторон, чтобы следите за тем, чтобы газы не просачивались через наконечники из частей с высокой степенью сжатия корпус к частям с низкой степенью сжатия.Эти уплотнения были подвержены износу и поломка, в результате чего двигатель теряет компрессию и, следовательно, мощность.

На поршневом двигателе это уплотнение частично обеспечивается клапанами и частично за счет поршневые кольца , но уплотнения на двигателе Ванкеля представляли особую проблемы.

Уплотнения наименее эффективны при низких оборотах двигателя, где они должны быть снабжены пружинами, чтобы удерживать их прижатыми к стенке корпуса.

Но при высоких оборотах двигателя комбинация центробежные силы и высокий газ давление плотнее прижмите уплотнения к корпусу.Результирующий трение означало потерю мощности и значительный износ уплотнений, что вскоре сломал.

Ранние Ванкели имели печати, сделанные из углерод , но в более поздних конструкциях были особые чугунные уплотнения, которые оказались более прочными. Для дополнительной защиты внутри корпуса и концевых пластин нанесено износостойкое покрытие.

Вторая серьезная проблема — износ восьмиугольной рабочей поверхности, вызванный «стуком» печатей. Это приводит к гофре на ходу. поверхность и сокращает срок службы двигателя.

Формы камеры

Mazda 13B Роторный двигатель

Схема впуска, двигателя и выхлопа роторного двигателя Mazda 13B. Этот двигатель имеет электронный впрыск топлива с двумя топливными форсунками на ротор. Первичные форсунки работают постоянно, в то время как вторичные форсунки включаются только при повышенных оборотах двигателя или нагрузке. Выбросы выхлопных газов сокращаются за счет использования термического реактора для нагрева выходящих газов — тепло подается теплообменником дальше по выхлопной трубе.

Другой проблемой двигателя Ванкеля является форма горение камера . В типичном поршневом двигателе камера примерно равна полусферической формы, что обеспечивает равномерное сгорание топливно-воздушной смеси и постепенно. В двигателе Ванкеля камера сгорания неизбежно длинная. и плоская, форма которой значительно затрудняет оптимальное сгорание.

Частичное решение проблемы камеры сгорания заключалось в поместиться две искры заглушки расположены на небольшом расстоянии друг от друга.Mazda — чей RX-7 теперь единственный Автомобиль с двигателем Ванкеля, который сегодня продается в Великобритании (см. Ниже) — взял этот принцип за основу. далее, установив две свечи, одна из которых зажигает доли секунды. позже, чем другой. Это расположение требует двух отдельных зажигание системы с двумя катушки .

Отсутствие успеха

Несмотря на мощность и плавность хода Ванкеля, ему пока не удалось завоевать популярность среди подавляющего большинства производителей автомобилей.

Основная причина — высокий расход топлива, вызванный тенденцией топливно-воздушная смесь гореть неравномерно.Неравномерное сгорание в двигателе Ванкеля также создает еще одну проблему — высокий выброс уровни частично обгоревшего углеводороды (загрязнение выхлопными газами).

За годы, прошедшие с тех пор, как R080 принес теоретические преимущества Ванкеля двигатель к известности, были различные нефтяные кризисы и продолжающиеся давление со стороны правительств и общественности с целью снижения уровня выбросов выхлопных газов и лучший расход топлива.

Ни одно из этих требований не благоприятствует двигателю Ванкеля, и, кроме того, он означало, что большинству производителей автомобилей пришлось потратить много времени и денег на повышение эффективности существующих двигателей.

Проблема с роторными двигателями: инженерное объяснение

Высокая мощность в крошечном, простом и легком корпусе. В роторном двигателе Ванкеля есть что любить, но недостаточно, чтобы поддерживать его жизнь. Давайте посмотрим, что пошло не так

Они компактные, мощные и производят потрясающий шум.Так почему же роторные двигатели так и не стали популярными, и почему от этой концепции почти отказался один производитель, который ее поддерживал? Давайте проведем вас через это.

NSU Spider 1964 года был первым серийным автомобилем в мире, у которого задние колеса плавились под действием роторного двигателя Ванкеля. Автомобильный дебют Ванкеля готовился десятилетиями, хотя срок его службы был относительно коротким, и он закончился выпуском Mazda RX-8 2011 года. Это приводит нас к нескольким вопросам:

  1. Как работает роторный двигатель?
  2. Какие преимущества у этого двигателя? (Зачем это сделали?)
  3. Какие недостатки есть у двигателя? (Почему он умер?)

1.Как работает роторный двигатель?

Процесс роторного двигателя очень похож на то, что происходит в традиционном поршневом цилиндровом двигателе. Разница в том, что вместо поршней здесь ротор треугольной формы, а вместо цилиндров — корпус, напоминающий овал.

Впуск

По мере того, как ротор перемещается внутри корпуса, небольшой воздушный карман расширяется в больший, создавая тем самым вакуум.Этот вакуум поступает во впускные отверстия, из которых воздух и топливо затем всасываются в камеру сгорания.

Сжатие

Ротор продолжает вращаться, сжимая топливовоздушную смесь по плоской стороне корпуса ротора.

1 МБ

Благодарю Итана Смейла за эпический GIF!

Мощность

Две свечи зажигания используются для зажигания топливовоздушной смеси, помогая ускорить процесс сгорания и обеспечить сгорание большей части топлива, и это заставляет ротор продолжать вращаться.

Выхлоп

Подобно такту впуска, ротор перемещается до тех пор, пока не станут доступны выпускные отверстия, а затем выхлопные газы под высоким давлением вытесняются наружу, когда ротор закрывается из корпуса.

Важно понимать, что в отличие от поршневого цилиндрового двигателя в одном корпусе ротора все эти события происходят почти одновременно. Это означает, что в то время как всасывание происходит на одной части ротора, также происходит рабочий такт, что приводит к очень плавной подаче мощности и большому количеству мощности в небольшом корпусе.

2. Какие преимущества дает двигатель Ванкеля?

Удельная масса

Одним из самых больших преимуществ роторного двигателя был его размер.Двигатель 13B Mazda RX-7 занимал около одного кубического фута объема, но вырабатывал значительную мощность для своих небольших размеров.

Меньше движущихся частей

Часто в инженерии простейшее решение оказывается одним из лучших. Роторный двигатель резко сокращает количество деталей, необходимых для сгорания, при этом в двухроторном двигателе вращаются всего три основных компонента.

Плавная и высокая частота вращения

Роторный двигатель не имеет возвратно-поступательной массы, как клапаны или поршни в традиционном двигателе.Это приводит к невероятно сбалансированному двигателю с плавной подачей мощности и способности развивать высокие обороты, не беспокоясь о таких вещах, как поплавок клапана.

3. Почему умер роторный двигатель?

Mazda RX-8 2011 года стала последним серийным автомобилем с ротором Ванкеля 1.3-х литровый Ренезис. Независимо от того, соответствовал ли RX-8 названию роторного двигателя, мы все прослезились из-за потери этого инновационного и уникального подхода к внутреннему сгоранию. Что нанесло последний удар? RX-8 не соответствовал нормативам выбросов Евро 5, и поэтому после 2010 года он больше не мог продаваться в Европе. Хотя в штатах он оставался законным, продажи значительно упали, поскольку модель существует с 2004 года.

Какие недостатки у поворотной конструкции?

Всего три основных движущихся части в двухроторном двигателе Ванкеля

Низкий тепловой КПД

Из-за длинной камеры сгорания и уникальной формы тепловой КПД двигателя был относительно ниже по сравнению с поршневыми аналогами.Это также часто приводило к выходу несгоревшего топлива из выхлопных газов (отсюда тенденция роторных двигателей к обратному воспламенению, что, очевидно, столь же круто, сколь и неэффективно).

Ожог ребенка Ожог

Роторный двигатель по своей конструкции сжигает масло. Во впускном коллекторе есть масляные распылители, а также форсунки для распыления масла непосредственно в камеру сгорания. Это не только означает, что водитель должен регулярно проверять уровни масла, чтобы поддерживать надлежащую смазку ротора, но также означает, что из выхлопной трубы выходит больше вредных веществ.А окружающая среда ненавидит плохое.

Через это отверстие в корпусе масло впрыскивается непосредственно во время такта впуска двигателя.

Уплотнение ротора

Еще одна проблема, которая также может повлиять на выбросы: сложно герметизировать ротор, когда он находится в очень разных температурах.Помните, что всасывание и сгорание происходят одновременно, но в очень разных местах корпуса. Это означает, что верхняя часть корпуса относительно холодная, а нижняя часть намного горячее. С точки зрения герметичности это проблематично, так как вы пытаетесь создать уплотнение «металл-металл» из металлов, которые работают при существенно разных температурах. Использование рубашек для охлаждающей жидкости, чтобы помочь выровнять тепловую нагрузку, эту проблему можно уменьшить, но никогда полностью не уменьшить.

Выбросы

Если сложить все вместе, выбросы убили ротор. Сочетание неэффективного сгорания, внутреннего сгорания масла и проблем с герметизацией приводит к тому, что двигатель не может конкурировать с сегодняшними стандартами по выбросам или экономии топлива.

Чем отличается RX-8 от конкурентов?

Печально известное верхнее уплотнение ротора RX-7 13B

В моем видео, описывающем недостатки RX-8, зрители справедливо отметили, что я сравнивал автомобили 2015 модельного года с моделью 2011 года с точки зрения экономии топлива, что было несправедливо со стороны Mazda.Давайте исправим эту ошибку, используя RX-8 первого года выпуска.

Автомобиль Объем двигателя Масса Мощность MPG Общий рейтинг
2004 Mazda RX-8 1.3л Ванкель 3053 фунтов (1385 кг) 197-238 л.с. (авто / человек) 18 миль на галлон (13 л / 100 км)
2004 VW GTI 1,8 л I4 2934 (1330 кг) 180 л.с. 9,8 л / 100 км (24 миль на галлон)
2004 Корвет 5,7 л V8 3214 фунтов (1458 кг) 350 л.с. 20 миль на галлон (11.8 л / 100 км)

Как вы можете видеть выше, RX-8 не очень хорош с точки зрения экономии топлива. Corvette со значительно более мощным двигателем, мощностью на 47 процентов и массой на 5 процентов по-прежнему обеспечивает на 11 процентов большую экономию топлива. Также стоит упомянуть, что это был первый год выпуска модели RX-8, в то время как двигатели Corvette и GTI использовались с предыдущих лет.Проще говоря, о RX-8 нельзя сказать ничего хорошего с точки зрения экономии топлива. Хотя покупатель не обязательно может рассматривать это как отрицательный момент, без учета выбросов нет автомобиля для покупки.

Стоит отметить, что с момента первой публикации этой статьи Mazda объявила, что вернет роторные двигатели, но только в качестве небольших расширителей запаса хода в электромобилях. Другими словами, ничего, что не взорвется.

Как работают роторные двигатели Ванкеля

В двигателе Ванкеля используется круговой процесс сгорания, он отличается высокой удельной мощностью и небольшим количеством движущихся частей.

Цикл горения

Роторные двигатели срабатывают 3 раза за каждый оборот ротора. Функции впуска, сжатия, сгорания и выпуска выполняются одновременно.

Топливные форсунки

Инжектор масла

Сжатие

При герметизации камеры топливно-воздушная смесь сжимается, что увеличивает мощность и эффективность взрыва.

Прием

Когда ротор вращается, создается разрежение, и впускные отверстия открываются, втягивая топливно-воздушную смесь в корпус.

Впускные порты

Выхлопное отверстие

Выхлоп

Когда ротор вращается, выпускные отверстия открываются, выталкивая выхлопные газы и любое несгоревшее топливо из корпуса.

Зажигание

Искры воспламеняют топливо, толкая ротор по часовой стрелке. На каждой стороне ротора есть камера сгорания, которая обеспечивает большее пространство для расширения топлива, позволяя сжечь как можно больше топлива.

Свечи зажигания

Нижняя свеча зажигания имеет большее отверстие и воспламеняет большую часть топлива, в то время как верхняя свеча зажигания воспламеняет топливо в меньшем конце камеры сгорания.

Ротор и эксцентриковый вал

Из-за постоянного сгорания большинство серийных автомобилей имеют только один или два ротора (сравнимые по мощности с 3 или 6 цилиндрами в поршневом двигателе).

Уплотнения верхушки

Каждый угол ротора имеет уплотнение на вершине, которое прижимается к корпусу.

Торцевые и угловые уплотнения

удерживать масло вокруг эксцентрикового вала и удерживать топливно-воздушную смесь в камере сгорания.

Эксцентриковый вал

Эксцентриковый вал вращается 3 раза за каждый оборот ротора и проходит через центр двигателя, передавая энергию сгорания на ведущий вал. Лепестки смещены и расположены друг напротив друга на валу.

Зубчатый венец

Противовес

Противовес компенсирует любой дисбаланс роторов и эксцентрикового вала, снижая шум и вибрацию двигателя.

Стационарная передача

Стационарная шестерня размещается в боковой пластине корпуса и привинчивается снаружи болтами. Зубья входят в зацепление с зубчатым венцом ротора и заставляют ротор вращаться вокруг эксцентрикового вала.

RPMs

Число оборотов в минуту (количество оборотов в минуту) указывает, сколько раз эксцентриковый вал поворачивается на 360 °. Поскольку эксцентриковый вал вращается 3 раза за каждый оборот ротора, то при 3000 об / мин ротор будет вращаться 1000 раз.

Масляная система

Моторное масло помогает смазывать, очищать, защищать и охлаждать детали двигателя.

Эксцентриковый вал

Масло прокачивается через полый центр эксцентрикового вала для охлаждения и смазки подшипников. Отверстия в валу позволяют маслу брызгать на ротор и неподвижные шестерни, а также на подшипники в боковых пластинах.

Инжектор масла

Форсунки впрыскивают масло в корпус ротора для смазки уплотнений верхушки и корпуса.

Масляный фильтр

Масляный фильтр удаляет из масла нежелательные материалы.

Дозирующий насос

Дозирующий насос, отдельный от масляного насоса, контролирует, сколько масла впрыскивается в корпус ротора; чем выше частота вращения двигателя, тем больше впрыскивается масла.

Масляный радиатор

Перед тем, как масло будет циркулировать через эксцентриковый вал.

Маслосборник

Масляный поддон прикреплен непосредственно к нижней части корпуса. В этом месте масло может помочь охладить корпус.

Масляный насос

Масляный насос вытягивает масло из поддона и проталкивает его через систему.

Engineering Explained углубляется в роторный двигатель Mazda

Роторный двигатель Mazda

— одна из тех вещей, которые вы легко могли бы простить за непонимание, если только вы не были большим поклонником RX-7 или RX-8.Он настолько сильно отличается от традиционного поршневого двигателя с возвратно-поступательным движением, что часто может помочь в объяснении его наглядного пособия. Вот здесь и пригодится это видео от Engineering Explained.

Джейсон Фенске, ведущий популярного канала YouTube, явно старше, чем он выглядит, заполучил гениальную модель роторного двигателя Mazda 13B, напечатанную на 3D-принтере, и в видео, которое он опубликовал в четверг, он проводит нас через уникальный способ, которым роторный двигатель или двигатель Ванкеля превращает бензин в лошадиные силы.

Один из самых интересных аспектов конструкции роторного двигателя — помимо его довольно неприятной истории — это то, как ему удается делать все, что делает четырехтактный поршневой двигатель, но в гораздо более компактных размерах и при значительно меньшем количестве движущиеся части.
Роторный двигатель — это четырехтактный двигатель, который, вероятно, установлен в вашем автомобиле. Он использует тот же процесс впуска, сжатия, зажигания и выпуска, что и поршневой двигатель, но вместо тех событий, которые происходят в одном месте (цилиндре) в разное время, он происходит одновременно в четырех разных местах.

Роторный двигатель не имеет впускных или выпускных клапанов, как двухтактный поршневой двигатель, и в него также необходимо впрыскивать масло вместе с бензином для смазки и уплотнения роторов относительно корпуса ротора, как в двухтактном двигателе. смешайте масло и топливо. Также, как и в двухтактном двигателе, в котором каждый ход двигателя является рабочим ходом, каждое вращение ротора сопровождается событием зажигания, поэтому он может производить невероятное количество мощности для своих размеров.

К сожалению, из-за необходимости сжигания масла и высокого расхода топлива Mazda прекратила разработку роторных двигателей.Это не значит, что это не увлекательный, веселый и совершенно уникальный фрагмент автомобильной истории, который следует праздновать. Теперь, если вы нас извините, мы посмотрим на Craigslist для RX-7 первого поколения.

Роторный двигатель Mazda | Преимущества и информация

Роторный двигатель: главный продукт Mazda’s Heritage

Большинство двигателей внутреннего сгорания, которые вы видите сегодня на дорогах, построены с использованием стандартных принципов поршневых двигателей.Однако это не единственный двигатель внутреннего сгорания. Роторный двигатель — часто называемый двигателем Ванкеля в честь его изобретателя доктора Феликса Ванкеля — является мощной альтернативой поршневому двигателю и важной частью фирменного наследия Mazda в области технических характеристик.

Как это работает

Роторный двигатель работает по тому же основному принципу, что и поршневой двигатель: сгорание в силовой установке высвобождает энергию для приведения в действие транспортного средства. Однако система подачи в роторном двигателе полностью уникальна.

Поршневой двигатель выполняет четыре ключевые операции: впуск, сжатие, сгорание и выпуск. Роторный двигатель также выполняет каждую из этих ключевых операций, но делает это совершенно уникальным образом. В случае роторного двигателя каждый из этих ключевых процессов обрабатывается отдельной секцией корпуса силовой установки.

Детали роторного двигателя

Роторный двигатель состоит из нескольких основных компонентов. Когда вы сами увидите роторный двигатель, станет ясно, насколько он отличается от обычного поршневого двигателя.

  • Ротор : три выпуклые поверхности ротора действуют аналогично поршню, но ротор подвижен, перемещаясь по пути через систему подачи корпуса двигателя.
  • Корпус : Корпус имеет овальную форму и состоит из нескольких частей, отвечающих за впуск, сжатие, сгорание и выпуск.
  • Выходной вал : Этот длинный цилиндрический инструмент построен со смещением относительно центральной линии вала.Каждый из роторов двигателя размещен над выступами выходного вала, чтобы заставить его вращаться. Величина вращения, выполняемая этими лопастями, определяет крутящий момент величиной силы, прикладываемой к ним роторами.

Гордые традиции

Mazda зарекомендовала себя в 1960-х и 1970-х годах как ведущий новатор, когда дело дошло до сложной разработки роторного двигателя. Новаторская традиция Mazda вошла в историю с появлением ряда популярных моделей с роторным двигателем, включая модель Mazda RX-7, которая поступила в продажу еще в 1978 году.

В то время как Mazda прекратила продажу RX-7 еще в 1995 году, нынешние разработчики и инженеры Mazda осознали уникальные возможности роторного двигателя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *