Принцип работы турбина: 403 — Доступ запрещён – 403 — Доступ запрещён

Содержание

Турбина. Принцип работы. Советы по эксплуатации и ремонту.

Нашел кое-какую полезную инфу. Наверняка кому-нибудь пригодится. Во вложениях есть картинки. На FAQ не претендую… :dead:


Принцип работы турбины
Для получения более четкого представления о принципе работы турбокомпрессора, необходимо ознакомиться с системой функционирования двигателя внутреннего сгорания. На сегодняшний день, большинство дизельных легковых и грузовых автомобилей оснащаются 4-х тактными поршневыми двигателями, работа контролируется при помощи впускных и выпускных клапанов. Каждый рабочий цикл состоит из 4 тактов при 2 полных оборотах коленвала.
• Впуск – при движении поршня вниз, воздух (в дизельном двигателе) или смесь топлива и воздуха (в бензиновом двигателе) проходит через открытый впускной клапан.
• Компрессия – происходит сжатие горючей массы.
• Расширение – смесь воздуха и топлива воспламеняется при помощи свечей (бензиновый двигатель), дизельное топливо впрыскивается под давлением и воспламенение происходит произвольно.

• Выпуск – при движении поршня вверх, выпускаются выхлопные газы.
Данные принципы работы предоставляют следующие пути увеличения эффективности работы двигателя:
Увеличение объема
Увеличение объема обеспечивает увеличение мощности двигателя, так как увеличение камеры сгорания позволяет нагнетание большего объема воздуха и большее колличество сжигаемого топлива. Увеличение объема может быть достигнуто путем увеличения колличества цилиндров или увеличения объема каждого цилиндра. В целом, увеличения объема приводит к увеличению массы двигателя. Этот способ не обеспечивает значительных преимушеств по уровню выбросов и потреблению топлива.
Увеличение скорости работы двигателя
Другим способом увеличения мощности двигателя является увеличение скорости работы двигателя. Увеличение скорости проводится путем увеличения количества ходов поршня на единицу времени. Однако, по техническим причинам этот способ имеет жесткие ограничения. Увеличение скорости работы двигателя приводит к увеличению потерь при накачивании и других операциях, что вызывает падение эффективности работы.


Турбокомпрессия​


При применении двух первых способов, двигатель обеспечивается только собственным нагнетанием. Воздух для сгорания проходит прямо в цилиндр во время впускного такта. При использовании турбокомпрессора, воздух, поступающий в камеру сгорания предварительно сжимается. В двигатель поступает тот же объем воздуха, однако, более высокое давление обеспечивает прохождение большего колличества воздушной массы, что позволяет увеличить объем сжигаемого топлива. Таким образом, при использовании турбокомпрессора, мощность двигателя увеличивается по отношению к его объему и колличеству потре***емого топлива.
Охлаждение нагнетаемого воздуха
В ходе компрессии, нагнетаемый воздух нагревается до 180 С. При охлаждении, плотность воздуха увеличивается,что позволяет увеличить объем нагнетаемого воздуха.
Охлаждение нагнетаемого воздуха является одной из немногих мер по увеличению мощности двигателей внутреннего сгорания, которые положительно влияют на уровень потребления топлива и уровень выброса вредных веществ. Снижение температуры входящего воздуха обеспечивает снижение температуры сгорания и, таким образом, снижение колличества вырабатываемого NO (x). Увеличение плотности воздуха снижает расход топлива и уровень загрязнения окружающей среды.
Существуют два типа турбокомпрессии – механическая турбокомпрессия и компрессия выхлопных газов.
Механическая турбокомпрессия
При механической турбокомпрессии, воздух сжимается при помощи компрессора, приводимого от двигателя. Однако, часть получаемого увеличения мощности уходит на привод компрессора. В зависимости от размера двигателя, мощность, необходимая для привода компрессора составляет от 10 до 15% от общей выработки двигателя. Таким образом, при сравнении с обычным двигателем такой же мощности, двигатель с механической турбокомпрессией имеет повышенный расход топлива.
Турбокомпрессия выхлопных газов
При использовании компрессии выхлопных газов, энергия газа, которая не используется в обычных условиях, направлена на привод турбины. Компрессор находится на одном валу с турбиной и обеспечивает забор, сжатие и подачу воздуха в камеру сгорания. В этом случае механичекие соединения с двигателем отсутствуют.
Преимущества турбокомпрессии выхлопных газов.
• По сравнению с обычным двигателем такой же мощности, турбодвигатель имеет меньший расход топлива, так как часть энергии выхлопных газов способствует увеличению мощности двигателя. Меньший объем двигателя сокращает термические и др. потери.
• Турбодвигатель имеет значительно лучшее соотношение веса к мощности, т.е. Kw / кг.
• Необходимая площадь двигательного отсека турбодвигателя меньше, чем у обычного двигателя.
• При использовании турбодвигателя, возможно дальнейшее улучшение характеристик крутящего момента для поддержания мощности, близкой к максимальной при очень низкой скорости двигателя, что позволяет избежать частого переключения скоростей при езде в гористой местности.
• Турбодвигатели имеют значительно лучшие характеристики работы в условиях высокогорья. В условиях пониженного давления обычный двигатель теряет значительную часть мощности. В противоположность, рабочие характеристики турбодвигателя улучшаются вследствие увеличения разницы между постоянным давлением вверх по соединениям турбины и пониженным внешним давлением у входа турбины. Низкая плотность воздуха у входа компенсируется, обеспечивая почти нулевую потерю мощности.
• Так как турбодвигатель имеет меньшие размеры, а соответственно и площадь шумовыделяющей поверхности, его шумовые характеристики лучше, чем у обычных двигателей. В данном случае, турбокомпрессор действует как добавочный глушитель.

Эксплуатация турбин

Правильная эксплуатация вaжна для продления службы турбокомпрессора.

Самые распостраненные ошибки.
Особое внимание к системам смазки и впуска выявляет 2 главные причины поломки турбокомпрессора. Чтобы их избежать, нужно убедится :

• Воздушный и масляной фильтры регулярно проверяются в соответствии с рекомендациями производителя.
• То же самое выполняется и с интервалами обслуживания двигателя.
• Двигатель и оборудование используется так, что это не вредит сроку службы турбины.

Вы можете добится максимального срока службы турбины, если будете следовать нескольким правилам :


Запуск турбины

Когда запускаете двигатель, используйте минимальный газ и держите двигатель на холостых оборотах минимум 1 минуту.

Полное рабочее давление создается за секунды, но оно только позволяет разогнать движущиеся части турбины в условиях при хорошей смазки. Газовать на двигателе, который лишь несколько секунд назад завелся – значит заставлять турбину вращаться на высоких скоростях в условиях ограниченной смазки. Это может привести к преждевременной поломки турбокомпрессора.

После ремонта

После ремонта турбины или двигателя, убедитесь, что, турбина смазана, добавлением чистого моторного масла до заполнения через входной масляный патрубок. После этого проверте коленвал не заводя двигатель, чтобы масло начало циркулировать по системе под давлением. Заводя двигатель, дайте ему поработать на холостом ходу несколько минут, чтобы убедиться, что система смазки и подшипники турбины работают удовлетворительно.

Низкая температура и редкий запуск турбины

Если двигатель эксплуатировался некоторое время, или если температура воздуха очень низка, проверните двигатель перед запуском, а затем запустите на холостых оборотах. Это позволяет маслу циркулировать и заполнить систему прежде, чем большие нагрузки.

Выключения

Дайте остыть турбокомпрессору перед выключением зажигания. При нагруженном двигателе, турбокомпрессор работает на очень высоких оборотах и при высокой температуре. Быстрое выключение зажигания или «горячее выключение» создает быстрые переходные процессы и перепады температур в турбине и уменьшает жизнь турбокомпрессора.

Холостые обороты

Желательно не оставлять двигатель долго работающим на холостых оборотах (более 20-30 минут). При холостых оборотах, турбина генерирует низкое давление и возможны протекания паров масла через соединения турбины.

Это не приносит никакого реального вреда для турбины, только придает синий дым к выхлоту двигателя.

Улитка компрессора

Улитка турбины изготавливается из различных сортов сфероидированного чугуна, чтобы противостоять тепловому воздействию и разрушению крыльчатки. Как и крыльчатка, профиль улитки обработан до полного соответствия форме лопастей крыльчатки. Впускной фланец улитки турбины работает как установочная база для закрепления турбины, несущая нагрузку.

Параметры:

• Обычно это сплав железа со сферойдным графитом
• Обычно это установочная база, несущая вес всей турбины
• Требования
– ударопрочность
– стойкость к окислению
– жаропрочность
– жаростойкость
– легкость механической обработки

Улитка компрессора отлита из алюминия. Используются различные сплавы для различных типов компрессоров. Используются как вакумное литье так «песочное» литье. Точная финальная обработка для соблюдения размеров и качества поверхностей, необходимые для нормальной работы турбины.

Параметры:

• Обычно изготовлена из различных алюминевых сплавов
• точные размеры и формы profile machining to match impeller blade shape
• рабочие температуры до 200 °C
• Основные требования
– Прочность к ударным и механическим нагрузкам
– качество обрабоки и точные размеры

Крыльчатка турбины

Крыльчатка турбины установлена в корпусе турбины и соединена штифтом, который вращает крыльчатку компрессора.

Параметры:

• качественное покрытие из никелевого сплава
• сделана из прочных и стойких сплавов
• выдерживает температуры работы до 760 °C
• Основные требования
– стойкость к изнашиванию
– стойкость к деформациям
– стойкость к коррозии

Крыльчатка компрессора

Сделана из алюминиевых сплавов методом литья.
Для литья используется резиновая форма. По ней делается форма для литья и в нее заливается расплавленный металл. Точные размеры лопастей крыльчатки и точная механическая обработка важны для нормальной работы компрессора. Расточка и полирование повышает коэффициенты сопротивления усталости. Крыльчатка расположена на сборке вала.

Параметры:

• обычно алюминиевый сплав (Cu-Si)
• начало использования этотого процесса литья в 1976
• Основные требования
– высокое сопротивление усталости
– высокое сопротивление растяжению
– высокое сопротивление коррозии
– на некоторых моделях крыльчаток, для очень мощной и продолжительной работы при больших температурах, лопасти изготавливаются из титана

Система смазки подшипников

Серый металлический корпус системы подшипника броска обеспечивает местоположения для плавающей системы подшипника для вала, турбины и компрессора, который может вращаться до 170,000 оборотов/минут.

Параметры:

• обычно сделанна из металла
• в призводстве и обработки использованы шлифовка, расточка, сверление и полировка
• сложная геометрическая конструкция для охлаждения
• Основные требования
– качество обработки
– жесткость
– термостойкость

Система подшипника должна противостоять высоким температурам, переключениям режимов работы, наличию грязи в смазке и т.д.

Подшипники изготовлены из специально разработанных бронзовых или медных сплавов. Специально разработанный производственный процесс предназначен, чтобы создать подшипники с необходимыми качествами термостойкости и износостойкости.
Укрепленные стальные упорные кольца и масляные проточки особенно точно изготовлены. Осевое давление поглащается бронзовым гидродинамическим подшипником осевого давления, расположенным в конец сборки вала. Точная калибровка обеспечивает равномерную нагрузку подшипника.


Турбина – кто она?

Еще полвека назад на серийных моторах стали появляться Turbo. Это магическое слово настолько глубоко проникло в наш лексикон, подчеркивая невероятную мощь и скорость. А ведь автомобильная газовая турбина — это всего лишь колесо с лопатками, вращающееся в улиткообразном корпусе. Да и принцип ее действия подозрительно напоминает тысячелетней давности водяные мельницы…
Существуют несколько путей увеличения эффективности работы двигателя:

1. Увеличение объема обеспечивает увеличение мощности двигателя и может быть достигнуто путем увеличения количества цилиндров или увеличения объема каждого цилиндра. В целом все эти манипуляции приводят к увеличению массы двигателя, к тому же этот способ не обеспечивает значительных преимуществ по уровню выбросов и потреблению топлива.

2. Другим способом наращивания мощности двигателя является увеличение скорости работы двигателя за счет количества ходов поршня на единицу времени. Однако по техническим причинам этот способ имеет жесткие ограничения: чем выше скорость работы двигателя, тем больше процент механических потерь, а это чревато падением эффективности работы.

3. Применение турбокомпрессора. Мощность мотора тем выше, чем больше топлива мы сможем сжечь в его цилиндрах в процессе каждого рабочего цикла. Большее количество бензина (или солярки) требуется для эффективного сгорания и соответствующего увеличения массы подаваемого в цилиндры воздуха. Для этого его сжимают, то есть разными способами увеличивают давление воздуха на входе в двигатель.
С точки зрения прироста мощности наддув — решение чрезвычайно эффективное. К примеру, если избыточное давление во впускном коллекторе увеличить до 1 кг/см2 (это вполне реальная величина), то количество воздуха, попадающее в цилиндр на такте впуска, увеличится почти вдвое! Столь же существенно (если не учитывать некоторые потери, возникающие в реальном моторе) вырастет и мощность.
Конечно, бесплатного сыра не бывает. Наддув — не только эффективный, но и весьма непростой способ увеличения мощности, имеющий к тому же массу недостатков. Давайте разберемся, каким образом «надувают» моторы.

Как «надуть» мотор?

При механическом наддуве воздух сжимается при помощи компрессора. Мощность, необходимая для привода компрессора, составляет 10 -15% от общей выработки двигателя. Таким образом, при сравнении с обычным двигателем такой же мощности, двигатель с механической турбокомпрессией имеет только один серьезный недостаток — повышенный расход топлива.
Благодаря своей простоте и дешевизне механические турбоком-прессоры получили широкое распространение еще в двадцатых годах прошлого столетия. Потом о них надолго и незаслуженно забыли — вплоть до недавних времен, когда инженеры сразу нескольких автомобильных фирм вдохнули вторую жизнь в старое изобретение. И не зря. Если учесть, что повышенный расход топлива проявляется лишь при высоких давлениях наддува, то в ближайшей перспективе можно предвидеть их широкое распространение на серийных и тюнингованных моторах.
Еще один вариант — турбокомпрессия выхлопных газов. При этом энергия газа, которая не используется в обычных условиях, направлена на привод турбины. Компрессор находится на одном валу с турбиной и обеспечивает забор, сжатие и подачу воздуха в камеру сгорания. В этом случае механические соединения с двигателем отсутствуют.
Преимущества такого вида турбокомпрессии в том, что:
по сравнению с обычным двигателем такой же мощности, турбодвигатель имеет меньший расход топлива, так как часть энергии выхлопных газов способствует увеличению мощности двигателя. Меньший объем двигателя сокращает механические и др. потери;
турбодвигатель имеет значительно лучшее соотношение веса и мощности;
необходимая площадь двигательного отсека меньше, чем у обычного двигателя.
Использование турбодвигателя дает возможность при низкой скорости вращения двигателя поддерживать максимальную мощность. А это в свою очередь позволяет избежать частого переключения скоростей, например, при езде по плохим и неровным дорогам.
его шумовые характеристики лучше, чем у обычных двигателей.
Есть и еще одна особенность, характерная для всех «надутых» бензиновых моторов –повышение давления на впуске увеличивает температуру в цилиндре в конце такта сжатия и в начале рабочего хода. Чтобы избежать значительного ухудшения характеристик, воздух после нагнетателя приходится охлаждать. Меньшая температура на впуске облегчает тепловой режим двигателя.
Впрочем, прогресс не стоит на месте: турбомоторы постепенно избавляются от детских болезней и становятся все более доступными в цене, значит, и более массовыми.

В тему!
Самые распространенные ошибки

Рекомендации по эксплуатации турбин

Каким бы надежным не был механизм, его легко загубить неправильной эксплуатацией.
Особое внимание следует уделить системам смазки и впуска, как правило, именно в них выявляют главные причины поломки турбокомпрессора. Чтобы их избежать, нужно регулярно, в соответствии с рекомендациями производителя, проверять и менять фильтры и масло.

Вы можете добиться максимального срока службы турбины, если будете следовать нескольким правилам:

1. При запуске двигателя используйте минимальный газ и не меньше минуты держите двигатель на холостых оборотах.
Полное рабочее давление создается за секунды, но оно только позволяет разогнать движущиеся части турбины в условиях хорошей смазки. Газовать на двигателе, который лишь несколько секунд назад завелся, значит, заставлять турбину вращаться на высоких скоростях в условиях ограниченной смазки. Это может привести к преждевременной поломке турбокомпрессора.

2. После ремонта турбины убедитесь, что она смазана чистым моторным маслом. После этого проверните коленвал, не заводя двигатель, чтобы масло под давлением начало циркулировать в системе. Заводя двигатель, дайте ему поработать на холостом ходу несколько минут, чтобы убедиться, что система смазки и подшипники турбины работают удовлетворительно.

3. Если двигатель не эксплуатировался некоторое время или температура воздуха очень низка, проверните двигатель перед запуском, а затем запустите на холостых оборотах. Это позволит маслу циркулировать и заполнить систему прежде, чем двигатель получит большие нагрузки.

4. Перед выключением зажигания дайте турбокомпрессору остыть. При нагруженном двигателе он работает при высокой температуре на очень высоких оборотах. Быстрое выключение зажигания (горячее выключение) создает резкие перепады температур и слишком «торопит» переходные процессы. А это уменьшает жизнь турбокомпрессора

Загадка: что общего между турбированным мотором и футбольной командой? Ответ прост: если результаты ниже нормы, следует менять наиболее важный элемент, турбину в моторе или нападающего в команде. Автовладельцы, пользующиеся этим уже давно ставшим привычным изобретением, наверное и не подозревают, что турбине скоро «стукнет» сто лет. Патент на ее изобретение был выдан швейцарскому инженеру Альфреду Бюхи в 1905 году. Вскоре после этого он был обвинен военными в производстве оружия(!). Нечто подобное прозвучало в 1973 году от лица немецкого Бундестага. Камнем преткновения тогда стала модель BMW 2002 turbo, не вписавшаяся в контекст нефтяного кризиса. А первыми серийными автомобилями, оснащенными турбинами были Oldsmobile F-85 Jetfire и Chevrolet Corvair Monza, увидевшие свет в апреле 1962.

Принцип работы турбины: поток отработанных газов проходит сквозь ее корпус и приводит в движение крыльчатку. Эта крыльчатка соединена валом с другой подобной крыльчаткой, относящейся уже к впускной системе двигателя. Задача второй крыльчатки – нагнетать воздух в камеру сгорания. Благодаря большему количеству воздуха в цилиндр может подаваться большее количество топлива. А это в состоянии повысить мощность двигателя до 30%.

Все, кто хоть раз сталкивался с проблемными турбинами, наверняка были неприятно удивлены высокой стоимостью этого элемента двигателя и ремонта его. Однако это оказывается правдой не всегда. Обмен старой турбины на новую часто обходится в половину стоимости новой турбины, а восстановление – около четверти. Причем под восстановлением подразумевается придание турбине ее прежнего показателя мощности.

Безусловно, такая операция доступна не каждой мастерской, хотя принцип восстановления турбины принципиально и не отличается от других восстановительных операций. Вал турбины оценивается на пригодность к дальнейшему использованию и заменяется, если износ слишком сильный. В обязательном порядке происходит замена всех подшипников, а затем происходит наиболее ответственная и трудоемкая операции по сборке и юстировке.

Наиболее частая причина постепенного падения мощности и в результате выхода из строя этого агрегата – износ подшипника. Заметить это можно, демонтировав турбину. Легкие следы износа и царапины будут наблюдаться около крыльчатки. Наиболее подверженными данной поломке автомобилями являются Nissan 200 SX и 1,8-л модели концерна Volkswagen (150 сильные бензиновые двигатели VW, Audi, Seat и Skoda). Причина – зашламомывание маслопроводящих каналов. Следующий по частоте отказа турбины – дизельный микроавтобус VW T3. Перегрев.

Чем более турбина насыщена какими-либо конструкционными особенностями, тем дороже обходится ее ремонт. Наиболее дорогой ремонт турбин с деталями из композитных материалов, например Nissan Skyline с металлокерамической турбиной. Также дорог ремонт модели Opel Calibra Turbo, с объединенным в одно целое корпусов выпускного коллектора и турбины.

Турбина – очень чувствительный элемент двигателя, иногда для выхода ее из строя достаточно самых банальных причин. Например, забитой землей при маневрировании выхлопной трубы. Это однако не значит, что турбина делает двигатель гораздо более чувствительным и подверженным поломкам. Минимальный уход за двигателем, то есть регулярная замена масла соответствующего качества может обеспечить ресурс турбины 300 000 км и больше. Самое интересное, что мастерские, специализирующиеся по ремонту турбин, сообщают, что им гораздо чаще приходится сталкиваться с поломками относительно новых агрегатов.

 

Принцип работы турбины – как она работает


Турбокомпрессор или попросту турбина – это дополнительное устройство двигателя, которое для своей работы использует энергию отработавших газов. Что позволяет увеличить мощность двигателя на величину от 25% до 100%. Прежде чем понять, как работает турбокомпрессор, стоит рассмотреть функционирование двигателя внутреннего сгорания.

Принцип работы ДВС

Любой двигатель внутреннего сгорания, дизельный или бензиновый, работает на принципе получения энергии, образующейся от воспламенения топливовоздушной смеси в камерах сгорания. Через впускные клапаны в цилиндр подается отфильтрованный внешний воздух и впрыскивается топливо, причем при пассивной подаче воздуха, в цилиндр подается дозированное количество топлива. Именно эта смесь сгорает в цилиндре и заставляет двигаться поршень, который передает свою кинетическую энергию на ходовую систему автомобиля. Чем больше такой смеси подается и сгорает в цилиндрах, тем больше выходной крутящий момент и соответственно выше общая мощность мотора.

Принцип работы турбины

Для увеличения подачи воздуха в цилиндр, без изменения объема самого цилиндра, используют турбокомпрессор. При работе турбины используются продукты сгорания топливной смеси, которые приводят в действие роторный механизм турбокомпрессора, с помощью которого атмосферный воздух принудительно нагнетается в цилиндры (турбонаддув). И, благодаря этому, в цилиндр подается и большая дозировка топлива. Во время нагнетания, воздух может нагреваться, из-за чего уменьшается его плотность и масса в цилиндрах. Для подачи большего количества воздуха, его необходимо охладить. Для лучшего охлаждения используется радиаторное устройство, называемое интеркулером, который устанавливается на выходе из холодной части турбокомпрессора и через который проходит воздух перед попаданием в цилиндры. На следующем этапе поршень всасывает этот охлажденный воздух через впускные клапаны и одновременно в камеру сгорания подается топливо, образуется топливовоздушная смесь. Возгорание топливной смеси происходит от искры (бензиновые двигатели), либо от сжатия (дизельные двигатели). После того, как произошло сгорание порции смеси, продукты горения выбрасываются через выпускной клапан и попадают снова в турбину, на ее ротор. Таким образом, она работает без участия движущих частей двигателя, используя энергию потока выхлопных газов.

Для каждого двигателя турбокомпрессор подбирается индивидуально, исходя из его собственной мощности и объема. Причем величина наддува зависит от геометрических параметров (размеров) улиток, компрессорного колеса, ротора турбины. Некоторые конструкции двигателей оборудуют не одной турбиной, а двумя: одинакового размера – би-турбо, разного размера – твин-турбо. В последнее время широкое распространение получили турбокомпрессоры с механизмом изменяемой геометрии. Стоит отметить, что сложность, а соответственно и стоимость ремонта турбины зависит от ее конструктивных особенностей и модификации.

Механизм изменяемой геометрии

Такой механизм позволяет дозировать подачу отработавших газов на колесо в турбине (ротор). Тем самым, позволяет оптимизировать работу турбокомпрессора на различных оборотах.

Это достигается за счет движения специальных лопаток, смонтированных на кольце геометрии. Они синхронно передвигаются, получая движение от вакуумного актуатора или электронного сервопривода в определенный момент, и контролируют наддув. Как правило, устанавливаются они на дизельных ДВС, потому как температура выхлопных газов у бензиновых моторов выше, чем у дизеля, соответственно лопатки геометрии могут деформироваться. Такие турбины позволяют оптимизировать процесс турбонаддува, что приводит к уменьшению расхода топлива и вредных выбросов при одновременном повышении мощности и крутящего момента.

Многие автомобилисты ошибочно полагают, что турбокомпрессор начинает включаться в работу с оборотов мотора от 1500-2000 об/мин. На самом деле, он запускается сразу после заводки автомобиля и работает на холостом ходу. А оптимальных оборотов достигает в диапазоне свыше 1500 об/мин.

Турбокомпрессор достаточно надежный агрегат, однако если Вы столкнулись с его поломкой, решить проблему Вам помогут специалисты ТурбоМикрон. Мы производим замену турбины на автомобиле, а также ремонт снятых с авто турбокомпрессоров.

Газовая турбина — Википедия

Промышленная газовая турбина в разобранном виде

Га́зовая турби́на (фр. turbine от лат. turbo — вихрь, вращение) — лопаточная машина, в ступенях которой энергия сжатого и/или нагретого газа преобразуется в механическую работу на валу[1]. Основными элементами конструкции являются ротор (рабочие лопатки, закреплённые на дисках) и статор, именуемый сопловым аппаратом (направляющие лопатки, закреплённые в корпусе).

Газовые турбины используются в составе газотурбинных двигателей, стационарных газотурбинных установок (ГТУ) и парогазовых установок (ПГУ).

Попытки создать механизмы, похожие на турбины, делались очень давно. Известно описание примитивной паровой турбины, сделанное Героном Александрийским (1 в. до н. э.). В восемнадцатом веке англичанин Джон Барбер получил патент на устройство, которое имело большинство элементов, присутствующих в современных газовых турбинах. В конце XIX века, когда термодинамика, машиностроение и металлургия достигли достаточного уровня, Густав Лаваль (Швеция) и Чарлз Парсонс (Великобритания) независимо друг от друга создали пригодные для промышленного использования паровые турбины[2].

Первую в мире газовую реверсивную турбину сконструировал русский инженер и изобретатель Павел Дмитриевич Кузьминский в 1887 году. Его 10-ступенчатая турбина работала на парогазовой смеси, получаемой в созданной им же в 1894 году камере сгорания — «газопаророде».[3] Кузьминский применил охлаждение камеры сгорания водой. Вода охлаждала стенки и затем посту­пала внутрь камеры. Подача воды снижала температуру и в то же время увеличивала массу газов, поступающих в турбину, что должно было повысить эффективность установки.[4] В 1892 году П. Д. Кузьминский испытал турбину и предложил её военному министерству в качестве двигателя для дирижабля его собственной конструкции.[5] В 1897 году на Петербургском патронном заводе была построена действующая газовая турбина,[6] которую изобретатель готовил к показу на Всемирной выставке в Париже в 1900 году, однако не дожил до неё несколько месяцев.

Одновременно с Кузьминским опыты с газовой турбиной (в качестве перспективного двигателя для торпед) проводил также Чарлз Парсонс, однако вскоре пришёл к выводу, что имеющиеся сплавы из-за низкой жаропрочности не позволяют создать надёжный механизм, который приводился бы в движение струёй раскалённых газов либо парогазовой смесью, после чего сосредоточился на создании паровых турбин[7].

Газ под высоким давлением поступает через сопловой аппарат турбины в область низкого давления, при этом расширяясь и ускоряясь. Далее, поток газа попадает на рабочие лопатки турбины, отдавая им часть своей кинетической энергии и сообщая лопаткам крутящий момент. Рабочие лопатки передают крутящий момент через диски турбины на вал. Газовая турбина чаще всего используется как привод генераторов.

Механически газовые турбины могут быть значительно проще, чем поршневые двигатели внутреннего сгорания. Более сложные турбины (которые используются в современных турбореактивных двигателях), могут иметь несколько валов, сотни турбинных и статорных лопаток, а также обширную систему сложных трубопроводов, камер сгорания и теплообменников.

Упорные подшипники и радиальные подшипники являются критическими элементами разработки. Традиционно — это были гидродинамические или охлаждаемые маслом шарикоподшипники. Их превзошли воздушные подшипники, которые успешно используются в микротурбинах и вспомогательных силовых установках.

Газовые турбины часто используются во многих ракетах на жидком топливе, а также для питания турбонасосов, что позволяет использовать их в легковесных резервуарах низкого давления, хранящих значительную сухую массу.

Промышленные газовые турбины для производства электричества[править | править код]

Отличие промышленных газовых турбин от авиационных в том, что их массогабаритные характеристики значительно выше, они имеют каркас, подшипники и лопастную систему более массивной конструкции. По размерам промышленные турбины варьируются от монтируемых на грузовики мобильных установок до огромных комплексных систем. Чаще всего газовые турбины в электростанциях применяются в комбинированном парогазовом цикле, подразумевающем выработку пара остаточным теплом выхлопных газов в котле-утилизаторе с последующей подачей пара на паровую турбину для дополнительной выработки электроэнергии. Такие установки могут иметь высокий КПД — до 60 %. Кроме того, газовая турбина может работать в когенераторных конфигурациях: выхлоп используется для подогрева воды систем теплоснабжения для нужд ГВС и отопления, а также с использованием абсорбционных холодильных машин для систем хладоснабжения. Одновременное использование выхлопа для получения тепла и холода называется режимом тригенерации. КПД таких установок — газотурбинных ТЭЦ может очень высоким и доходить до 90 %, но эффективность их применения напрямую зависит от потребности в тепловой энергии, которая непостоянна в течение года и зависит от погодных условий.

Газовые турбины простого цикла могут выпускаться как для большой, так и для малой мощности. Одно из их преимуществ — способность входить в рабочий режим в течение нескольких минут, что позволяет использовать их как мощность во время пиковых нагрузок. Поскольку они менее эффективны, чем электростанции комбинированного цикла, они обычно используются как пиковые электростанции и работают от нескольких часов в день до нескольких десятков часов в год, в зависимости, от потребности в электроэнергии и генерирующей ёмкости. В областях с недостаточной базовой нагрузкой и на электростанциях, где электрическая мощность выдается в зависимости от нагрузки, газотурбинная установка может регулярно работать в течение большей части суток.

Микротурбины[править | править код]

Отчасти успех микротурбин обусловлен развитием электроники, делающей возможной работу оборудования без вмешательства человека. Микротурбины применяются в самых сложных проектах автономного электроснабжения.

Преимущества и недостатки газотурбинных двигателей[править | править код]

Преимущества
  • Очень высокое отношение мощности к весу, по сравнению с поршневым двигателем.
  • Возможность получения большего количества пара при работе (в отличие от поршневого двигателя)
  • В сочетании с паровым котлом и паровой турбиной — более высокий КПД по сравнению с поршневым двигателем. Отсюда — использование их в электростанциях.
  • Перемещение только в одном направлении, с намного меньшей вибрацией, в отличие от поршневого двигателя.
  • Меньшее количество движущихся частей, чем у поршневого двигателя.
  • Существенно меньше выбросов вредных веществ, по сравнению с поршневыми двигателями
  • Низкая стоимость и потребление смазочного масла.
  • Низкие требования к качеству топлива. ГТД потребляют любое горючее, которое можно распылить: газ, нефтепродукты, органические вещества и пылеобразный уголь.
  • Высокая манёвренность и диапазон регулирования.
Недостатки
  • Стоимость намного выше, чем у аналогичных по размерам поршневых двигателей, поскольку материалы применяемые в турбине должны иметь высокую жаростойкость и жаропрочность, а также высокую удельную прочность. Токарная обработка и производство деталей более сложные;
  • При любом режиме работы имеют меньший КПД, чем поршневые двигатели (КПД на номинальной нагрузке — до 39 %, при этом официальные данные по поршневым двигателям — 41-42 %). Требуют дополнительной паровой турбины для повышения КПД.
  • Низкий механический и электрический КПД (потребление газа более чем в 1,5 раза больше на 1 Квт-ч электроэнергии, по сравнению с поршневым двигателем)
  • Резкое снижение КПД на малых нагрузках (в отличие от поршневого двигателя)
  • Необходимость использования газа высокого давления, что обуславливает необходимость применения дожимных компрессоров с дополнительным расходом энергии и падением общей эффективности системы.
  • Высокие эксплуатационные нагрузки, следствием которых является использование дорогих жаропрочных сплавов.
  • Более медленный пуск, чем у поршневых двигателей внутреннего сгорания.
  • Существенное влияние пусков-остановок на ресурс.

Эти недостатки объясняют, почему дорожные транспортные средства, которые меньше, дешевле и требуют менее регулярного обслуживания, чем танки, вертолеты и крупные катера, не используют газотурбинные двигатели, несмотря на неоспоримые преимущества в размере.

  • ГТ-МГР (Модульный гелиевый реактор)

Авиационные газотурбинные двигатели / Habr

Всем привет! В этой статье я хочу рассказать о том, как работают авиационные газотурбинные двигатели (ГТД). Я постараюсь сделать это наиболее простым и понятным языком.

Авиационные ГТД можно можно разделить на:

  • турбореактивные двигатели (ТРД)
  • двухконтурные турбореактивные двигатели (ТРДД)
  • Турбовинтовые двигатели (ТВД)
  • Турбовальные двигатели (ТВаД)

Притом, ТРД и ТРДД могут содержать в себе форсажную камеру, в таком случае они будут ТРДФ и ТРДДФ соответственно. В этой статье мы их рассматривать не будем.

Начнём с турбореактивных двигателей.

Турбореактивные двигатели


Такой тип двигателей был создан в первой половине 20-го века и начал находить себе массовое применение к концу Второй мировой войны. Первым в мире серийным турбореактивным самолетом был немецкий Me.262. ТРД были популярны вплоть до 60-ых годов, после чего их стали вытеснять ТРДД.


Современная фотография Me-262, сделанная в 2016 году

Самый простой турбореактивный двигатель включает в себя следующие элементы:

  • Входное устройство
  • Компрессор
  • Камеру сгорания
  • Турбину
  • Реактивное сопло (далее просто сопло)

Можно сказать, что это минимальный набор для нормальной работы двигателя.

А теперь рассмотрим что для чего нужно и зачем.

Входное устройство — это расширяющийся* канал, в котором происходит подвод воздуха к компрессору и его предварительное сжатие. В нём кинетическая энергия входящего воздуха частично преобразуется в давление.

*здесь и дальше мы будем говорить про дозвуковые скорости. На сверхзвуковой скорости физика меняется, и там все совсем не так.

Компрессор — это устройство, в котором происходит повышение давление воздуха. Компрессор можно характеризовать такой величиной, как степень повышения давления. В современных двигателях оно уже начинает переступать за 40 единиц. Кроме того, в нем увеличивается температура (может быть, где-то до 400 градусов Цельсия).

Камера сгорания — устройство, в котором к сжатому воздуху (после компрессора) подводится тепло из-за горения топлива. Температура в камере сгорания очень высокая, может достигать 2000 градусов Цельсия. Вам может показаться, что давление газа в камере тоже сильно увеличивается, но это не так. Теоретически принято считать, что подвод тепла осуществляется при постоянном давлении. В реальности оно немного падает из-за потерь (проблема несовершенства конструкции).

Турбина — устройство, превращающее часть энергии газа после камеры сгорания в энергию привода компрессора. Так как турбины используются не только в авиации, можно дать более общее определение: это устройство, преобразующее внутреннюю энергию рабочего тела (в нашем случае рабочее тело — это газ) в механическую работу на валу. Как вы могли понять, турбина и компрессор находятся на одном валу и жестко связаны между собой. Если в компрессоре происходит повышение давления газа, то в турбине, наоборот, понижение, то есть газ расширяется.

Сопло — суживающийся канал, в котором происходит преобразование потенциальной энергии газа в кинетическую (оставшийся запас энергии газа после турбины). Как и в турбине, в сопле происходит расширение газа. Образуется струя, которая, вытекая из сопла, движет самолёт.

С основными элементами разобрались. Но все равно не очень понятно как оно работает? Тогда давайте ещё раз и коротко.

Воздух из атмосферы попадает во входное устройство, где немного сжимается и поступает в компрессор. В компрессоре давление воздуха растёт ещё сильнее, растёт и температура. После компрессора воздух поступает в камеру сгорания и, смешиваясь там с топливом, воспламеняется, что приводит к сильному возрастанию температуры, при, можно сказать, постоянном давлении. После камеры сгорания горячий сжатый газ попадает в турбину. Часть энергии газа расходуется на вращение компрессора турбиной (чтобы он мог выполнять свою функцию, описанную выше), другая часть энергии расходуется на, нужное нам, движение самолёта, из-за того, что газ, пройдя турбину, превращается в реактивную струю в сопле и вырывается из него (сопла) в атмосферу. На этом цикл завершается. Конечно, в реальности все процессы цикла проходят непрерывно.

Такой цикл называется циклом Брайтона, или термодинамическим циклом с непрерывным характером рабочего процесса и подводом тепла при постоянном давлении. По такому циклу работают все ГТД.


Цикл Брайтона в P-V координатах

Н-В — процесс сжатия во входном устройстве
В-К — процесс сжатия в компрессоре
К-Г — изобарический подвод тепла
Г-Т — процесс расширения газа в турбине
Г-С — процесс расширения газа в сопле
С-Н — изобарический отвод тепла в атмосферу


Схематичная конструкция турбореактивного двигателя, где 0-0 — ось двигателя

ТРД может иметь и два вала. В таком случае компрессор состоит из компрессора низкого давления (КНД) и компрессора высокого давления (КВД), а подвод работы будут осуществлять турбина низкого давления (ТНД) и турбина высокого давления (ТВД) соответственно. Такая схема более выгодная газодинамически.


Реальный двигатель такого вида в разрезе

Мы рассмотрели принцип работы самой простой схемы авиационного газотурбинного двигателя. Естественно, на современных «Эйрбасах и Боингах» устанавливаются ТРДД, конструкция которых заметно сложнее, но работает все по таким же законам. Давайте рассмотрим их.

Двухконтурный турбореактивный двигатель


ТРДД, прежде всего, отличается от ТРД тем, что имеет два контура: внешний и внутренний. Внутренний контур содержит в себе то же самое, что и ТРД: компрессор (разделенный на КНД и КВД), камеру сгорания, турбину (разделенную на ТВД и ТНД) и сопло. Внешний контур представляет собой канал, с соплом в конце. В нем нет ни камеры сгорания, ни турбины. Перед обоими контурами (сразу после входного устройства двигателя) стоит ступень компрессора, работающая на оба контура.

Не очень понятная картина выходит, да? Давайте разберемся как оно работает.


Схематичная конструкция двухвального двухконтурного турбореактивного двигателя

Воздух, попадающий в двигатель, пройдя через первую ступень компрессора низкого давления, разбивается на два потока. Одна часть воздуха идет по внутреннему контуру, где происходят те же процессы, которые были описаны, когда мы разбирали ТРД. Вторая часть воздуха попадает во внешний контур, получив энергию от первой ступени КНД (та, которая работает на два контура). Во внешнем контуре энергия воздуха тратится только на преодоление гидравлических потерь (за счёт трения). В конце этот воздух попадает в сопло внешнего контура, создавая огромную тягу. Тяга, созданная внешним контуром, может составлять 80% тяги всего двигателя.

Одной из важнейших характеристик ТРДД является степень двухконтурности. Степень двухконтурности — это отношение расхода воздуха во внешнем контуре, к расходу воздуха во внутреннем контуре. Это число может быть как больше, так и меньше единицы. На современных двигателях это число переступает за значение в 12 единиц.
Двигатели, степень двухконтурности которых больше двух, принято называть турбовентиляторными, а первую ступень компрессора (ту, что работает на оба контура) вентилятором.


ТРДД самолета Boeing 757-200. На переднем плане видно входное устройство и вентилятор

На некоторых двигателях вентилятор приводится в движение отдельной турбиной, которая ставится ближе всего к соплу внутреннего контура. Тогда двигатель получается трехвальным. Например, по такой схеме выполнены двигатели Rolls Royce RB211 (устанавливались на L1011, B747, B757, B767), Д-18Т (Ан-124), Д-36 (Як-42)


Д-18Т в разрезе изнутри

Главное достоинство ТРДД заключается в возможности создания большой тяги и хорошей экономичности, по сравнению с ТРД.

На этом я хотел бы закончить про ТРДД и перейти к следующему виду двигателей — ТВД.

Турбовинтовые двигатели


Турбовинтовой двигатель, как и турбореактивный, относится к газотурбинным двигателям. И работает он почти как турбореактивный. Элементарный турбовинтовой двигатель состоит из уже знакомых нам элементов: компрессора, камеры сгорания, турбины и сопла. К ним добавляются редуктор и винт.

Принцип работы работы такой же, как у турбореактивного, с разницей в том, что практически вся энергия газа расходуется на турбине на вращение компрессора и на вращение винта через редуктор (здесь винт и редуктор находятся на одном валу с компрессором). Винт создаёт основную долю тяги. Оставшаяся, после турбины, часть энергии направляется в сопло, образуя реактивную тягу, но она мала, может составлять десятую часть от общей. Редуктор в этой схеме нужен для того, чтобы понизить обороты и передать момент, так как турбина может вращаться с очень высокой частотой, например, 10000 оборотов в минуту, а винту нужно только 1500. И винт достаточно тяжелый.


Схематичная конструкция ТВД

Но бывает и другая схема турбовинтовых двигателей: со свободной турбиной.
Её суть в том, что за обычной турбиной компрессора ставится отдельная турбина, которая механически не связана с турбиной компрессора. Такая турбина называется свободной. Связь между турбиной компрессора и свободной турбиной только газодинамическая. От свободной турбины идёт отдельный вал, на который устанавливаются редуктор с винтом. Все остальное работает так же, как и в первом случае. Большинство современных двигателей выполняют именно по такой схеме. Одним из плюсов такой схемы является возможность использования двигателя на земле, как вспомогательную силовую установку (ВСУ), не приводя винт в движение.


Схематичная конструкция ТВД со свободной турбиной

Хочу отметить, что не нужно смотреть на турбовинтовые двигатели как на малоэффективный пережиток прошлого. Я несколько раз слышал такие высказывания, но они неверны.
Турбовинтовой двигатель в некоторых случаях обладает наивысшим КПД, как правило, на самолетах с не очень большими скоростями (например, на 500 км/ч), притом, самолет может быть внушительных размеров. В таком случае, турбовинтовой двигатель может быть в разы выгоднее, рассмотренного ранее, турбореактивного двигателя.

На этом про турбовинтовые двигатели можно заканчивать. Мы потихоньку подошли к понятию турбовального двигателя.

Турбовальный двигатель


Должно быть, большинство читателей здесь вообще впервые слышат такое название. Такой тип двигателей устанавливается на вертолёты.

Турбовальный двигатель очень схож с турбовинтовым двигателем со свободной турбиной. Он также состоит из компрессора, камеры сгорания, турбины компрессора, далее идёт свободная турбина, связанная со всем предыдущем только газодинамически. А вот реактивную тягу такой двигатель не создаёт, реактивного сопла у него нет, только выхлоп. Свободная турбина имеет свой вал, который соединяется к главному редуктору вертолёта (несущего винта). Да, у всех известных мне вертолетов есть такой редуктор, и, как правило, он внушительных размеров. Дело в том, что обороты несущего винта вертолёта очень низкие. Если у самолета, как я писал выше, они могут достигать 1500 об/мин, то у вертолёта, например у Ми-8, всего 193 об/мин.
А обороты двигателя у вертолёта зачастую очень высокие (из-за небольших размеров), и понижать их приходится в сотню и более раз. Бывает такое, что редуктор стоит и на двигателе, и на самом вертолете, например, у Ми-2 и его двигателя ГТД-350.


Схематичная конструкция турбовального двигателя


Двигатель ТВ3-117 от вертолета Ми-8. Справа видны выхлопная труба и приводной вал

Итак, мы рассмотрели четыре типа газотурбинных двигателей. Надеюсь, мой текст был понятен и полезен для вас. Все вопросы и замечания можете писать в комментариях.

Спасибо за внимание.

принцип работы, устройство, чистка (видео). Как проверить клапан управления, отрегулировать

Рассматривая принцип работы турбонаддува, мы затронули проблемы, ограничивающие эффективность газовых турбокомпрессоров. Турбина с изменяемой геометрией позволяет расширить зону действия турбонаддува и сделать двигатель более приемистым. Поговорим не только об устройстве системы, но и о симптомах неисправности клапана управления, чистке и регулировке VNT-турбонагнетателей.

Устройство VNT-турбины

На рисунке изображена турбина с изменяемой геометрией, устанавливаемая на автомобили Volkswagen, Skoda. Общее устройство турбокомпрессора и принцип нагнетания дополнительного воздуха не отличается от обычных турбокомпрессоров. Основная особенность в поворотных лопатках, механизме управления и вакуумном приводе.

Принцип работы

Поворотные лопатки вращаются на осях, установленных в опорном кольце. К оси каждой лопатки прикреплены тяги управления, которые при монтаже входят в зацепление с регулировочным кольцом. Направляющий рычаг соединяет регулировочное кольцо с рычагом тяги управления и осью вакуумного привода поворотных лопаток.

При изменении положения оси вакуумного привода регулировочное кольцо проворачивается на определенный угол. За счет этого происходит поворот оси лопаток в опорном кольце. Они синхронно меняют свое положение, изменяя тем самым сечение для потока выхлопных газов.

Принцип работы турбины с изменяемой геометрией основывается на регулировании потока отработавших газов, направляемых на колесо турбины. Регулировка позволяет подстраивать проходное сечение для потока отработавших газов под режим работы двигателя.

Как изменяется давление наддува?

Когда мы рассматривали принцип работы системы изменяемой геометрии впускного коллектора, то говорили о зависимости скорости потока газов от проходного сечения канала. При одинаковом давлении скорость потока газа будет выше в канале с суженым сечением.

Для быстрого выхода турбины в зону эффективной работы на низких оборотах двигателя необходимо высокое давление наддува. В таком режиме работы лопатки уменьшают сечение канала, по которому отработанные газы движутся к крыльчатке турбины. В итоге повышается давление наддува.

В зоне высоких оборотов двигателя увеличивается объем выхлопных газов. Небольшое сечение канал приведет к чрезмерному подпору выхлопных газов, что приведет к плохому наполнению цилиндров свежим зарядом ТПВС.

Поэтому с повышением оборотов двигателя лопатки меняют свое положение, увеличивая сечение для прохождения выхлопных газов.

Принцип работы изменяемой геометрии позволяет отказаться от перепускного клапана (wastegate). Через крыльчатку «горячей» части проходит весь поток выхлопных газов. Предотвращение избыточного наддува осуществляется изменением положения поворотных лопаток.

Система в разрезе

  1. Лопатки расположены перпендикулярно радиальным линиям, что равняется узкому сечению для потока выхлопных газов. Обеспечивается быстрое нарастание наддува и прибавка крутящего момента в зоне низких оборотов двигателя.
  2. Ступенчатое расположение лопаток – большое сечение для потока выхлопных газов. Этот же режим используется в качестве аварийного, когда система самодиагностики регистрирует некорректную работу системы, отсутствует питание на электромагнитном клапане.

Управление геометрией

Изменение геометрии турбины осуществляется блоком управления двигателем. Принцип работы рассмотренной выше системы предполагает наличие электромагнитного клапана управления наддувом. Управляется клапан ШИМ-сигналом. Изменяя скважность сигнала, ЭБУ двигателя устанавливает необходимое разряжение в вакуумной среде привода поворотных лопаток. При таком управлении ЭБУ может плавно и точно управлять регулировочным кольцом, что обеспечивает эффективное сгорание ТПВС на всех режимах работы двигателя.

Когда электромагнитный клапан обесточен, в вакуумной среде атмосферное давление, лопатки установлены в ступенчатом положении. Для плавной регулировки давления наддува ЭБУ постоянно опрашивает датчиковую аппаратуру двигателя.

Принципиальное отличие

Автомобильные газовые турбины всех типов имеют 3 режима работы:

  • выход в рабочую зону. Раскручивающийся вал турбины создает сопротивление потоку выхлопных газов, что снижает наполняемость цилиндров и, как следствие, КПД двигателя. Именно с режимом раскручивания турбинного колеса водители связывают явление «турбоямы»;
  • зона эффективной работы. При достижении рабочей зоны скорость вращения компрессорного колеса позволяет нагнетать в цилиндры большее количество воздуха, что ощущается прибавкой в крутящем моменте;
  • зона оверспина (от англ. overspinning – избыточное вращение). Устройство турбокомпрессора предполагает зоны эффективности. Конструкция двигателя также рассчитывается на определенную величину наддува. Если скорость потока выхлопных газов превысит зону оптимальной эффективности и расчетную величину наддува, дальнейшее использование турбонаддува только снизит КПД двигателя. Также превышение расчетной скорости вращения крыльчатки ведет к срыву потока воздуха. Поэтому устройство большинства турбин предполагает наличие клапана Последний на определенных оборотах двигателя пускает поток выхлопных газов в обход турбинного колеса.

Устройство турбины с фиксированной геометрией – это всегда компромисс между скоростью выхода в зону эффективности, величиной наддува и границей пиковой мощности. На эти параметры влияет диаметр каналов для движения газов, соотношение площади индюсера и эксдюсера, Area/Radius хаузинга, конструкция клапана wastegate, blow-off. Но из-за того, что характеристики турбины закладываются еще на стадии проектирования, ее рабочая зона довольно узкая.

Преимущества

  • Активное изменение сечения канала «горячей» части турбины позволяет расширить зону ее эффективной работы. Авто с изменяемой геометрией турбонаддува могут выдавать большую мощность уже с самих низких оборотов.
  • Уменьшенный подпор выходу выхлопных газов на высоких оборотах. Из-за отсутствующего клапана wastegate в «горячей» части уменьшается количество разнонаправленных потоков газов, что улучшает прохождение газов через турбину.
  • Улучшение эластичности двигателя.
  • Снижение расхода топлива и количества вредных выбросов в атмосферу.

Возможные неисправности

Усложнение конструкции турбины неминуемо приводит к увеличению риска поломки. Но в случае с работой изменяемой геометрии ситуация не так плоха, как может показаться. У механизма лишь несколько основных проблем:

  • движение лопаток с подклиниванием. Происходит из-за критического износа трущихся пар и при нагарообразовании. Углеродистые и масляные отложения препятствуют плавному перемещению регулировочного кольца;
  • заклинивание лопаток в одном из положений. Из-за критического нагарообразования силы вакуума недостаточно для перемещения регулировочного кольца;
  • неисправность вакуумного привода поворотных лопаток, клапана управления давлением турбонаддува.

Среди основных симптомов поломки – подергивания при разгоне, потеря мощности двигателя, увеличение расхода топлива и появление на панели приборов индикации Check Engine.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *