Принцип работы дизеля видео: Принцип работы дизельного двигателя — фото и видео процесса

Содержание

Принцип работы дизельного двигателя — фото и видео процесса

Дизельным двигателям удалось пройти длительный и успешный путь развития от неэффективных и загрязняющих экологию агрегатов начала двадцатого века, до супер экономных и абсолютно беззвучных, которые сегодня устанавливаются на добрую половину всех выпускаемых автомобилей. Но, несмотря на такие удачные модификации, общий принцип их действия, отличающий дизельные моторы от бензиновых, остался все тем же. Постараемся рассмотреть данную тему подробнее.

В чем основные отличия дизельных двигателей от бензиновых?

Уже видно из самого названия, что дизельные двигатели работают не на бензине, а на дизельном топливе, которое также называют соляркой, ДТ или просто дизелем. Вникать во все подробности химических процессов перегонки нефти мы не будем, скажем только, что и бензин и дизель производят из нефти. Во время перегонки нефть делится на различные фракции:

  • газообразные – пропан, бутан, метан;
  • нарты (короткие цепочки углеводов) – используются для производства растворителей;
  • бензин – взрывоопасная и быстро испаряющая прозрачная жидкость;
  • керосин и дизель – жидкости с желтоватым оттенком и более вязкой структурой, чем у бензина.

То есть солярка производится из более тяжелых фракций нефти, ее важнейшим показателем является воспламеняемость, определяемая цетановым числом. Также ДТ характеризуется большим содержанием серы, которое, однако, стараются всеми силами уменьшать, чтобы топливо соответствовало экологическим стандартам.

Как и бензин, дизель делится на разные виды в зависимости от температурных режимов:

  • летний;
  • зимний;
  • арктический.

Стоит также заметить, что дизельное топливо производят не только из нефти, но и из различных растительных масел – пальмового, соевого, рапсового и др., смешанных с техническим спиртом – метанолом.

Однако, заливаемое топливо – это не главное отличие. Если мы посмотрим на бензиновый и дизельный двигатели “в разрезе”, то разницы никакой визуально не заметим – те же поршни, шатуны, коленчатый вал, маховик и так дальше. Но разница есть и она очень существенная.

Принцип работы дизельного двигателя

В отличие от бензиновых, в дизеле совсем по другому принципу происходит зажигание воздушно-топливной смеси.

Если в бензиновых – как в карбюраторных, так и инжекторных – движках сначала происходит приготовление смеси, а затем ее воспламенение с помощью искры от свечи зажигания, то в дизеле в камеру сгорания поршня нагнетается воздух, затем воздух сжимается, разогреваясь до температур 700 градусов, и вот в этот момент в камеру попадает топливо, которое тут же взрывается и толкает поршень вниз.

Дизельные двигатели – четырехтактные. Рассмотрим каждый такт:

  1. Такт первый – поршень движется вниз, открывается впускной клапан, тем самым в камеру сгорания попадает воздух;
  2. Такт второй – поршень начинает подниматься, воздух начинает под давлением сжиматься и разогреваться, именно в этот момент через форсунку впрыскивается солярка, происходит ее возгорание;
  3. Такт третий – рабочий, происходит взрыв, поршень начинает двигаться вниз;
  4. Такт четвертый – открывается выпускной клапан и все отработанные газы выходят в выпускной коллектор или в патрубки турбины.

Конечно, все это происходит очень быстро – несколько тысяч оборотов в минуту, требуется очень слаженная работа и подгонка всех узлов – поршней, цилиндров, распределительного вала, шатунов коленвала, а самое главное датчиков – которые в секунду должны передавать на CPU сотни импульсов для мгновенной обработки и вычисления необходимых объемов воздуха и солярки.

Дизельные двигатели выдают больший коэффициент полезного действия, именно поэтому их используют на грузовых авто, комбайнах, тракторах, военной технике и так далее. ДТ более дешевое, но нужно отметить, что сам двигатель обходится дороже в эксплуатации, потому что уровень компрессии здесь почти в два раза выше, чем в бензиновом, соответственно нужны поршни особой конструкции, а все используемые узлы, детали и материалы усиленные, то есть стоят дороже.

Также очень строгие требования предъявляются к системам подачи топлива и отвода отработанных газов. Ни один дизель не сможет работать без качественного и надежного ТНВД – топливного насоса высокого давления. Он обеспечивает корректную подачу топлива на каждую форсунку. Кроме того на дизелях используются турбины – с их помощью отработанные газы используются повторно, тем самым повышая мощность двигателя.

Есть у дизеля и некоторый ряд проблем:

  • повышенный шум;
  • больше отходов – топливо более маслянистое, поэтому нужно регулярно проводить замену фильтров, следить за выхлопом;
  • проблемы со стартом, особенно холодным, используется более мощный стартер, топливо быстро густеет при понижении температуры;
  • дорого обходится ремонт, особенно топливной аппаратуры.

Одним словом – каждому свое, дизельные двигатели характеризуются большей мощностью, ассоциируются с мощными внедорожниками и грузовиками. Для простого же горожанина, который ездит на работу – с работы и по выходным выезжает за город, хватит и маломощного бензинового движка.

Видео, на котором показан весь принцип работы дизельного двигателя внутреннего сгорания

Загрузка…

Поделиться в социальных сетях

Видео о продукции

· Очиститель дизельного впуска LIQUI MOLY

Подробная инструкция по применению очистителя дизельного впуска Pro-Line Ansaug System Reiniger Diesel. Средство содержит высокотехнологичные присадки для устранения загрязнений в областях впускного коллектора, дроссельной заслонки и EGR-клапана. Очиститель дизельного впуска растворяет и удаляет масло, нагар, смолы и другие виды типичных загрязнений. В результате восстанавливается подвижность частей и механизмов, а также сокращается расход топлива. Предназначена только для дизельных двигателей.

· Очиститель дроссельной заслонки LIQUI MOLY

Руководство по очистке дроссельной заслонки с помощью специального средства Liqui Moly Pro-Line Drosselklappen-Reiniger. Очиститель эффективно удаляет все загрязнения с дроссельной заслонки. В результате процедуры обеспечивается функциональность и подвижность механизмов, а также уменьшается расход топлива. Только для бензиновых двигателей!

· Антифрикционная присадка Cera Tec

Принцип работы антифрикционной присадки в масло LIQUI MOLY Cera Tec с помощью которой можно существенно продлить срок службы мотора, улучшить его характеристики и обеспечить долговременную защиту системы двигателя даже в условиях перегрузок.

· Промывка дизельных систем Diesel Spulung

Очистка топливной системы дизельного автомобиля с помощью промывки LIQUI MOLY Diesel Spulung. Удаление отложений на форсунках, в камере сгорания и поршнях, увеличение цетанового числа дизельного топлива и увеличение мощности двигателя

· Очиститель инжектора Injection Reiniger

Очиститель инжектора Injection Reinieger позволяет самостоятельно почистить топливную систему автомобиля бережно удалив загрязнения

· Освежитель кондиционера Klimafresh

С помощью очистителя LIQUI MOLY Klimafresh можно самостоятельно и очень просто почистить систему кондиционерования и избавится от неприятного запаха от кондиционера

· Заменитель свинца Blei Ersatz

Присадка LIQUI MOLY Blei-Ersatz незаменимая вещь для владельцев раритетных автомобилей и служит для улучшения теплоотвода от клапанов старых двигателей при работе на неэтилированных бензинах.

· Очиститель сажевого фильтра Pro Line Diesel Partikelfilter Reiniger

Очиститель дизельных сажекоптевых фильтров выхлопной системы LIQUI MOLY Pro-Line Diesel Partikelfilter Reiniger — это высокоэффективная очищающая жидкость для профессиональной очистки дизельных сажекоптевых фильтров легковых автомобилей без демонтажа фильтра .

· Очиститель дизельного впуска Pro Line Ansaug System Reiniger Diesel

Очиститель с высокотехнологичными присадками для устранения типичных загрязнений в областях впускного коллектора, дроссельной заслонки и EGR-клапана. Растворяет и удаляет такие загрязнения как: масло, нагар, смолы. Восстанавливает подвижность частей и механизмов, сокращает расход топлива. Предназначена только для дизельных двигателей.

· Очиститель дроссельных заслонок Pro Line Drosselklappen Reiniger

Эффективное средство для очистки типичных загрязнений, нагаров и отложений в области впуска и дроссельных заслонок. Растворяет и удаляет все масляные отложения и загрязнения. Обеспечивает функциональность и подвижность деталей, уменьшает расход топлива.

· Герметик системы охлаждения Kuhlerdichter

Герметик LIQUI MOLY Kuhlerdichter быстро и безопасно устраняет утечки из системы охлаждения, герметизируя повреждения, которые достаточно трудно локализовать Можно использовать средство со всеми видами антифризов.

· Быстрый очиститель Schnell Reiniger

Универсальный очиститель LIQUI MOLY Schnell-Reiniger предназначен для быстрой и эффективной очистки и обезжиривания различных деталей: тормозов, сцеплений, коробок передач, а также для монтажных и ремонтных работ. Удаляет следы масла и смазок с поверхностей покрытий пола, обивки и различных материалов. Ассортимент очистителей тормозов представлен в каталоге.

· Средство для удаления прокладок Dichtungs Entferner

Средство для удаления прокладок быстро и эффективного удалит прокладки и уплотнители в двигателе и прочих агрегатах. Подходит также для удаления прокладок на вертикальных поверхностях и для удаления силиконовых герметиков. Может применяться как средство для удаления нагаров, следов тонировочной пленки, клея и краски.

· Бесцветная смазка силикон Silicon Spray

Силиконовый спрей, предназначен для смазывания и защиты трущихся поверхностей. Защищает и смазывает поверхности, образуя прозрачную, очень прочную пленку. Предназначен для обработки направляющих люков, сидений, тяг управления карбюратором, дверных и оконных шарниров и петель.

· Присадка Формула скорости Speed Tec Benzin Diesel

Разработанная компанией LIQUI MOLY присадка Speed Tec — химически улучшает топливо, добиваясь более эффективного сгорания. За счет этого возрастает КПД мотора и значительно улучшается разгон автомобиля.

· Присадка супер дизель Super Diesel Additiv

Присадка LIQUI MOLY Super Diesel Additiv очищает систему впрыска дизельного двигателя, предотвращая образование нагаров и отложений на иглах форсунок.

Принцип работы дизельного двигателя — основные нюансы + видео

Среди разъезжающих по магистрали машин нередко встречаются «дизельки», которые уже достаточно давно и крепко выложили себе дорожку на автомобильном рынке. Однако отличить работу дизельного двигателя от бензинового способны далеко не все. А ведь различия есть и они кардинальные. Каков же принцип работы дизельного двигателя? Узнаете ниже, а для начала — несколько слов о самом движке. Кстати, вот статья об общем устройстве двигателя внутреннего сгорания.

Главные особенности дизельных движков.

Как известно, дизельные моторы дороже в обслуживании и тем более в ремонте, из-за того, что их узлы и детали (ТНВД  или топливный насос высокого давления, насос форсунка, турбокомпрессор, форсунка) изготовлены с максимально высокой точностью. При этом они, как правило, экономичнее бензиновых и обладают более высоким КПД (коэффициентом полезного действия) — на 10-14  процентов. Кроме того современные дизеля имеют большую мощность и отличную приёмистость. А для еще большего увеличения мощностных и тяговых характеристик дизельные моторы оснащают турбонаддувом и интеркулером.

Принцип работы дизельного двигателя и его отличие от бензинового собрата.

Принципы работы дизельных и бензиновых движков, как уже отмечалось выше, абсолютно различны.

В бензиновых двигателях внутреннего сгорания (карбюраторных, инжекторных) приготовление смеси, как правило, происходит во впускном тракте: в цилиндр подается уже готовая смесь, которая там загорается при помощи свечи зажигания в момент сжатия.

В дизельных моторах все не так, и смесеобразование происходит прямо в цилиндре. Воспламенителем  при этом является воздух, который при сжатии нагревается и воспламеняет дизельное топливо. Само это топливо подается  в камеру сгорания форсункой и топливным насосом высокого давления (насосом-форсунки) под высоким давлением.

Теперь познакомимся с этим процессом подробнее, по тактам. Кстати, количество последних у дизельных и бензиновых двигателей равно (четырем). Рассмотрим каждый из тактов.

Первым тактом у дизельного мотора является такт впуска.

В период прохождения первого такта поршень двигается с верхней мертвой точки (вмт) в нижнюю (нмт). На данном этапе впускной клапан открыт, в то время как выпускной, естественно, закрыт.   Когда поршень двигается в нмт, создается разряжение и цилиндр мотора заполняется воздухом, который перед тем, как попасть цилиндр, очищается от механических примесей в воздушном фильтре.

Вторым тактом будет такт сжатия.

В этот момент времени  клапаны (впускной и впускной) закрыты и поршень движется из нмт  в вмт. И так как  клапаны закрыты, воздуху деваться некуда, поэтому он сжимается, создавая высокое давление, и нагревается — до 800 градусов Цельсия.

Третий такт — такт расширения (рабочий ход).

Во время движения поршня в вмт дизельное топливо по средством форсунки подается  в цилиндр под высоким давлением (от 150 до 300 Bar) и там распыляется. В процессе распыления топлива происходит его смешение с горячим воздухом и, следовательно, его последующее воспламенение. При горении смеси  температура в цилиндре стремительно повышается — до 1750 -1800 градусов Цельсия. Одновременно с этим растет и давление, которое достигает 10-12 Мпа. Образуются газы, которые толкают поршень сверху вниз. Перемещаясь вниз, поршень выполняет предписанную ему работу. В нмт давление снижается вместе с температурой.

Четвертый такт — завершающий, он же — такт выпуска.

Поршень движется вверх.  Выпускной клапан открывается и  газы стремятся покинуть камеру сгорания через каналы в ГБЦ (головке блока цилиндров)  в выпускной коллектор. Далее газы попадают в глушитель, где проходят очистку (в современных дизелях установлены сажевые фильтры) и в окружающую среду. В это время в цилиндре температура уменьшается, до 450-540 градусов, и давление падает — до 10-20 Bar.

Далее цикл начинается снова.

Видео.

Рекомендую прочитать:

Принцип работы и устройство дизельного двигателя — Рамблер/авто

Конструктивные особенности и эксплуатационные характеристики предопределили страсть или отторжение автомобилистов по отношению к агрегатам на «тяжелом топливе». Так как же работает дизельный двигатель, каково его устройство, принцип работы и преимущества?

Времена, когда автомобиль с дизельными моторами ассоциировались с чадящими и тихоходными, давно остались за поворотом. Каждый автомобилист знает, что транспортное средство с агрегатом на «тяжелом топливе» издает характерные тарахтящие звуки, его выхлоп странно пахнет. Современные моторы награждают своих владельцев умеренным расходом топлива, впечатляющей эластичностью (крутящим моментом, доступным в относительно широком диапазоне оборотов) и иногда ошеломительной динамикой на зависть некоторым бензиновым автомобилям. Но при этом они требовательны к качеству солярки, а ремонт компонентов топливной системы может быть весьма дорогим.

Особенности конструкции

Дизельные двигатели, разумеется, не имеют таких колоссальных отличий как роторно-поршневой двигатель Ванкеля, устройство которого абсолютно не похоже на «анатомию» традиционного ДВС, но у него имеется ряд особенностей, которые проводят между ним и бензиновыми моторами черту.

У дизеля также есть кривошипно-шатунный механизм, но его степень сжатия существенно выше – 19-24 единицы против 9-11 единиц соответственно. Принципиальное отличие дизельного двигателя от бензинового заключается в том, как формируется, воспламеняется и сгорает топливно-воздушная смесь.

У дизельного ДВС отсутствуют свечи зажигания и, соответственно, воспламенение топливно-воздушной смеси происходит от сжатия. При этом, воздух и солярка подаются раздельно. Также следует отметить, что практически ни один современный дизель не обходится без системы наддува, которая используется для повышения рабочих характеристик агрегата. Для оптимизации наддува в максимально широком диапазоне оборотов используются турбонагнетатели с изменяемой геометрией. Дизельный агрегат имеет более высокий коэффициент полезного действия, но он тяжелее, не имеет дроссельную заслонку и выдает больший крутящий момент при низких оборотах, нежели бензиновый ДВС.

Принцип работы дизельного двигателя

Как работает дизельный двигатель и, самое главное, как происходит воспламенение топлива в камере сгорания, если у агрегата данного типа нет свечей зажигания? Сперва воздух поступает в цилиндры. В конце такта сжатия, когда поршень почти достиг верхней мертвой точки, температура воздуха в камере сгорания достигает высоких значений (порядка 700-800 градусов) и затем в цилиндры впрыскивается дизельное топливо, которое воспламеняется самостоятельно, без искрового зажигания. Тем не менее, свечи в дизельном агрегате все-таки есть, но то – свечи накаливания, а не зажигания, которые нагревают камеру сгорания для облегчения запуска двигателя в холодное время.

Они представляет собой спираль (бывают с металлической и керамические), могут быть установлены в вихревой камере или в форкамере (если речь идет об агрегатах с раздельной камерой сгорания) или непосредственно в камере сгорания (если она нераздельная). При включении зажигания свечи накаливания практически мгновенно, за считанные секунды они раскаляются до температур в районе тысячи градусов и нагревают воздух в камере сгорания, облегчая процесс самовоспламенения топливно-воздушной смеси.

Типы дизельных двигателей

Широко распространены моторы с раздельной камерой сгорания – топливо впрыскивается в специальную камеру в головке блока над цилиндром и соединенную с ним каналом, а процесс горения происходит не совсем так как у бензиновых ДВС. В этой вихревой камере поток воздуха интенсивнее закручивается, что способствует более эффективному смесеобразованию и самовоспламенению, которое продолжается в основной камере сгорания. Кстати, дизельные моторы с раздельной камерой сгорания менее шумные из-за того, что применение вихревой камеры снижает интенсивность нарастания давления при самовоспламенении.

У дизелей с неразделенной камерой сгорания процесс самовоспламенения происходит непосредственно в надпоршневом пространстве. Агрегаты данного типа несколько шумнее.

Что такое Common Rail

Common Rail – современная система впрыска топлива, разработанная компанией Bosch и использующая принцип подачи солярки к форсункам от топливной рампы, являющейся аккумулятором высокого давления. Common Rail позволяет сделать агрегат тише, при этом более экономичным и экологичным. Еще одним преимуществом использования общей топливной рампы являются широкие возможности регулировки давления топлива и момента его впрыска, поскольку эти процессы разделены.

Система включает в себя ТНВД (топливный насос высокого давления), пьезоэлектрические форсунки, топливную рампу, регулятор давления топлива и клапан дозирования топлива. Интересно, что на заре своей эволюции дизельные агрегаты имели не в пример более простую топливную аппаратуру с механическими форсунками и несопоставимо более низким давлением солярки на фоне современных систем.

Дитя прогресса

Не так давно дизельные моторы были экологически «грязными» и достаточно слабыми, но с некоторых пор агрегаты данного типа кардинально изменились, а отдельные представители племени достойны спорткаров. К таковым относится рядный шестицилиндровый мотор BMW объемом 3,0 л с четырьмя турбонагнетателями.

Кстати, конструкция этого мотора наглядно демонстрирует собой прогресс агрегатов на «тяжелом топливе». Техношедевр оснащен двумя малоинерционными турбонагнетателями низкого давления и еще двумя высокого, причем один из них вступает в дело за пределами 2500 об/мин. Пьезофорсунки впрыскивают топливо под колоссальным давлением в 2500 бар. На выходе – 400 л.с. и 760 Нм. Интересно, что 450 Нм доступны уже при 1000 об/мин! Вот такие они, современные дизельные двигатели.

как работает дизельный генератор видео

Слаженная работа двух систем.

Принцип работы дизель генератора: хотя электрогенератор и является отдельным устройством, которое преобразует дизельное топливо в электричество, функционально его можно разделить на два различных агрегата.

Их согласованная совместная работа позволяет поддерживать постоянную выработку электроэнергии. Топливо сгорает в цилиндре, благодаря чему подвижная часть электрогенератора начинает вращаться.



Далее, кинетическая энергия вращения ротора преобразуется в электрическую с помощью установленных электромагнитов.



Эти две системы (двигатель и электромагниты) соединены между собой коленчатым валом, который обеспечивает надежную передачу механической энергии от двигателя к магнитам.

Видео: устройство и принцип работы дизельной электростанции:

Когда топливный бак полон – можно запускать устройство. Наиболее распространены дизели с пусковым шнуром и ручкой, но иногда они заводятся с помощью ключа или автоматического стартера.

Дроссельные заслонки и ограничитель оборотов используются для поддержания и контроля скорости вращения и выходной мощности. При чрезмерном превышении скорости, они предотвращают возможные повреждения деталей.

Процесс производства электроэнергии дизель генератора.

Как только поворачивается коленчатый вал, ведущий мост генератора начинает вращаться в пространстве между электромагнитами. Движение магнитов относительно друг друга способствует возникновению электрического тока, который, после выработки, становится доступным для потребителей любого рода.



Автоматический регулятор скорости вращения помогает контролировать количество оборотов вала при подключении нагрузки. Он может предотвратить резкое падение напряжения в сети генератора, что возможно, например, при подключении электроинструмента или других устройств большой мощности.

Запуск танка вручную показали на видео — Российская газета

Танк, несмотря на все свои особенности — транспортное средство, оснащенное двигателем внутреннего сгорания. Для его быстрого запуска современные боевые машины оснащены несколькими дублирующими друг друга системами. Можно завести двигатель электрическим стартером, можно при помощи сжатого воздуха, есть и другие способы. ..

Немецкая бронетехника времен Второй Мировой войны имела маховик-накопитель, предназначенный для запуска двигателя без использования аккумулятора или сжатого воздуха. Для этого в задней броне имелось отверстие, куда следовало вставить пусковую рукоятку — русские водители прозвали ее «кривой стартер», — и крутить, постепенно увеличивая частоту вращения. Когда маховик раскручивался, надо было быстро вытащить рукоятку, а затем при помощи особой веревки включить сцепление инерционного маховика с коленвалом двигателя. Если все проделать быстро и умело, силами одного-двух человек вполне возможно было запустить массивный танковый двигатель мощностью в несколько сотен лошадиных сил.

Инерционными маховиками оснащались самоходки Stug, танки Tiger, Tiger II и Pantera. Их преимущество перед «кривым стартером», соединенным  непосредственно с коленвалом — отсутствие риска сломать палец или получить удар рукояткой в лоб при детонации топливной смеси в цилиндрах.

Однако, как следует из опубликованного видео, есть еще более экзотические способы привести гусеничную бронетехнику в движение. Как минимум однажды советскую самоходную гаубицу 2С1 «Гвоздика» завели «с толкача», словно малолитражку. Чтобы сдвинуть с места и разогнать бронированную машину весом 15,7 тонны понадобились усилия шести человек. Завести САУ удалось со второй попытки. «Почему-то я не сомневался, что это русские», — написал комментатор видео.

Судовой дизель: системы охлаждения

Что необходимо знать начинающему судовладельцу о типах систем охлаждения судового дизеля

Судовой дизель: охлаждение

Любой двигатель нуждается в продуманной системе охлаждения, иначе он очень быстро выйдет из строя и судовой дизель не исключение. Основное ее назначение состоит в отводе избыточного тепла, возникающего при совершении рабочего хода поршня и сжигании топлива, от деталей двигателя и прилегающих элементов. Помимо выполнения главной задачи данная система производит охлаждение смазочного масла, продувочного воздуха, выхлопного коллектора и прочее. Исходя из обширности выполняемых функций, можно смело заключить, что система охлаждения судового дизеля оказывает существенное влияние на полноценную работу мотора, а также на его долговечность. Сегодня мы рассмотрим базовую информацию о системах охлаждения, которую необходимо знать каждому обладателю водного транспорта с судовым двигателем.

Существует два основных типа СО, которые различаются видом используемого теплоносителя:

  • воздушная, на судах применяется довольно редко, хотя в последнее время ей стали уделять повышенное внимание за счет легкости конструкции подобной системы;
  • жидкостная (водяная), наиболее распространенный вариант, поэтому именно о ней мы поговорим более подробно.

Судовой дизель с водоохлаждением встречается на рынке гораздо чаще и тому есть множество причин. Однако прежде чем рассматривать их, мы уделим пару строк описанию системы. Водяные СО можно разделить на 2 большие группы:

  • одноконтурные, отвод тепла осуществляется забортной водой;
  • двухконтурные, в данном случае используется пресная вода с хладагентом.

Охлаждение пресной воды в двухконтурной системе осуществляет проточная вода. На первый взгляд это покажется абсолютно лишним набором действий. Не проще ли, чтобы за все отвечал только один контур? Производители судовых дизелей однозначно отвечают: не проще! Соприкосновение забортной воды с основными элементами судового дизеля обуславливает следующие проблемы:

  • засорение стенок каналов подачи воды и создание на них соляных пленок, которые впоследствии сильно уменьшат диаметр каналов, соответственно, пропадает необходимое давление;
  • разрушение зарубашечных полостей судового дизеля;
  • переохлаждение двигателя в случае понижения температуры забортной воды;
  • возникновение паров, содержащих различные элементы таблицы Менделеева, которые оказывают деструктивное воздействие на всю двигательную систему.

В таком случае срок службы судового дизеля существенно сокращается и, если мы говорим о средних и крупных судах, то это означает огромные денежные расходы. Именно поэтому разработчики в области двигателестроения серьезно озадачились созданием такой системой, которая не только бы охлаждала, но и не разрушала при этом судовой дизель. Так на свет появилась 2-х контурная СО, сочетающая в себе все основные пожелания судоводителей.

В данной статье мы рассмотрели только теорию СО судовых дизелей. На картинках схематично показан принцип работы одноконтурной и двухконтурной системы охлаждения. Если вы хотите более детально вникнуть в сам процесс отвода тепла, то на просторах интернета вы найдете обширный материал как академического, так и более опытного характера. Однако сильно погружаться в детали лучше не стоит, достаточно понимать основные принципы работы системы, ее составляющие элементы и правила эксплуатации. От знания последних зависит продолжительность жизни не только СО, но и всего судового дизеля.

Судовые дизели Nanni

В нашем Интернет-магазине вы можете купить судовой дизель для различных типов судов: парусной яхты, скоростного катера, РИБа, водоизмещающего судна и так далее. Все судовые дизели Nanni оснащены замкнутой системой охлаждения с теплообменником (2 контура). В ряде моделей есть опция килевого охлаждения. Она представлена в судовых дизелях, созданных на базе промышленных образцов Kubota и John Deere. Судовой дизель, спроектированный на базе промышленных образцов Toyota, такой возможности не предоставляет.

Килевое охлаждение является неплохим вариантом для относительно небольших судов, в частности лодок, которые не могут себе позволить внешний трубопровод.

Купив судовой дизель Nanni у нас, вы получите не только мощный мотор, но и отличный круглосуточный сервис. Все его плюсы вы можете прочитать на соответствующей странице, здесь же мы отметим только постоянное наличие всех необходимых запчастей и оперативное реагирование при поступлении обращений.

Как работает дизельный двигатель

Традиционно, дизельные двигатели всегда считались шумными, вонючими и слабый двигатели мало пользы, кроме грузовиков, такси и фургонов. Но, как дизельные двигатели и их система впрыска стали более совершенными, В 80-е годы эта ситуация изменилась. В Великобритании в 1985 г. было почти Продано 65000 дизельных автомобилей (около 3,5% от общего количества проданных автомобилей), по сравнению с 5380 в 1980 году.

Двигатель воспламенения от сжатия

Многие автомобильные дизели основаны на существующих конструкциях бензиновых двигателей, но с усилением основных компонентов, чтобы они могли выдерживать более высокое давление.Топливо подается с помощью ТНВД и дозатора, которые обычно устанавливаются сбоку от блока цилиндров. Никакой системы электрического зажигания не требуется.

Основным преимуществом дизельных двигателей перед бензиновыми двигателями является их более низкая эксплуатационные расходы. Отчасти это связано с большей эффективностью высоких коэффициент сжатия дизельный двигатель и отчасти из-за более низкой цены на дизель топливо — хотя разница в цене варьируется, поэтому преимущество использования дизельный автомобиль будет немного дешевле, если вы живете в районе с дорогими дизельное топливо Межсервисные интервалы тоже часто длиннее, но многие дизельные модели требуют более частой замены масла, чем их бензиновые аналоги.

Повышение мощности

Главный недостаток дизельного автомобиля — меньшая производительность по сравнению с бензиновые двигатели эквивалентной мощности. Один из способов решения проблемы — просто увеличить размер двигателя, но это часто приводит к значительному увеличению веса. Некоторые производители добавляют турбокомпрессоры к их двигателям, чтобы заставить их конкурентоспособны с точки зрения производительности; Среди них Rover, Mercedes, Audi и VW. производители турбодизелей.

Как работают дизельные двигатели

Индукция

Когда поршень начинает двигаться вниз по каналу, впускной клапан открывается, и воздух всасывается.

Сжатие

Впускной клапан закрывается в конце хода. Поршень поднимается, чтобы сжать воздух.

Зажигание

Топливо впрыскивается в верхней части такта. Он воспламеняется и толкает поршень вниз.

Выхлоп

При движении поршня вверх выпускной клапан открывается, и сгоревший газ выходит.

Дизельный двигатель работает иначе, чем бензиновый, даже если они общие основные компоненты, и оба работают на четырехтактном цикл . Главный различия заключаются в способе воспламенения топлива и в том, как регулируется.

В бензиновом двигателе смесь топлива и воздуха воспламеняется от Искра .В дизеле двигатель, зажигание достигается сжатие одного воздуха. Типичное сжатие соотношение для дизельного двигателя это 20: 1 по сравнению с 9: 1 для бензинового двигателя. При таком сильном сжатии воздух нагревается до температуры, достаточно высокой, чтобы воспламенять топливо самопроизвольно, без искры и, следовательно, система зажигания.

Бензиновый двигатель всасывает переменное количество воздуха на одно всасывание Инсульт , то точное количество в зависимости от открытия дроссельной заслонки. С другой стороны, дизельный двигатель рука всегда втягивает одинаковое количество воздуха (при каждой частоте вращения двигателя) через нерегулируемый впускной тракт, который открывается и закрывается только впуском клапан (нет ни карбюратор ни дроссельной заслонки).

Когда поршень достигает эффективного конца своего индукция ход, вход клапан закрывается. Поршень, приводимый в движение силой других поршней и импульс маховик , поднимается на вершину цилиндр , сжимая воздух примерно в двадцатую часть своего первоначального объем .

Когда поршень достигает максимума своего хода, точно отмеренное количество дизельное топливо впрыскивается в камера сгорания . Тепло от сжатия немедленно воспламеняет топливно-воздушную смесь, вызывая ее возгорание и расширение.Этот силы поршень вниз, поворачивая коленчатый вал .

По мере продвижения поршня вверх цилиндр на ход выпуска , выпускной клапан открывается и позволяет сгоревшим и расширенным газам проходить по выхлопная труба . В конце такта выпуска цилиндр готов к новому обвинять из воздуха.

Конструкция двигателя

Основные компоненты дизельного двигателя похожи на компоненты бензинового двигателя. и выполнять ту же работу. Однако деталей дизельного двигателя приходится производить много сильнее, чем их аналоги с бензиновым двигателем, из-за гораздо более высоких нагрузок участвует.

Стены дизеля Блок двигателя обычно намного толще блока разработаны для бензинового двигателя, и у них есть больше перемычек, чтобы обеспечить дополнительные прочность и поглощать стрессы. Помимо большей прочности, сверхмощный block также может более эффективно снижать шум.

Поршни, шатуны , коленчатые валы и несущий шапки должны быть сделаны сильнее своих собратьев с бензиновым двигателем. В крышка цилиндра дизайн должен сильно отличаться из-за топливные форсунки а также из-за формы своего горение и вихревые камеры.

Инъекция

Прямой впрыск

Прямой впрыск означает, что топливо впрыскивается непосредственно в камеру сгорания в верхней части днища поршня. Форма камеры лучше, но труднее заставить топливо правильно смешиваться с воздухом и гореть без резкого, характерного дизельного «стука».

Для любого двигатель внутреннего сгорания для бесперебойной и эффективной работы топливо и воздух необходимо тщательно перемешать.Проблемы смешивания топлива и воздуха являются особенно хорош в дизельном двигателе, где воздух и топливо вводятся на разное время в течение цикла и должны перемешиваться внутри цилиндров.

Существует два основных подхода: прямой и непрямой впрыск. Традиционно использовалась непрямая инъекция, потому что это самый простой способ введения турбулентность так что впрыскиваемый топливный спрей хорошо смешивается с сжатый воздух в камере сгорания.

В двигателе с непрямым впрыском имеется небольшая спиральная вихревая камера (также называется камерой предварительного сгорания), в которую инжектор впрыскивает топливо прежде, чем он достигнет самой основной камеры сгорания.Вихревая камера создает турбулентность в топливе, чтобы оно лучше смешивалось с воздухом при горении камера.

Недостатком этой системы является то, что вихревая камера эффективно становится часть камеры сгорания. Это означает, что камера сгорания как в целом неправильной формы, что вызывает проблемы с горением и затрудняет эффективность.

Непосредственный впрыск

Непрямой впрыск

Непрямой впрыск означает, что топливо впрыскивается в небольшую камеру предварительного сгорания.Это приводит к основной камере сгорания. Такая конструкция нарушает идеальную форму камеры сгорания.

Двигатель с прямым впрыском не имеет вихревой камеры, в которую подается топливо. впрыскивается — топливо попадает прямо в камеру сгорания. Инженеры должны очень внимательно относиться к конструкции камеры сгорания. в головке поршня, чтобы обеспечить достаточную турбулентность.

Контроль скорости

Свечи накаливания

Для предварительного нагрева головки цилиндров и блока цилиндров перед холодным запуском в дизельном топливе используются свечи накаливания. Они выглядят как короткие короткие свечи зажигания и подключены к электрической системе автомобиля. Элементы внутри очень быстро нагреваются после подачи питания. Свечи накаливания активируются либо вспомогательным положением переключателя на рулевой колонке, либо отдельным переключателем. На последних моделях они автоматически отключаются, когда двигатель запускается и разгоняется до скорости выше холостого хода.

Дизельный двигатель не дросселируется, как бензиновый двигатель, поэтому количество воздуха всасывается при любой частоте вращения двигателя всегда одинаково.Обороты двигателя регулируется исключительно количеством топлива, впрыснутого в камеру сгорания — чем больше топлива в камере, тем интенсивнее сгорание и произведено.

ускоритель педаль соединена с дозатором двигателя система впрыска, а не дроссельная заслонка, как на бензине двигатель.

Остановка дизеля по-прежнему включает выключение ключа зажигания, но, скорее, чем отсечение искр, это закрывает электрический соленоид что отсекает подача топлива на форсунку насос узла учета и распределения топлива. В этом случае двигателю необходимо использовать небольшое количество топлива, прежде чем он начнет работать. остановка. На самом деле, дизельные двигатели останавливаются быстрее, чем бензиновые. потому что гораздо более сильное сжатие оказывает большее замедляющее действие на двигатель.

Запуск дизеля

Как и в случае с бензиновыми двигателями, дизельные двигатели запускаются поворотом электрический мотор , с которого начинается воспламенение от сжатия цикл. Когда холодно, однако дизельные двигатели сложно запустить просто потому, что.сжатие воздух не приводит к температуре, достаточно высокой для воспламенения топлива.

Чтобы обойти проблему, производители поместиться свечи накаливания . Это маленькие электронагреватели, питаемые от автомобильной аккумулятор , которые включены несколько секунд перед попыткой запуска двигателя.

Дизельное топливо

Топливо, используемое в дизельных двигателях, сильно отличается от бензина. это немного менее очищенный, что приводит к более тяжелому, более вязкому и менее летучий жидкость .Эти физические характеристики часто приводят к тому, что именуется «дизельное топливо» или «мазут». На дизельных насосах в гараже АЗС его часто называют «дерв», сокращенно от «дизельная дорога». транспортных средств.

Дизельное топливо может немного затвердеть или даже затвердеть на очень холоде. Погода. Это усугубляется тем фактом, что он может поглощать очень маленькие количество воды, которая может замерзнуть. Все виды топлива поглощают крошечные количества вода из атмосферы и утечка в подземные резервуары довольно часто.Дизельное топливо выдерживает содержание воды до 50 или 60. частей на миллион без проблем — чтобы представить это в перспективе, это примерно четверть кружки воды на каждые десять галлонов топлива.

Замерзание или восковая депиляция могут блокировать топливопроводы и форсунки и предотвратить двигатель не работает. Вот почему в очень холодную погоду вы будете время от времени можно увидеть людей, играющих в паяльные лампы на топливных магистралях грузовиков.

Руководство для начинающих по пониманию дизельных двигателей


Руководство для начинающих по изучению дизельных двигателей

Майк МакГлотлин

Не секрет, что большинство американцев больше привыкли к бензиновым двигателям, чем к дизелям.Статистические данные, собранные RL Polk, подтверждают это, так как всего 2,8% всех зарегистрированных легковых автомобилей (легковые автомобили, внедорожники, пикапы и фургоны) в 2013 году работали на дизельном топливе № 2. Безусловно, большинство людей в США ожидают найти искру. пробки или блоки змеевиков, когда они открывают капот, а не турбокомпрессоры и топливные насосы (два очень важных элемента почти на каждом дизельном двигателе, с которым вы столкнетесь, отсюда и термин «турбодизель»).

Чтобы понять различия между дизельным и бензиновым двигателями, мы начнем со всех общих черт между ними. Тип топлива, сжигаемого любой силовой установкой, ничего не меняет по отношению к общей структуре двигателя (то есть вращение коленчатого вала, движение шатунов и поршней вверх и вниз, нагнетание воздуха и отвод выхлопных газов). Фактически, одна и та же базовая архитектура очень похожа. Но то, что происходит в цилиндре дизельного двигателя, сильно отличается от того, что вы найдете в его бензиновых аналогах.

Самый простой способ объяснить разницу между бензиновыми и дизельными двигателями — это «воздух» и «топливо».«В бензиновом двигателе воздушный поток — это все. Ты задыхаешь воздух. Дизельная мельница — полная противоположность. Он работает на основе ограничения количества впрыскиваемого топлива — воздух просто следует этому примеру. Следовательно, нет необходимости дросселировать поступающий воздух. С этой целью в дизельном двигателе также не создается вакуума.

Впускной воздух

Для наших целей мы будем использовать четырехтактный дизельный двигатель с турбонаддувом и промежуточным охлаждением, чтобы проиллюстрировать потоки воздуха и топлива через современную дизельную электростанцию. Свежий воздух поступает в корпус компрессора (сторона всасывания) турбокомпрессора и сжимается в крыльчатке компрессора, где создается наддув. Это делает воздух плотнее, но и намного теплее.

Чтобы охладить сжатый воздух перед его поступлением в головку (головки) цилиндров, он проходит через охладитель наддувочного воздуха (также известный как промежуточный охладитель). Чаще всего используется промежуточный охладитель типа воздух-воздух и по сути представляет собой простой теплообменник. Интеркулер значительно снижает температуру всасываемого воздуха на пути к двигателю и делает это с очень минимальной потерей наддува.

Компрессионное зажигание

Все становится интереснее, когда в цилиндр нагнетается сжатый воздух. Во время такта впуска — когда поршень опускается в нижнюю границу своего диапазона — впускной клапан (ы) открывается, позволяя «не дросселирующему» воздуху заполнить цилиндр. Это отличается от бензинового двигателя двумя способами: 1) газовые двигатели вводят смесь топлива и воздуха во время такта впуска и 2) в дизельном топливе воздух всасывается только во время такта впуска. Затем впускной клапан (ы) закрывается и начинается такт сжатия.Когда поршень движется вверх, воздух, который когда-то заполнял цилиндр, теперь занимает всего 6% от площади, которую он занимал раньше. Этот воздух под огромным давлением мгновенно перегревается до более чем 400 градусов тепла, что более чем достаточно, чтобы дизельное топливо воспламенилось само по себе. Именно это и происходит в верхней части хода поршня. Ранее упомянутый перегретый воздух встречает порцию дизельного топлива (выпускаемого в цилиндр соответствующей топливной форсункой) в течение идеального промежутка времени, прежде чем поршень достигнет верхней мертвой точки и произойдет сгорание.Поскольку дизельный двигатель использует теплоту сжатия для воспламенения топлива, никакой помощи для начала процесса сгорания не требуется (например, свечи зажигания, например, в бензиновом двигателе).

Турбокомпрессоры делают дизели такими, какие они есть: отличными

Последним этапом работы является такт выпуска, при котором отработавшие газы сгорания вытесняются из выпускных клапанов через выпускной коллектор в сторону турбины (выхлопа) турбокомпрессора. В обычном бензиновом двигателе нет турбонагнетателя, а это означает, что выхлопные газы, выходящие из двигателя, сразу же направляются в выхлопную трубу.Это не так в дизельном топливе, поскольку турбонагнетатель, который нагнетает свежий воздух в двигатель, фактически использует выхлопные газы, оставляя его, чтобы управлять самим. Поскольку турбокомпрессор состоит из турбинного (выпускного) колеса, имеющего общий вал с компрессорным (впускным) колесом, выхлопные газы всегда необходимы для подачи воздуха в двигатель. Одно зависит от другого. Мы разберем важность турбокомпрессора следующим образом: вы дросселируете топливо (отправляете дизельное топливо в двигатель), происходит сгорание, выхлопные газы покидают двигатель, вращая колесо турбины на выходе, которое поворачивает колесо компрессора, вводя воздух. в двигатель.Бесконечный цикл, если хотите. Тепловой КПД дизельного двигателя повышается за счет турбонагнетателя, поскольку он увеличивает объем поступающего в него воздуха, что закладывает основу для сжигания большего количества топлива.

Различия в горении

Одно из основных различий между дизельным и газовым двигателями заключается в типе сгорания, который каждый из них использует. Как обсуждалось выше, в дизельном топливе, когда топливо наконец встречает сжатый воздух в цилиндре, результатом является сгорание. В бензиновом двигателе топливо и воздух смешиваются еще до того, как произойдет сгорание.Но, кроме того, камеры сгорания каждого двигателя расположены по-разному. В типичном бензиновом двигателе камера сгорания утоплена в головке (головках) цилиндров. В дизельном двигателе с непосредственным впрыском топлива камера сгорания фактически находится внутри поршня. Эта камера сгорания чаще всего имеет конструкцию «мексиканская шляпа», которая состоит из утопленного отверстия в центре поршня. Внизу этой рецессии существует конусообразный выступ. Благодаря расположению топливной форсунки непосредственно над ней, именно этот выступ позволяет оптимизировать распыление топлива и обеспечить идеальный процесс сгорания. Более чем в 99 процентах всех дизельных двигателей используется конструкция Mexican Hat, поскольку основную ударную нагрузку от взрыва сгорания принимает на центр поршня, а не на головку поршня. Это придает поршню исключительную надежность.

Прямой впрыск

Говоря простым языком, прямой впрыск означает, что форсунки системы выступают и распыляют прямо на верхнюю часть поршня. Здесь нет форкамеры или вихревой камеры, и топливо не должно проходить через впускной коллектор перед поступлением в цилиндр.При непосредственном впрыске весь процесс сгорания происходит быстрее, проще и намного эффективнее, чем в типичном бензиновом двигателе с многоточечным впрыском топлива. Дизели с прямым впрыском также работают при очень бедном соотношении воздух / топливо по сравнению с бензиновыми двигателями. Типичное соотношение воздух / топливо от 25: 1 до 40: 1 (дизельное топливо) по сравнению с 12: 1 до 15: 1 (бензин) дает некоторое представление о том, почему дизели настолько консервативны в отношении расхода топлива. Эффективность также подтверждается тем фактом, что современные дизельные двигатели с прямым впрыском впрыскивают топливо при давлении, приближающемся (или в некоторых случаях превышающем) 30 000 фунтов на квадратный дюйм.Это обеспечивает наилучшее возможное распыление не только для эффективного сжигания, но и с низким уровнем отходящего тепла.

Начало впрыска по времени

Хотя термин «синхронизация» часто используется как в мире бензиновых, так и в дизельных двигателях, это одно слово означает две очень разные вещи в зависимости от типа двигателя, с которым вы имеете дело. Излишне говорить, что важно проводить различие между ними. В бензиновом двигателе время относится к началу сгорания. В дизельном топливе синхронизация — это начало впрыска или SOI (когда форсунка начинает распылять топливо в цилиндр).Опять же, все сводится к тому, что топливо (и система впрыска) является ключевым аспектом дизельного двигателя.

Момент. Много этого.

Люди, незнакомые с дизельными двигателями, часто задаются вопросом, почему и как они создают впечатляющий крутящий момент. Отношение крутящего момента к мощности в дизельных двигателях редко бывает ниже 2: 1, и типично соотношение 3: 1 и даже 4: 1 в двигателях тяжелой промышленности. Бензиновые двигатели намного ближе к соотношению 1: 1. Причина, по которой дизельные двигатели вырабатывают такой большой крутящий момент, связана с тремя ключевыми факторами: 1) наддув, создаваемый турбонагнетателем, 2) ход поршня и 3) давление в цилиндре.

В настоящее время серийные дизельные двигатели получают давление от 25 до 35 фунтов на квадратный дюйм прямо с завода. Для сравнения, наддув в 10 фунтов на квадратный дюйм часто считается чрезмерным для бензиновых двигателей. Самое лучшее в сжатом всасываемом воздухе (то есть наддув) в дизельном двигателе — это то, что он снижает насосные потери двигателя на такте впуска и увеличивает давление в цилиндре на рабочем такте (сгорание).

Коленчатые валы с длинным ходом всегда способствовали созданию крутящего момента, будь то бензиновый или дизельный двигатель. Но почему? Посмотрите на это, как будто вы используете длинный гаечный ключ, чтобы ослабить очень тугой болт, а не более короткий гаечный ключ, с которым работа не справлялась с самого начала. Вы можете применить больший крутящий момент с большим рычагом, верно? Конечно вы можете. В длинноходном двигателе шатун может использовать большее усилие при повороте коленчатого вала (в то время как поршень опускается во время рабочего хода): следовательно, больший крутящий момент.

Как вы, возможно, уже догадались, давление в цилиндре, создающее крутящий момент, создается во время рабочего хода.Увеличение времени впрыска, которое происходит в цилиндре с более ранним началом впрыска (SOI), эффективно создает большее давление в верхней части поршня. Чем больше давление создается в верхней части поршня, тем создается больший крутящий момент.

Перестроен

Чрезвычайное давление в цилиндре, длинный ход и высокий уровень наддува не только объясняют, почему дизели создают крутящий момент, но также объясняют, почему дизельные электростанции построены с использованием таких тяжелых компонентов. Чтобы противостоять огромным нагрузкам, которым они подвергаются, производители используют такие вещи, как чугунные блоки с глубокой юбкой (и даже чугун с уплотненным графитом), коленчатые валы и шатуны из кованой стали и обычно используют головки цилиндров с минимум 6 болтами на цилиндр.Цельностальные поршни пользуются успехом даже в тяжелой промышленности и в двигателях класса 8. В целях долговечности дизельные двигатели имеют надстройку. В дизелях с малым рабочим объемом не редкость, что заводская штриховка все еще присутствует на цилиндрах после 300 000 миль использования. И это нормально для внедорожного двигателя класса 8 — проехать от 750 000 до 1 000 000 миль между капитальными ремонтами.

Дизель никуда не денется

Метод сгорания, впрыска топлива и зажигания, используемый в дизельном двигателе, определенно отличает его от его бензинового аналога.Преимущество дизельного топлива по сравнению с бензиновыми электростанциями — вот что выдвинуло его на передний план в сегодняшних разговорах об экономии топлива. В связи с быстрым приближением стандартов CAFE (средняя корпоративная экономия топлива), шумом вокруг гибридных автомобилей, кажущихся плоскими, и электромобилей, не обеспечивающих достаточный запас хода, в ближайшие годы больше производителей обратятся к дизельным электростанциям, чем когда-либо прежде. Будьте уверены, дизельные двигатели не только здесь, чтобы остаться — они вполне могут быть двигателем будущего.

Источники:

Diesel Power Magazine
Апрельский выпуск 2009 г., стр. 50

The Diesel Forum (данные R.L. Polk)
http://www.dieselforum.org/resources/top-10-states-of-diesel-drivers

TTS Power Systems (начало впрыска)

Книга: « Современная дизельная технология: Дизельные двигатели »
Шон Беннетт

Как это работает: дизельные двигатели
http://www.dieselpowermag.com/tech/1208dp_how_it_works_diesel_engines/


ZOIL | Основы дизельного двигателя


Дизельный двигатель — это двигатель внутреннего сгорания , который использует воспламенение от сжатия для воспламенения топлива при его впрыске в двигатель.

Чтобы понять, как работают дизельные двигатели, полезно сравнить различия между дизельным двигателем и бензиновым двигателем. Основные отличия бензинового двигателя от дизельного:

  • Бензиновый двигатель принимает смесь газа и воздуха, сжимает ее и воспламеняет смесь с помощью искры. Дизельный двигатель забирает воздух, сжимает его, а затем впрыскивает топливо в сжатый воздух. Тепло сжатого воздуха самопроизвольно воспламеняет топливо.Дизельный двигатель не имеет свечи зажигания.
  • Бензиновый двигатель сжимает в соотношении от 8: 1 до 12: 1, в то время как дизельный двигатель сжимает в соотношении от 14: 1 до 25: 1. Более высокая степень сжатия дизельного двигателя приводит к повышению эффективности.
  • Бензиновые двигатели
  • обычно используют либо карбюрацию, при которой воздух и топливо смешиваются задолго до того, как воздух поступает в цилиндр, либо впрыск топлива через порт, при котором топливо впрыскивается непосредственно перед тактом впуска (вне цилиндра). Следовательно, в бензиновом двигателе все топливо загружается в цилиндр во время такта впуска, а затем сжимается. Сжатие топливно-воздушной смеси ограничивает степень сжатия двигателя — если он слишком сильно сжимает воздух, топливно-воздушная смесь самопроизвольно воспламеняется и вызывает детонацию. В дизельных двигателях используется прямой впрыск топлива, то есть дизельное топливо впрыскивается непосредственно в цилиндр. Дизельный двигатель сжимает только воздух, поэтому степень сжатия может быть намного выше. Чем выше степень сжатия, тем больше генерируется мощность.
  • Форсунки для дизельного топлива
  • , в отличие от бензиновых, должны выдерживать температуру и давление внутри цилиндра и при этом подавать топливо в виде мелкого тумана. Чтобы туман равномерно распределялся по цилиндру, некоторые дизельные двигатели оснащены специальными впускными клапанами или камерами предварительного сгорания. Более новые дизельные двигатели оснащены топливной системой Common Rail высокого давления. См. «Основы дизельной топливной системы» для получения дополнительной информации об этом типе топливной системы.
  • Дизельные двигатели
  • могут быть оснащены свечой накаливания. Когда дизельный двигатель холодный, в процессе сжатия температура воздуха может не повыситься настолько, чтобы воспламениться топливо. Свеча накаливания представляет собой электрически нагреваемую проволоку, которая способствует зажиганию топлива при холодном двигателе. Свечи накаливания обычно устанавливаются на небольших дизельных двигателях. Бензиновые двигатели не требуют свечей накаливания, поскольку они не зависят от самовозгорания.

ШАГ


1

ВПУСКНОЙ (ВНИЗ) ХОД 1 |
Поршень движется вниз, всасывая воздух в цилиндр

.

ШАГ


2

ХОД СЖАТИЯ (ВВЕРХ) 1 |
Поршень движется вверх, сжимая вновь втянутый воздух в цилиндр
Прежде чем поршень достигнет верхней мертвой точки (ВМТ), дизельное топливо впрыскивается непосредственно в цилиндр
Это результат сжигания дизельного топлива

ШАГ


3

ВПУСКНОЙ ХОД (ВНИЗ) 2 |
Поршень опускается, но впускной и выпускной клапаны не открываются

ШАГ


4

ДВИГАТЕЛЬ КОМПРЕССИИ (ВВЕРХ) 2 |
Поршень движется вверх, вытесняя сгоревшее дизельное топливо из цилиндра в виде выхлопа

.

ШАГ


5

Процесс повторяется

Дизельный двигатель предлагает эффективный способ выработки энергии.Он основан на сжатии для сгорания, что приводит к повышению топливной экономичности по сравнению с другими типами двигателей. E-ZOIL производит различные присадки к дизельному топливу, специально разработанные для дизельных двигателей. К ним относятся:

принципов | BorgWarner Turbo Systems

Чтобы лучше понять технику турбонаддува, полезно ознакомиться с принципами работы двигателя внутреннего сгорания. Сегодня большинство пассажиров легковые и коммерческие дизельные двигатели представляют собой четырехтактные поршневые двигатели, регулируемые впуском. и выпускные клапаны.Один рабочий цикл состоит из четырех ходов в течение двух полных. обороты коленчатого вала.

  • Всасывание (ход перезарядки)
    Когда поршень движется вниз, воздух (дизельный двигатель или бензиновый двигатель с прямым впрыском) или топливно-воздушная смесь (бензиновый двигатель) всасывается через впускной клапан.
  • Компрессия (рабочий ход)
    Объем цилиндра сжат.
  • Расширение (рабочий ход)
    В бензиновом двигателе топливно-воздушная смесь воспламеняется от свечи зажигания, тогда как в топливо для дизельного двигателя впрыскивается под высоким давлением, и смесь самовоспламеняется.
  • Выхлоп (ход перезарядки)
    Выхлопные газы удаляются при движении поршня вверх.

Эти простые принципы работы предоставляют различные возможности увеличения мощность двигателя:

Увеличение рабочего объема

Увеличение рабочего объема позволяет увеличить выходную мощность, поскольку больше воздух доступен в камере сгорания большего размера и, таким образом, можно сжечь больше топлива.Это увеличение может быть достигнуто за счет увеличения количества цилиндров или объем каждого отдельного цилиндра. В общем, это приводит к большему и большему весу двигатели. Что касается расхода топлива и выбросов, то существенных можно ожидать преимуществ.

Увеличение оборотов двигателя

Еще одна возможность увеличения выходной мощности двигателя — увеличение его мощности. скорость. Это достигается за счет увеличения количества ударов в единицу времени.Потому что пределов механической стабильности, однако такое улучшение производительности ограничено. Кроме того, увеличение скорости приводит к увеличению потерь на трение и накачку. экспоненциально и КПД двигателя падает.

Турбонаддув

В вышеописанных процедурах двигатель работает как безнаддувный. двигатель. Воздух для горения всасывается непосредственно в цилиндр во время всасывания. Инсульт.В двигателях с турбонаддувом воздух для горения уже предварительно сжимается. подается в двигатель. Двигатель всасывает такой же объем воздуха, но из-за чем выше давление, тем больше массы воздуха подается в камеру сгорания. Как следствие, может быть сожжено больше топлива, так что выходная мощность двигателя увеличивается по сравнению с та же скорость и стреловидность.

В принципе, следует различать механический наддув и выхлопные газы. двигатели с турбонаддувом.

Механический наддув

При механическом наддуве воздух для горения сжимается компрессором. приводится непосредственно от двигателя. Однако прирост мощности частично теряется. из-за паразитных потерь от привода компрессора. Способность управлять механическим турбокомпрессор составляет до 15% мощности двигателя. Следовательно, расход топлива выше по сравнению с безнаддувным двигателем с той же выходной мощностью.

Турбонаддув выхлопных газов

При турбонаддуве выхлопных газов часть энергии выхлопных газов, которая обычно быть потраченным впустую, используется для привода турбины. Устанавливается на одном валу с турбиной. это компрессор, который всасывает воздух для горения, сжимает его, а затем подает это к двигателю. Механической связи с двигателем нет.

Вот как работает двигатель вашего автомобиля

Для большинства людей автомобиль — это штука, заправленная бензином, которая перемещает их из точки А в точку Б.Но задумывались ли вы когда-нибудь: как на самом деле так делает ? Что заставляет его двигаться? Если вы еще не выбрали электромобиль в качестве повседневного водителя, магия в том, как сводится к двигателю внутреннего сгорания — той штуке, которая шумит под капотом. Но как именно работает двигатель?

В частности, двигатель внутреннего сгорания является тепловым двигателем, поскольку он преобразует энергию тепла горящего бензина в механическую работу или крутящий момент. Этот крутящий момент применяется к колесам, чтобы заставить машину двигаться.И если вы не управляете старинным двухтактным Saab (который звучит как старая бензопила и изрыгает масляный дым из выхлопных газов), ваш двигатель работает на тех же основных принципах, независимо от того, управляете ли вы Ford или Ferrari.

Двигатели имеют поршни, которые перемещаются вверх и вниз внутри металлических трубок, называемых цилиндрами. Представьте, что вы едете на велосипеде: ваши ноги двигаются вверх и вниз, чтобы крутить педали. Поршни соединены стержнями (они похожи на ваши голени) с коленчатым валом, и они перемещаются вверх и вниз, чтобы вращать коленчатый вал двигателя, так же, как ваши ноги вращают велосипед, который, в свою очередь, приводит в действие ведущее колесо велосипеда или ведущие колеса автомобиля. .В зависимости от автомобиля в двигателе обычно бывает от двух до 12 цилиндров, в каждом из которых поршень перемещается вверх и вниз.

Откуда исходит мощность двигателя

Эти поршни движутся вверх и вниз тысячи крошечных контролируемых взрывов, происходящих каждую минуту, создаваемых смешиванием топлива с кислородом и воспламенением смеси. Каждый раз, когда топливо воспламеняется, называется тактом сгорания или силовым ходом. Тепло и расширяющиеся газы от этого мини-взрыва толкают поршень в цилиндре.

Почти все современные двигатели внутреннего сгорания (для простоты мы сосредоточимся здесь на бензиновых силовых установках) относятся к четырехтактным. Помимо такта сгорания, который толкает поршень вниз из верхней части цилиндра, есть еще три хода: впуск, сжатие и выпуск.

Двигателям необходим воздух (а именно кислород) для сжигания топлива. Во время такта впуска клапаны открываются, позволяя поршню действовать как шприц, когда он движется вниз, втягивая окружающий воздух через систему впуска двигателя.Когда поршень достигает нижней точки своего хода, впускные клапаны закрываются, эффективно уплотняя цилиндр для такта сжатия, который проходит в направлении, противоположном такту впуска. Движение поршня вверх сжимает всасываемый заряд.

Четыре такта четырехтактного двигателя

Getty Images

В современных двигателях бензин впрыскивается непосредственно в цилиндры в верхней части такта сжатия.(Другие двигатели предварительно смешивают воздух и топливо во время такта впуска. ) В любом случае, непосредственно перед тем, как поршень достигнет верхней точки своего хода, известной как верхняя мертвая точка, свечи зажигания воспламеняют смесь воздуха и топлива.

Возникающее в результате расширение горячих горящих газов толкает поршень в противоположном направлении (вниз) во время такта сгорания. Это ход, при котором колеса вашего автомобиля крутятся, как когда вы нажимаете на педали велосипеда. Когда такт сгорания достигает нижней мертвой точки, выпускные клапаны открываются, позволяя газам сгорания откачиваться из двигателя (как шприц, выталкивающий воздух), когда поршень снова поднимается.Когда выхлоп выходит — он проходит через выхлопную систему автомобиля перед выходом из задней части автомобиля — выхлопные клапаны закрываются в верхней мертвой точке, и весь процесс начинается заново.

Этот контент импортирован из {embed-name}. Вы можете найти то же содержимое в другом формате или найти дополнительную информацию на их веб-сайте.

В многоцилиндровом автомобильном двигателе циклы отдельных цилиндров смещены друг от друга и равномерно распределены, так что такты сгорания не происходят одновременно, а двигатель является максимально сбалансированным и плавным.

Getty Images

Но не все двигатели одинаковы. Они бывают разных форм и размеров. В большинстве автомобильных двигателей цилиндры расположены по прямой линии, например, рядный четырехцилиндровый двигатель, или объединены два ряда рядных цилиндров по схеме V-образного сечения, как в V-6 или V-8. Двигатели также классифицируются по размеру или рабочему объему, который представляет собой совокупный объем цилиндров двигателя.

Различные типы двигателей

Конечно, существуют исключения и незначительные различия среди двигателей внутреннего сгорания, представленных на рынке.Например, двигатели с циклом Аткинсона изменяют фазы газораспределения, чтобы сделать двигатель более эффективным, но менее мощным. Турбонаддув и наддув, сгруппированные вместе под опциями принудительной индукции, нагнетают дополнительный воздух в двигатель, что увеличивает доступный кислород и, следовательно, количество топлива, которое можно сжечь, что приводит к увеличению мощности, когда вы этого хотите, и большей эффективности, когда вы надеваете мне не нужна сила. Все это дизельные двигатели обходятся без свечей зажигания. Но независимо от двигателя, если он относится к типу двигателей внутреннего сгорания, основы его работы остаются неизменными.И теперь вы их знаете.

Пора провести весеннюю уборку? Попробуйте продукты Meguiar, которые мы используем в нашем автопарке

Средство для мытья и воска Meguiar’s Ultimate

Ultimate Quik Detailer от Meguiar

Полотенце из микрофибры Meguiar’s Water Magnet

Детальщик интерьера Meguiar’s Ultimate

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти дополнительную информацию об этом и подобном контенте на сайте piano.io.

Ранняя история дизельного двигателя

Ранняя история дизельного двигателя

Hannu Jääskeläinen

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Abstract : В 1890-х годах Рудольф Дизель изобрел эффективный двигатель внутреннего сгорания с воспламенением от сжатия, который носит его имя.Ранние дизельные двигатели были большими и работали на низких оборотах из-за ограничений их систем впрыска топлива с подачей сжатого воздуха. В первые годы своего существования дизельный двигатель конкурировал с другой концепцией двигателя на мазуте — двигателем с горячей лампой, изобретенным Акройд-Стюарт. Высокоскоростные дизельные двигатели были представлены в 1920-х годах для коммерческих автомобилей и в 1930-х годах для легковых автомобилей.

Изобретение Рудольфа Дизеля

Рудольф Дизель, наиболее известный за изобретение двигателя, носящего его имя, родился в Париже, Франция, в 1858 году.Его изобретение появилось в то время, когда паровая машина была основным источником энергии для крупных предприятий.

Рисунок 1 . Рудольф Дизель (1858-1913)

В 1885 году Дизель открыл свою первую мастерскую в Париже, чтобы начать разработку двигателя с воспламенением от сжатия. Процесс продлился 13 лет. В 1890-х он получил ряд патентов на изобретение эффективного двигателя внутреннего сгорания с медленным горением и воспламенением от сжатия [2856] [2857] [2858] [2859] .С 1893 по 1897 год Дизель развивал свои идеи в Maschinenfabrik-Augsburg AG (позже Maschinenfabrik-Augsburg-Nürnberg или MAN). Помимо MAN, швейцарские братья Зульцер рано проявили интерес к работе Дизеля, купив определенные права на изобретение Дизеля в 1893 году.

В компании MAN в Аугсбурге 10 августа 1893 года начались испытания прототипа конструкции с диаметром цилиндра 150 мм и ходом поршня 400 мм. Хотя первые испытания двигателя не увенчались успехом, серия улучшений и последующих испытаний привели к успешному испытанию 17 февраля 1897 года, когда Дизель продемонстрировал КПД 26. 2% с двигателем, рис. 2, под нагрузкой — значительное достижение, учитывая, что популярный в то время паровой двигатель имел КПД около 10%. Первый дизельный двигатель, построенный Sulzer, был запущен в июне 1898 г. [388] [2860] . Дополнительные сведения о ранних испытаниях Дизеля можно найти в литературе [2864] [2265] .

Рисунок 2 . Третий испытательный двигатель Дизеля, успешно прошедший приемочные испытания 1897 г.

1 цилиндр, четырехтактный, водяного охлаждения, воздушный впрыск топлива
Мощность: 14.7 кВт (20 л.с.)
Расход топлива: 317 г / кВтч (238 г / л.с.ч)
КПД: 26,2%
Число оборотов: 172 мин -1
Рабочий объем: 19,6 л
Диаметр цилиндра: 250 мм
Ход поршня: 400 мм

На разработку изобретения Дизеля потребовалось больше времени и усилий, чтобы добиться коммерческого успеха. Многие инженеры и разработчики присоединились к работе по повышению жизнеспособности идеи, созданной Рудольфом Дизелем. Он, с другой стороны, был в некоторой степени обеспокоен этим процессом и не всегда мог найти общий язык с другими конструкторами двигателей, разрабатывающими его изобретение.Попытки Diesel продвинуть на рынок еще не готовый двигатель в конечном итоге привели к нервному срыву. В 1913 году, глубоко обеспокоенный критикой его роли в разработке двигателя, он загадочным образом исчез с корабля во время путешествия в Англию, предположительно покончив с собой [389] . Когда срок действия патентов Дизеля начал истекать, ряд других компаний взяли его изобретение и развили его дальше.

###

Двигатель внутреннего сгорания для выработки электроэнергии — Введение

Двигатель внутреннего сгорания с искровым зажиганием во время такта сжатия

В дизельных двигателях топливо впрыскивается в цилиндр ближе к концу такта сжатия, когда воздух сжат достаточно, чтобы достичь температура самовоспламенения.Сгорание топливовоздушной смеси вызывает ускоренное расширение газов под высоким давлением, которые толкают поршень к нижней части цилиндра во время рабочего хода, сообщая вращение коленчатому валу. Горение происходит периодически — только во время рабочего такта — тогда как в газовых турбинах горение происходит непрерывно. Когда поршень возвращается в верхнюю часть цилиндра во время такта выпуска, продукты сгорания (выхлопные газы) выталкиваются через выпускной клапан. К коленчатому валу подключено несколько цилиндров, ориентированных таким образом, что, в то время как одни поршни сообщают коленчатому валу вращение во время рабочего хода, другие поршни выталкиваются обратно в верхнюю часть цилиндров во время их тактов выпуска.

Размер и мощность двигателя внутреннего сгорания зависят от объема сожженного топлива и воздуха. Таким образом, размер цилиндра, количество цилиндров и частота вращения двигателя определяют количество мощности, генерируемой двигателем. Увеличивая приток воздуха к двигателю с помощью вентилятора или компрессора — так называемый наддув, — можно увеличить выходную мощность двигателя. Обычно используемый нагнетатель представляет собой турбонагнетатель, в котором в тракте выхлопных газов используется небольшая турбина для извлечения энергии для привода центробежного компрессора.

Гибкость топлива
Двигатели внутреннего сгорания могут работать на различных видах топлива, включая природный газ, легкое жидкое топливо, тяжелое жидкое топливо, биодизель, биотопливо и сырую нефть. Дизельные двигатели обычно более эффективны, чем двигатели SG, но также производят больше оксидов азота (NOx), диоксида серы (SO2) и твердых частиц (PM). Образование SO2 и ТЧ зависит от топлива, при этом выбросы природного газа низкие. Образование NOx связано с температурой горения.В двигателях SG предварительное смешивание воздуха с топливом для создания «обедненных» условий (больше воздуха, чем требуется для сгорания) снижает температуру сгорания и препятствует образованию NOx. Разработаны новые конструкции двигателей, позволяющие использовать преимущества дизельного процесса при сохранении преимуществ сжигания обедненной смеси. Двухтопливные двигатели (DF) спроектированы с возможностью сжигания как жидкого, так и газообразного топлива. При работе в газовом режиме газообразное топливо предварительно смешивается с воздухом, впрыскивается сразу после такта сжатия и воспламеняется пламенем запального топлива. В этом процессе пламя пилотного топлива действует как «свеча зажигания», воспламеняя обедненную газо-воздушную смесь. Двигатели DF сохраняют возможность использования резервного жидкого топлива при прерывании подачи газа. В газодизельных двигателях (GD) используется сильно сжатый газ, который впрыскивается после воспламенения жидкого пилотного топлива. Этот процесс позволяет использовать газ более низкого качества.

На электростанции многие ПГ или дизельные ДВС сгруппированы в блоки, называемые генераторными установками. Каждый двигатель связан с валом, который соединен с его электрическим генератором.Эти генераторные установки обеспечивают модульную электрическую мощность и бывают стандартных размеров от 4 до 20 МВт.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *