Коэффициент уплотнения песка: Что такое коэффициент уплотнения песка?

Содержание

Что такое коэффициент уплотнения песка?

Потребность в знании точной плотности насыпных стройматериалов возникает при их транспортировке, трамбовке, заполнении емкостей и котлованов и подборе пропорций при приготовлении строительных растворов. Одним из учитываемых показателей служит коэффициент уплотнения, характеризующий соответствие укладываемых прослоек требованиям нормативов или степень уменьшения объема песка в процессе транспортировки. Рекомендуемое значение указывается в проектной документации и зависит от типа возводимой конструкции или вида работ.

Оглавление:

  1. Что представляет собой?
  2. Что влияет на изменение коэффициента?
  3. Применение в строительстве

Значение показателя

Коэффициент уплотнения представляет собой нормативное число, учитывающее степень уменьшения наружного объема в процессе доставки и укладки с последующей трамбовкой (информацию об уплотнении щебня вы можете найти тут). В упрощенном варианте он находится как отношение массы определенного объема, взятого при снятии проб, к эталонному параметру, полученному в лабораторных условиях.

Его величина зависит от вида и размера фракций наполнителей и варьируется от 1,05 до 1,52. В случае песка для строительных работ он составляет 1,15, от него отталкиваются при расчете стройматериалов.

В итоге реальный объем поставляемого песка определяется путем умножения результатов обмера на показатель уплотнения при транспортировке. Максимально допустимое значение обязательно указывается в договоре на покупку. Возможны и обратные ситуации – для проверки добросовестности поставщиков находится объем по окончании доставки, его количество в м3 делится на коэффициент уплотнения песка и сверяется с привезенным. Например, при транспортировке 50 м3 после трамбовки в кузове автомобиля или вагонах на объект привезут не более 43,5.

Факторы влияния на коэффициент

Приведенное число является среднестатистическим, на практике оно зависит от множества разных критериев. К ним относят:

  • Размеры зерен песка, чистота и другие физические и химические свойства, определяемые местом и способом добычи. Характеристики источника получения могут меняться со временем, по мере выемки из карьеров возрастает рыхлость оставшихся слоев, для исключения ошибки насыпная плотность и сопутствующие параметры периодически проверяются в лабораторных условиях.
  • Условия перевозки (расстояние до объекта, климатические и сезонные факторы, вид используемого транспорта). Чем сильнее и дольше на материал влияет вибрация, тем эффективнее проводится трамбовка песка, максимальное уплотнение достигается при его перемещении с помощью автотранспорта, чуть меньшее – при железнодорожных перевозках, минимальное – при морских. При правильных условиях транспортировки воздействие влажности и минусовых температур сведено к минимуму.

Проверять эти факторы следует сразу, значения показателей допустимой естественной влажности и насыпной плотности прописываются в паспорте. Дополнительные объемы сыпучих веществ, обусловленные потерями при транспортировке, зависят от дальности доставки и принимаются равными 0,5% в пределах 1 км, 1% – свыше этого параметра.

Использование коэффициента при подготовке песчаных подушек и строительстве дорог

Характерной особенностью любых сыпучих стройматериалов является изменение объема при выгрузке на свободном участке или его трамбовке. В первом случае песок или грунт становятся рыхлыми, в процессе хранения частицы оседают и прилегают другу к другу практически без пустот, но все еще не соответствуют нормативным. На последнем этапе – укладке и распределении составов на дне котлована учитывается коэффициент относительного уплотнения песка. Он является критерием качества работ, проводимых при подготовке траншей и строительных площадок и варьируется от 0,95 до 1, точное значение зависит от целевого назначения прослойки и способа засыпки и трамбовки. Оно определяется расчетным путем и обязательно указывается в проектной документации.

Рекомендуется придерживаться следующих относительных показателей:

Вид строительных работ Коэффициент
Обратная засыпка котлована – процесс заполнения песком или грунтом после возведения фундамента или других работ 0,95
Обратная засыпка пазух или траншей 0,98
Восстановительный ремонт подземных участков с проложенными инженерными коммуникациями, размещенных возле проезжих дорог 0,98-1

Уплотнение засыпаемого обратно грунта считается таким же обязательным действием, как и при закладке песчаной подушки под фундаментами зданий или при обустройстве дорожного полотна. Для достижения нужного эффекта используется специальное оборудование – катки, вибрационные плиты и виброштампы, при его отсутствии трамбовку проводят ручным инструментом или ногами. Максимально допустимая толщина обрабатываемого слоя и требуемое число проходов относятся к табличным величинам, это же касается рекомендуемого минимума подсыпки поверх труб или коммуникаций.

В процессе проведения трамбовки песка или грунта их насыпная плотность увеличивается, а объемная площадь неизбежно уменьшается. Это обязательно учитывается при расчете количества закупаемого материала наряду с общими потерями на выветривание или величиной запаса. При выборе способа уплотнения важно помнить, что любые наружные механические воздействия оказывают влияние только на верхние слои, для получения покрытия с нужным качеством требуется вибрационное оборудование.

Коэффициент уплотнения песка при трамбовке, обратной засыпке, таблица СНИП: уплотнение по объему, расход и запас на уплотнение песка

Песок — это сыпучий материал, состоящий из зёрен осадочных, скальных пород или минералов величиной от 0,16 до 5 мм. Добывается он на карьерах природных месторождений, со дна рек, озёр и морей, а также производится искусственно размалыванием крупных обломков с рассеиванием их по фракциям.

Плотность

Добываемый карьерный песок неоднороден, содержит много глинистых, пылевидных и органических остатков, которые изменяют его плотность.

Как и грунты, пески могут иметь различную плотность. Так, вес единицы объёма слежавшегося мокрого песка значительно больше веса сухого или насыпного песка. Это связано с наличием в неуплотнённом материале воздушных зазоров между отдельными песчинками. Пористость крупного песка больше, чем мелкого, и достигает 47 %.

При использовании песка в отсыпке подушек под фундамент, изготовлении основания дорожной одежды, обратной засыпке пазух фундаментов строительные технологии предусматривают выполнение процедуры его трамбовки, или уплотнения песка по объёму. Если песок не утрамбовывать, со временем, либо под собственным весом, либо под воздействием атмосферной влаги он будет уплотняться самопроизвольно, что приведёт к уменьшению его объёма и возникновению механических напряжений и деформаций в фундаментных и бетонных плитах сооружений.

Именно поэтому в рабочую документацию вносятся конкретные требования по уплотнению песка в процессе строительства. Коэффициент уплотнения песка или грунта на возводимых объектах устанавливают также строительные нормативы — ГОСТы, СНИПы и руководства, в которых все возможные варианты сводятся в таблицы.

Как измеряют коэффициент уплотнения песка?

Для каждого сыпучего материала, включая песок, существует понятие максимальной плотности, называемой также плотностью скелета материала. Её значение устанавливается лабораторным путём, измерения проводят после приложения давления или вибрационных воздействий.

Если установить плотность насыпного песка (используя, например, прямоугольный ящик или цилиндр) простым делением его массы на объём и отнести эту плотность к максимальной — получим коэффициент уплотнения насыпного песка. Если его уплотнить, например, трамбовкой, и повторить измерения, получим коэффициент уплотнения песка при заданной трамбовке. На практике плотность песка измеряют специальными приборами непосредственно на объекте.

Измерение уплотнения песка в дороге

Очень важным является соблюдение директивного (установленного проектом) коэффициента уплотнения песка в различных строительных технологиях (при обратной засыпке пазух фундамента, что существенно снижает вероятность пучинистого воздействия льда на его стенки, при изготовлении подушек фундамента, дорожной одежды автомагистралей и других).

Расчёт количества песка

Поскольку качественно очищенный песок крупной фракции является достаточно дорогим строительным материалом, застройщик должен уметь точно рассчитать массу закупки, в противном случае придётся завозить его дополнительно или сожалеть о напрасно потраченных «про запас» средствах на уплотнение песка, оказавшегося лишним.

Обладая данными об объёме необходимого заполнения, насыпной плотности покупаемого песка, коэффициенте его уплотнения, инженер строитель сможет достаточно точно рассчитать объём и вес приобретаемого материала. Дополнительный расход песка на уплотнение он высчитывает из разности плотностей покупного и уплотнённого до заданной величины материалов.

Уплотнение песка

Его можно уплотнять вручную самодельной двуручной трамбовкой, однако этот метод подходит лишь для небольших участков. В масштабах большого строительства или в прокладке автомагистралей используются многотонные дорожные катки, которые за несколько проходов уплотняют песок на глубину до 400 мм.

На относительно малых строительных объектах используют электрические виброплиты, устанавливаемые на манипулятор экскаватора, или ручные вибраторы.

Что такое коэффициент уплотнения песка и щебня? Как делается расчет?


Расчет потребности в нерудных материалах при строительстве может давать различные результаты из-за состояния сыпучей массы — щебень и песок не монолитны, в зависимости от условий перевозки и хранения их плотность и влажность меняются. Для крупных проектов такие изменения могут стать причиной серьезного перерасхода средств, кроме того, работы, связанные с засыпкой, требуют определенного уплотнения грунта.

Существует несколько критериев, на которые можно опираться при проведении расчетов, если речь идет о песке и щебне для отсыпки. Это насыпная плотность материала и коэффициент уплотнения, по которому можно определить реальную потребность для определенных операций. Провести собственные исследования нерудного материала на реальную плотность очень сложно, поскольку возникают трудности с точным взвешиванием больших объемов. Например, строительный песок еще до использования подвергается нескольким видам воздействий:

  • рыхление и промывка вовремя добычи и разделения на фракции;
  • изменение плотности под действием силы тяжести при первичном хранении;
  • рыхление в процессе загрузки в транспорт;
  • трамбовка при перевозке — это сложный комплекс факторов, зависящий от того, каким способом перевозится материал с места добычи;
  • изменения влажности происходят несколько раз, в зависимости от условий складирования и транспортировки.

В результате на строительную площадку попадает песок, прошедший несколько циклов изменения структуры насыпной массы. При этом речной песок в силу большей однородности и физических свойств зерен оказывается более предсказуемым в поведении. Нормативные показатели по плотности песка оговорены в ГОСТ 8736-93, ГОСТ 7394-85 и 25100-95 и СНиП 2.05.02-85, однако, в проекте для конкретного строения и участка могут приводиться и несколько отличные показатели. Для приведения их к единому пониманию и расчету используется коэффициент уплотнения, применяемый к условиям определенных строительных работ и методов трамбовки.

Расчет уплотнения песка с использованием коэффициента

При расчете реальной потребности в закупке песка принимается во внимание не только его первичное состояние на складах поставщика, но и способность массы к уплотнению во время засыпки на место и последующей трамбовки. Различается несколько вариантов выполнения работ с песком — это засыпка котлованов, заполнение пустот между грунтом и строением (монолитом), заполнение и ремонт траншей при строительстве сооружений и ремонте (реконструкции) дорог.

Трамбовка может выполняться катками, виброплитами, виброштампами и ручными способами, и всякий раз песок будет уплотняться по-разному. Для унификации расчетов потребности в материале принято использовать усредненные коэффициенты уплотнения песка, которые применяют для перевода абсолютного показателя (от поставщика) в относительный — для конкретного типа задания. Эти поправки позволяют оптимизировать подсчет и снизить потери от неправильного определения количества материала.

Вид работ Коэффициент уплотнения
Повторная засыпка котлованов 0,95
Заполнение пазух 0,98
Обратное наполнение траншей 0,98
Ремонт траншей вблизи дорог с инженерными сооружениями 0,98 — 1

Для расчета достаточно умножить нормативный или паспортный показатель на приведенный коэффициент — при больших объемах закупки поправка позволит точнее рассчитать потребность и сократить непроизводительные потери.

Расчет уплотнения щебня с использованием коэффициента

Учет уплотнения щебня с технической точки зрения сложнее, поскольку этот материал имеет более крупное зерно. Для лабораторных исследований проводится пять выборочных измерений с жесткими требованиями, но выполнить их на строительной площадке невозможно. Поэтому для расчетов применяется простой способ — данные из паспорта продукции умножаются на коэффициент. Например, щебень 20-40 в количестве одного кубометра будет весить примерно 1,4 тонны. Это укладывается в рамки, установленные СНиП 3.06.03-85.

Стандарт требует, что при перевозке материала применялся коэффициент 1,1, а вот при укладке и последующей трамбовке — 1,52, что следует учитывать при расчетах закупки в количестве более пяти кубометров. Цена кубометра щебня при пересчете на большой объем может сильно варьироваться, если не принять во внимание коэффициент уплотнения, который находится в пределах 1,3 — 1,5 в зависимости от условий.

При этом делать расчет с использованием коэффициента при расклинцовке крупных фракций не имеет смысла — щебень 5-20 засыпается на более крупный материал и трамбуется так, что его уплотнение теряет значение.

Строительная практика показывает, что точный расчет закупки песка и щебня с учетом коэффициентов уплотнения дает эффект на объемах примерно 5 кубометров и более. При меньших объемах погрешность измерения и самого расчета создает отклонения, которые не позволяют с высокой точностью определить заданные величины.

Для крупных строительных и дорожных объектов эти показатели учитываются на проектном уровне, а подрядчик, закупая нерудные материалы, руководствуется документацией и существующим значениями коэффициентов. В масштабе небольшого сооружения, при объемах, не превышающих пяти кубометров материала, изменение общей стоимости покупки будет незначительным.

Похожие услуги

Подводно-технические работы

Обладая необходимыми средствами, механизмами и строительной техникой, специалисты компании «Флот Неруд» производят любые подводно-технические работы. Методы, особенности и характер водолазного обследования во многом зависят от поставленных заказчиком целей. Обладая необходимыми средствами, механизмами и строительной техникой, специалисты компании «Флот Неруд» производят любые подводно-технические работы. Методы, особенности и характер водолазного обследования во многом зависят от поставленных заказчиком […]

SDLG: спецтехника высокого качества

Компания SDLG является одним из крупнейших производителей спецтехники в Китае. По объемам производимой продукции она уступает только таким брендам, как XCMA, Liugong, Longgong. В течение последних пяти лет SDLG входит в пятьдесят лучших изготовителей фронтальных погрузчиков. При этом дата основания этой компании – 1972 год. Компания SDLG является одним из крупнейших производителей спецтехники в Китае. […]

Разработка котлована и вывоз мусора

Одним из видов строительных работ, которые часто проводятся, является разработка котлованов. Обустройство котлована – трудоемкий строительный процесс. Во многом от качества проведения работ на данном этапе зависит будущее строительства. Кроме того, необходимо учитывать то, что котлован и вывоз грунта – два неразрывных понятия, поэтому необходимо позаботиться не только о планировке строительной площадке, но и о […]

что такое и как рассчитать

Главная > Часто задаваемые вопросы > Коэффициент уплотнения грунтов и строительных материалов

Коэффициент уплотнения – это показатель, демонстрирующий, насколько изменяется объем сыпучего материала после трамбовки или перевозки. Определяется он по соотношению общей и максимальной плотности.

Любой сыпучий материал состоит из отдельных элементов – зерен. Между ними всегда есть пустоты, или поры. Чем выше процент этих пустот, тем больший объем будет занимать вещество.

Попробуем объяснить это простым языком: вспомните детскую игру в снежки. Чтобы получить хороший снежок, нужно зачерпнуть из сугроба горсть побольше и посильнее ее сжать. Таким образом мы сокращаем количество пустот между снежинками, то есть уплотняем их. При этом уменьшается и объем.

То же самое будет, если насыпать в стакан немного крупы, а затем встряхнуть ее или утрамбовать пальцами. Произойдет уплотнение зерен.

Иными словами, коэффициент уплотнения – это и есть разница между материалом в его обычном состоянии и утрамбованном.

Для чего нужно знать коэффициент уплотнения

Знать коэффициент уплотнения для сыпучих материалов необходимо, чтобы:

  • Проконтролировать, действительно ли вам привезли заказанное количество материала
  • Купить правильное количество песка, щебня, отсева для засыпки котлованов, ям или канав
  • Рассчитать вероятную усадку грунта при закладке фундамента, прокладке дороги или тротуарной плитки
  • Правильно рассчитать количество бетонной смеси для заливки фундаментов или перекрытий

Дальше мы подробнее расскажем обо всех этих случаях.

Коэффициент уплотнения при транспортировке

Представьте, что самосвал везет 6 м³ щебня с карьера на объект заказчика. В пути ему попадаются ямы и выбоины. Под воздействием вибрации зерна щебня уплотняются, объем сокращается до 5,45 м³. Это называется утряской материала.

Как же убедиться в том, что на объект привезли то количество товара, которое указано в документах? Для этого нужно знать конечный объем материала (5,45 м³) и коэффициент уплотнения (для щебня он равен 1,1). Эти две цифры перемножаются, и получается начальный объем – 6 кубов. Если он не совпадает с тем, что написано в документах, значит мы имеем дело не с утряской щебня, а с недобросовестным продавцом.

Коэффициент уплотнения при засыпке ям

В строительстве есть такое понятие как усадка. Грунт или любой другой сыпучий материал уплотняется и уменьшается в объеме под действием собственного веса или давлением различных конструкций (фундамента, тротуарных плит). Процесс усадки нужно обязательно учитывать при засыпке канав, котлованов. Если этого не сделать, через некоторое время образуется новая яма.

Чтобы заказать необходимое количество материала для засыпки, нужно знать объем ямы. Если вам известна ее форма, глубина и ширина, можете воспользоваться для расчета нашим калькулятором. После этого полученную цифру нужно умножить на насыпную плотность материала и его коэффициент уплотнения.

При засыпке правильно рассчитанного материала в яму может получиться холмик. Дело в том, что в естественных условиях усадка происходит за определенный промежуток времени. Ускорить процесс можно с помощью трамбовки. Ее проводят вручную или с помощью специальных механизмов.

Коэффициент уплотнения в строительстве

Наверное, вам известны случаи, когда в зданиях сразу после постройки появлялись трещины. А ямы на новых дорогах или провалившаяся тротуарная плитка на дорожках и во дворах? Это случается, если неправильно рассчитать усадку грунта и не предпринять соответствующие меры по ее устранению.

Чтобы знать усадку, используется коэффициент уплотнения. Он помогает понять, насколько утрамбуется тот или иной грунт в определенных условиях. Например, под давлением веса здания, плитки или асфальта.

Некоторые грунты имеют настолько сильную усадку, что их приходится замещать. Другие виды перед строительством специально трамбуют.

Как узнать коэффициент уплотнения

Легче всего взять данные о коэффициенте уплотнения из ГОСТов. Они рассчитаны для разных видов материала.

В лабораторных условиях коэффициент уплотнения определяют следующим образом:

  • Измеряют общую или насыпную плотность материала. Для этого измеряют массу и объем образца, вычисляют их соотношение
  • Затем пробу встряхивают или прессуют, измеряют массу и объем, после чего определяют максимальную плотность
  • По соотношению двух показателей вычисляют коэффициент

Документы указывают усредненные значения коэффициента уплотнения. Показатель может меняться в зависимости от различных факторов. Приведенные в таблице цифры достаточно условные, но они позволяют рассчитать усадку больших объемов материала.

На значение коэффициента уплотнения влияют:

  • Особенности транспорта и способа перевозки
    Если материал транспортируют по выбоинам или железной дороге, он уплотняется сильнее, чем при перевозке по ровной трассе или морю
  • Гранулометрический состав (размеры, формы зерен, их соотношение)
    При неоднородном составе материала и наличии лещадных частиц (плоской или игловидной форм) коэффициент будет ниже. А при наличии большого количества мелких частиц – выше
  • Влажность
    Чем больше влажность, тем меньше коэффициент уплотнения
  • Способ трамбовки
    Если материал утрамбовывают вручную, он уплотняется хуже, чем после применения вибрирующих механизмов
  • Насыпная плотность
    Коэффициент уплотнения напрямую связан с показателем насыпной плотности. Как мы уже сказали, в процессе трамбовки или транспортировки плотность материала меняется, так как становится меньше пустот между частицами. Поэтому насыпная плотность во время отгрузки в автомобиль на карьере и после прибытия к заказчику разная. Эту разницу можно высчитать и проверить как раз благодаря коэффициенту уплотнения.
    Подробнее об этом вы можете прочитать на странице Насыпная плотность сыпучих материалов

Также вы можете посмотреть конкретные показатели для следующих материалов:

Коэффициент уплотнения – это важный показатель, помогающий узнать, сколько сыпучего материала заказывать. Он дает возможность проконтролировать, действительно ли вам привезли заказанный объем. Показатель нужно знать строителям при возведении зданий, чтобы правильно рассчитать нагрузку на основание.

при трамбовке, обратной засыпке, строительстве дороги

Что такое коэффициент уплотнения песка (Купл) знают не только специалисты, работающие в проектных организациях, но и эксплуатационники, основным видом деятельности которых является строительство. Его рассчитывают для того, чтобы сопоставить фактическую плотность на определенном участке, со значением, прописанном нормативных актах. Коэффициент уплотнения сыпучих материалов – это важный критерий, по которому оценивается качество выполнения подготовки к основным видам работ на строительных площадках.

Что это такое?

Купл характеризует плотность, которую имеет грунт на конкретном участке, относится к тому же показателю материала, который перенес стандартное уплотнение в условиях лаборатории. Именно эта цифра применяется при оценке качества проведенных работ. Такой коэффициент определяет, насколько грунт на площадке соответствует требованиям ГОСТ 8736-93 и 25100-95.

При различных работах песок может иметь разный показатель плотности. Все эти нормы прописаны в СНиП 2.05.02-85, таблица 22. Еще их обычно указывают в проектных документах, в большинстве случаев этот показатель составляет от 0,95 до 0,98.

От чего изменяется коэффициент плотности

Если не понимать, что такое трамбовка песка, то посчитать правильно количество материала при строительстве практически не возможно. Ведь нужно четко знать, как повлияли на грунт различные манипуляции. То, какой коэффициент относительного уплотнения песка мы получим в конечном итоге, может зависеть от множества факторов:

  • от способа перевозки;
  • насколько длинным был маршрут;
  • не появились ли повреждения механического характера;
  • наличие посторонних вкраплений;
  • попадание влаги.

Естественно, если вы заказали песок, то просто обязаны проверить его на месте, потому как поздние претензии будут совершенно неуместны.

Зачем учитывать относительный коэффициент при строительстве дорог

Этот показатель для песчаной подушки необходимо просчитать, и объясняется это обычным физическим явлением, которое знакомо любому человеку. Чтобы это понять, вспомните, как ведет себя взрыхленный грунт. Поначалу он рыхлый и объемный. Но уже спустя пару дней осядет и станет намного плотнее.

Такая же участь ждет и любой другой сыпучий материал. Ведь его плотность увеличивается на складе под давлением собственного веса. Затем во время погрузки его взрыхляют, а уже непосредственно на стройплощадке опять происходит трамбовка песка своим весом. Кроме этого на грунт воздействует влажность. Песчаная подушка уплотнится при любых видах работ, будь то это строительство дорожного полотна, или обратная засыпка фундамента. Для всех этих факторов просчитаны соответствующие ГОСТ (8736-93 и 25100-95).

Как использовать относительный показатель

При любых строительных работах, одним из важнейших этапов считается составление сметы и подсчеты коэффициентов. Это нужно для того, чтобы правильно составить проект. Если важно узнать, как сильно уплотнится песок при транспортировке в самосвале или железнодорожном вагоне, достаточно найти в ГОСТ 8735-88 нужный показатель, и разделить на него требуемый объем.

Необходимо учитывать и то, какие именно работы предстоят. То ли вы собираетесь делать песчаную подушку под дорожное полотно, или обратную засыпку фундамента. В каждой ситуации трамбовка будет проходить по-своему.

Например, при обратной засыпке песка наполняется вырытый котлован. Трамбовку делают при помощи различного оборудования. Иногда производят уплотнение виброплитой, но в некоторых случаях требуется каток. Соответственно и показатели будут разными. Учитывайте то, что грунт меняет свои свойства во время выемки. Так что количество засыпки нужно считать с учетом относительного показателя.

Таблица величин коэффициентов уплотнения в зависимости от назначения песка.

Виды работКупл
Обратная засыпка котлованов0,95
Обратная засыпка пазух0,98
Обратная засыпка траншей0,98
Восстановительный ремонт подземных инженерных сетей возле проезжей части дороги0,98 — 1

Коэффициенты уплотнения сыпучих материалов для строительства

Сущность определения коэффициента уплотнения гравия, песка, щебня и керамзита можно кратко охарактеризовать следующим образом. Это величина, равная отношению плотности сыпучего стройматериала к его максимальной плотности.

Данный коэффициент для всех сыпучих тел различается. Его средняя величина для удобства пользования закреплена в нормативных актах, соблюдение которых обязательно для всех строительных работ. Поэтому, если потребуется, например, узнать, какой коэффициент уплотнения песка, достаточно будет просто заглянуть в ГОСТ и найти требуемое значение. Важное замечание: все величины, приведенные в нормативных актах, являются усредненными и могут изменяться в зависимости от условий транспортировки и хранения материала.

Необходимость учета коэффициента уплотнения обусловлена простым физическим явлением, знакомым практически каждому из нас. Для того чтобы понять сущность этого явления, достаточно вспомнить, как ведет себя вскопанная земля. Поначалу она рыхлая и достаточно объемная. Но если на эту землю взглянуть через несколько дней, то уже станет заметно, что грунт «осел» и уплотнился.

То же самое происходит и со строительными материалами. Сначала они лежат у поставщика в утрамбованном собственным весом состоянии, затем при погрузке происходит «взрыхление» и увеличение объема, а потом, после выгрузки на объекте, снова происходит естественная трамбовка собственным весом. Помимо массы, на материал будет воздействовать атмосфера, а точнее, ее влажность. Все эти факторы учтены в соответствующих ГОСТах.

Строительные материалы при длительном хранении уплотняются под собственным весом

Щебень, доставляемый автомобильным или железнодорожным транспортом, взвешивают на весах. При поставке водными видами транспорта вес высчитывается по осадке судна.

 

Как правильно пользоваться коэффициентом

Важным этапом любых строительных работ становится составление всех смет с обязательным учетом коэффициентов уплотнения сыпучих материалов. Это необходимо делать для того, чтобы заложить в проект правильное и необходимое количество стройматериалов и избежать их переизбытка или нехватки.

Как же правильно воспользоваться коэффициентом? Нет ничего проще. Например, для того, чтобы узнать, какой объем материала получится после утряски в кузове самосвала или в вагоне, необходимо найти в таблице требуемый коэффициент уплотнения грунта, песка или щебня и разделить на него закупленный объем продукции. А если требуется узнать объем материалов до перевозки, то надо будет произвести не деление, а умножение на соответствующий коэффициент. Допустим, если куплено у поставщика 40 кубометров щебня, то, значит, в процессе транспортировки это количество превратится в следующее: 40 / 1,15 = 34,4 кубометра.

Таблица коэффициентов уплотнения сыпучих строительных материалов
Вид материала Купл (коэффициент уплотнения)
ПГС (песчано-гравийная смесь) 1.2 (ГОСТ 7394-85)
Песок для строительных работ 1.15 (ГОСТ 7394-85)
Керамзит 1.15 (ГОСТ 9757-90)
Щебень (гравий) 1.1 (ГОСТ 8267-93)
Грунт 1.1-1.4 (по СНИП)
Все значения, приведенные в таблице, являются среднестатистическими и могут варьироваться в зависимости от конкретных условий доставки, хранения и состава материала.

 

Работы, связанные с полной цепочкой перемещения песчаных масс со дна карьера до строительной площадки, должны производиться с учетом относительного коэффициента запаса песка и грунта на уплотнение. Это величина, показывающая отношение весовой плотности твердой структуры песка к его весовой плотности на участке отгрузки поставщика. Чтобы определить необходимое количество песка, обеспечивающее запланированный объем, нужно этот объем умножить на коэффициент относительного уплотнения.

Помимо знания относительного коэффициента, приведенного в таблице, правильное использование ГОСТа подразумевает обязательный учет следующих факторов доставки песка на строительную площадку:

  • физические свойства и химический состав материала, присущие определенной местности;
  • условия перевозки;
  • учет климатических факторов в период доставки;
  • получение в лабораторных условиях величин максимальной плотности и оптимальной влажности.

Уплотнение песчаных оснований

Данный вид работ необходим при обратной засыпке. Например, это нужно после того, как установлен фундамент и теперь требуется заполнить грунтом или песком образовавшийся промежуток между внешним контуром конструкции и стенками котлована. Процесс производится с помощью специальных трамбовочных устройств. Коэффициент уплотнения песчаного основания равняется примерно 0,98.

Процесс уплотнения грунта трамбовочным устройством

Коэффициент для бетонных смесей

Бетонная смесь, как и любой другой строительный материал, монтируемый методом засыпания или заливки, требует дальнейшего уплотнения для получения необходимой плотности, а значит, и надежности конструкции. Бетон уплотняют вибраторами. Коэффициент уплотнения бетонной смеси при этом берется в пределах от 0,98 до 1.

таблица расчет плотности, ПГС при трамбовке глины, определение при обратной засыпке грунта

Коэффициент уплотнения необходимо определять и учитывать не только в узконаправленных сферах строительства. Специалисты и обычные рабочие, выполняющие стандартные процедуры использования песка, постоянно сталкиваются с необходимостью определения коэффициента.

Коэффициент уплотнения активно используется для определения объема сыпучих материалов, в частности песка,
но тоже относится и к гравию, грунту. Самый точный метод определения уплотнения – это весовой способ.

Широкое практическое применение не обрел из-за труднодоступности оборудования для взвешивания больших объемов материала или отсутствия достаточно точных показателей. Альтернативный вариант вывода коэффициента – объемный учет.

Единственный его недостаток заключается в необходимости определения уплотнения на разных стадиях. Так рассчитывается коэффициент сразу после добычи, при складировании, при перевозке (актуально для автотранспортных доставок) и непосредственно у конечного потребителя.

Факторы и свойства строительного песка

Коэффициент уплотнения – это зависимость плотности, то есть массы определенного объема, контролируемого образца к эталонному стандарту.

Эталонные показатели плотности выводятся в лабораторных условиях. Характеристика необходима для проведения оценочных работ о качестве выполненного заказа и соответствии требованиям.

Для определения качества материала используются нормативные документы, в которых прописано эталонные значения. Большинство предписаний можно найти в ГОСТ 8736-93, ГОСТ 7394-85 и 25100-95 и СНиП 2.05.02-85. Дополнительно может оговариваться в проектной документации.

В большинстве случаев коэффициент уплотнения составляет 0,95-0,98 от нормативного значения.

Вид работ Коэффициент уплотнения
Повторная засыпка котлованов 0,95
Заполнение пазух 0,98
Обратное наполнение траншей 0,98
Ремонт траншей вблизи дорог с инженерными сооружениями 0,98 – 1

«Скелет» – это твердая структура, которая имеет некоторые параметры рыхлости и влажности. Объемный вес обычно рассчитывается на основании взаимозависимости массы твердых частиц в песке, и той, которую бы приобрела смесь, если бы вода занимала всё пространство грунта.

Лучшим выходом для определения плотности карьерного, речного, строительного песка является проведение лабораторных исследований на основании нескольких проб взятых у песка. При обследовании грунт поэтапно уплотняют и добавляют влагу, это продолжается до достижения нормированного уровня влажности.

После достижения максимальной плотности определяется коэффициент.

Коэффициент относительного уплотнения

Выполняя многочисленные процедуры по добыванию, транспортировке, хранению, очевидно, что насыпная плотность несколько меняется. Это связано с трамбовкой песка при перевозке, длительное нахождение на складе, впитывание влаги, изменение уровня рыхлости материала, величины зерен.

В большинстве случаев проще обойтись относительным коэффициентом – это отношение между плотностью «скелета» после добычи или нахождения на складе к той, которую он приобретает доходя до конечного потребителя.

Зная норму какой характеризуется плотность при добыче, указывается производителем, можно без проведения постоянных обследований определять конечный коэффициент грунта.

Информация об этом параметре должна быть указана в технической, проектной документации. Определяется путем расчетов и соотношения начальных и конечных показателей.

Плотность

Такой метод подразумевает регулярные поставки от одного производителя и отсутствие изменений в каких-либо переменных. То есть транспортировка происходит одинаковым методом, карьер не изменил свои качественные показатели, длительность пребывания на складе приблизительно одинаковая и т.д.

Для выполнения расчетов необходимо учитывать такие параметры:

  • характеристики песка, основными считаются прочность частиц на сжатие, величина зерна, слеживаемость;
  • определение максимальной плотности материала в лабораторных условиях при добавлении необходимого количества влаги;
  • насыпной вес материала, то есть плотность в естественной среде расположения;
  • тип и условия транспортировки. Наиболее сильная утряска у автомобильного и железнодорожного транспорта. Песок менее подвергается уплотнению при морских доставках;
  • погодные условия при перевозке грунта. Нужно учитывать влажности и вероятность воздействия со стороны минусовых температур.

Как посчитать плотность во время добычи из котлована

В зависимости от типа котлована, уровня добычи песка, его плотность также изменяется. При этом важное значение играет климатическая зона, в который проводятся работы по добыче ресурса. Документами определяется следующие коэффициенты в зависимости от слоя и региона добычи песка.

Уровень земляного полотна Глубина слоя, м С усовершенствованным покрытием Облегченные или переходные покрытия
Климатические зоны
I-III IV-V II-III IV-V
Верхний слой Менее 1,5 0,95-0,98 0,95 0,95 0,95
Нижний слой без воды Более 1,5 0,92-0,95 0,92 0,92 0,90-0,92
Подтапливаемая часть подстилающего слоя Более 1,5 0,95 0,95 0,95 0,95

В дальнейшем на этом основании можно рассчитать плотность, но нужно учесть все воздействия на грунт, которые меняют его плотность в одном или другом направлении.

При трамбовке материала и обратной засыпке

Обратная засыпка – это процесс заполнения котлована, предварительно вырытого, после возведения необходимых строений или проведения определенных работ. Обычно засыпается грунтом, но кварцевый песок используется также часто.

Трамбовка считается необходимым процессом при этом действии, так как позволяет вернуть прочность покрытию.

Для выполнения процедуры необходимо иметь специальное оборудование. Обычно используется ударные механизмы или те, что создают давление.

Обратная засыпка

В строительстве активно применяются виброштамп и вибрационная плита различного веса и мощности.

Вибрационная плита

Коэффициент уплотнения также зависит от трамбовки, она выражена в виде пропорции. Это необходимо учитывать, так как при увеличении уплотнения одновременно уменьшается объемная площадь песка.

Стоит учитывать, что все виды механического, наружного уплотнения способны воздействовать только на верхний слой материала.

Основные виды и способы уплотнения и их влияние на верхние слои грунта представлены в таблице.

Тип уплотнения Количество процедур по методу Проктора 93% Количество процедур по методу Проктора 88% Максимальная толщина обрабатываемого слоя, м
Ногами 3 0,15
Ручной штамп (15 кг) 3 1 0,15
Виброштамп (70 кг) 3 1 0,10
Виброплита – 50 кг 4 1 0,10
100 кг 4 1 0,15
200 кг 4 1 0,20
400 кг 4 1 0,30
600 кг 4 1 0,40

Для определения объема материала для засыпки необходимо учесть относительный коэффициент уплотнения. Это связано с изменением физических свойств котлована после вырывания песка.

При заливке фундамента необходимо знать правильные пропорции песка и цемента. Перейдя по ссылке ознакомитесь с пропорциями цемента и песка для фундамента.

Цемент является специальным сыпучим материалом, который по своему составу представляет минеральной порошок. Тут о различных марках цемента и их применении.

При помощи штукатурки увеличивают толщину стен, из за чего увеличивается их прочность. Здесь узнаете, сколько сохнет штукатурка.

Извлекая карьерный песок тело карьера становится более рыхлым и поэтапно плотность может несколько уменьшаться. Необходимо проводить периодические проверки плотности с помощью лаборатории, особенно при изменении состава или расположения песка.

Более подробно о уплотнении песка при обратной засыпке смотрите на видео:

Как определить плотность песчаного слоя при транспортировке

Транспортировка сыпучих материалов имеет некоторые особенности, так как вес достаточно большой и наблюдается изменение плотности ресурсов.

В основном песок транспортируют при помощи автомобильного и железнодорожного транспорта, а они вызывают встряхивание груза.

Перевозка автомобилем

Постоянные вибрационные удары на материалы воздействуют на него подобно уплотнению от виброплиты. Так постоянное встряхивание груза, возможное воздействие дождя, снега или минусовых температур, увеличенное давление на нижний слой песка – все это приводит к уплотнению материала.

Причем длина маршрута доставки имеет прямую пропорцию с уплотнением, пока песок не дойдет до максимально возможной плотности.

Морские доставки меньше подвержены влиянию вибраций, поэтому песок сохраняет больший уровень рыхлости, но некоторая, небольшая усадка все равно наблюдается.

Перевозка морским транспортом

Для расчета количества строительного материала необходимо относительный коэффициент уплотнения, который выводится индивидуально и зависит от плотности в начальной и конечной точке, умножить на требуемый объем, внесенный в проект.

Как рассчитать в условиях лаборатории

Необходимо взять песок из аналитического запаса, порядка 30 г. Просеять сквозь сито с решеткой в 5 мм и высушить материал до приобретения постоянного значения веса. Приводят песок к комнатной температуре. Сухой песок следует перемешать и разделить на 2 равные части.

Далее необходимо взвесить пикнометр и заполнить 2 образца песком. Далее в таком же количестве добавить в отдельный пикнометр дисциллированной воды, приблизительно 2/3 всего объема и снова взвесить. Содержимое перемешивается и укладывается в песчаную ванну с небольшим наклоном.

Для удаления воздуха необходимо прокипятить содержимое 15-20 минут. Теперь необходимо охладить до комнатной температуры пикнометр и отереть. Далее доливают до отметки дисциллированной воды и взвешивают.

Далее переходят к расчетам. Методика, которая помогает определить плотность и основная формула:

P = ((m – m1)*Pв) / m-m1+m2-m3, где:

  • m – масса пикнометра при заполнении песком, г;
  • m1 – вес пустого пикнометра, г;
  • m2 – масса с дисциллированной водой, г;
  • m3 – вес пикнометра с добавлением дисциллированной воды и песка, при этом после избавления от пузырьков воздуха
  • Pв – плотность воды


При этом проводится несколько замеров, исходя из количества предоставленных проб на проверку. Результаты не должны быть с расхождением более 0,02 г/см3. В случае большого расхода полученных данных выводится средне арифметическое число.

Смета и подсчеты материалов, их коэффициентов – это основная составляющая часть строительства любых объектов, так как помогает понять количество необходимого материала, а соответственно затраты.

Для правильного составления сметы необходимо знать плотность песка, для этого используется информация предоставленная производителем, на основании обследований и относительный коэффициент уплотнения при доставке.

Из-за чего изменяется уровень сыпучей смеси и степень уплотнения

Песок проходит через трамбовку, не обязательно специальную, возможно в процессе перемещения. Посчитать количество материала полученного на выходе достаточно сложно, учитывая все переменные показатели. Для точного расчета необходимо знать все воздействия и манипуляции, проведенные с песком.

Конечный коэффициент и степень уплотнения зависит от разнообразных факторов:

  • способ перевозки, чем больше механических соприкосновений с неровностями, тем сильнее уплотнение;
  • длительность маршрута, информация доступна для потребителя;
  • наличие повреждений со стороны механических воздействий;
  • количество примесей. В любом случае посторонние компоненты в песке придают ему больший или меньший вес. Чем чище песок, тем ближе значение плотности к эталонному;
  • количество попавшей влаги.

Сразу после приобретения партии песка, его следует проверить.

Какие пробы берут для определения насыпной плотности песка для строительства

Нужно взять пробы:

  • для партии менее 350 т – 10 проб;
  • для партии 350-700 т – 10-15 проб;
  • при заказе выше 700 т – 20 проб.

Полученные пробы отнести в исследовательское учреждение для проведения обследований и сравнения качества с нормативными документами.

Заключение

Необходимая плотность сильно зависит от типа работ. В основном уплотнение необходимо для формирования фундамента, обратной засыпки траншей, создания подушки под дорожное полотно и т.д. Необходимо учитывать качество трамбовки, каждый вид работы имеет различные требования к уплотнению.

В строительстве автомобильных дорог часто используется каток, в труднодоступных для транспорта местах используется виброплита различной мощности.

Так для определения конечного количества материала нужно закладывать коэффициент уплотнения на поверхности при трамбовке, данное отношение указывается производителем трамбовочного оборудования.

Всегда учитывается относительный показатель коэффициента плотности, так как грунт и песок склонны менять свои показатели исходя из уровня влажности, типа песка, фракции и других показателей.

Уплотнение основания для асфальтоукладчика

Концепция асфальтоукладчика довольно проста; плита вибрирует под машиной, заставляя более мелкие частицы почвы оседать в пустотах материала под ней, образуя прочное компактное основание.

Хотя существуют различные материалы, требующие уплотненного основания; тротуарная плитка, брусчатка, тигровые блоки и бетонные блоки — это лишь некоторые из них. Процессы, описанные ниже, являются наилучшей практикой и подходят для всех упомянутых брусчатки, а также для многих других областей применения.Однако, как и в случае с любым другим оборудованием, эффективность оператора влияет на результаты. Этот простой четырехэтапный процесс обучения и точной настройки полезен при выполнении многочисленных проектов по укладке дорожного покрытия.

ШАГ 1 — ВЫКЛЮЧЕНИЕ / ВЫКЛЮЧЕНИЕ

Важно удалить достаточно земли, необходимой для глубины основания, принимая во внимание глубину брусчатки, которую вы используете. Используйте свое суждение, чтобы решить, сможет ли только что выкопанный грунт поддерживать заполнитель / камень, который вы позже примените, без необходимости сначала уплотнять поверхность почвы.Это зависит от ситуации.

Попробуйте подождать, пока земля высохнет, если она немного влажная, прежде чем уплотнять, но если это неизбежно, добавьте небольшое количество крупного гравия, чтобы связать влажную поверхность и продолжить уплотнение.

Шаг 2 — Добавьте вспомогательный материал

Когда земля станет достаточно твердой, можно начинать добавлять вспомогательный материал. Состав этого материала может варьироваться в зависимости от ваших предпочтений и / или геологического местоположения; известняк (или песчаник) обычно используется.Для успешного уплотнения рекомендуется хорошее сочетание крупных и мелких частиц.

Поместите основание в подъемники от 4 до 8 дюймов, если это возможно, но имейте в виду, что сила уплотнения машины может потребовать от вас регулировки. Как хорошее практическое правило, регулируйте высоту подъема в соотношении 1 дюйм материала на каждые 1000 фунтов силы уплотнения.

Например, пластинчатый уплотнитель с усилием уплотнения 3000 фунтов должен иметь подъемную силу не более 3 дюймов. Если в этом случае требуется 4 дюйма, было бы лучше добиться этого с помощью двух 2-дюймовых подъемников.

Толщина этих слоев важна. Если он слишком толстый, машина может не уплотняться эффективно, если он слишком тонкий для силы уплотнения, создаваемой машиной, может привести к чрезмерному уплотнению, при котором плотность материала снижается.

Уплотняйте основание после каждого подъема; перед уплотнением проверьте уровень влажности основания — горсть материала должна скрепиться при сжатии. Если он недостаточно влажный, используйте воду из бортового резервуара для воды (если есть) или садовый шланг, чтобы смочить его, но будьте осторожны, чтобы не пропитать его.Повторите этот процесс для такого количества слоев, которое необходимо для достижения глубины основания, необходимой для поддержки используемых брусчатки.

Шаг 3 — Укладка песчаной подстилки

После того, как материал основания был правильно уложен, следующим шагом будет добавление песка.

Этот песок — это то, на что будет укладываться брусчатка, поэтому важно тщательно подготовить поверхность. Обычно всю рабочую зону наносят слоем песка толщиной 1 дюйм. Важно обеспечить более мягкий слой, в который укладывается брусчатка, иначе они могут потрескаться или сломаться на следующем этапе процесса.Избегайте выступов или впадин, при необходимости переделывая их, чтобы получить ровную поверхность.

Шаг 4 — Установите асфальтоукладчики и уплотните

Положите выбранную брусчатку или блоки в желаемое место поверх свежеприготовленного песка. Когда вы будете удовлетворены, проведите по ним компактором, чтобы уложить их на поверхность. Обычно для этого требуется минимум 2 прохода.

При работе машины на асфальтоукладчиках мы настоятельно рекомендуем использовать уретановый коврик на уплотнителе, чтобы свести к минимуму возможное повреждение асфальтоукладчиков и машины.Это важно при использовании синтетической брусчатки, распространенной в Северной Америке, в отличие от более прочного гранитного камня.

Наконец, завершите процесс, запустив уплотнитель по брусчатке, добавив мелкий песок между швами, чтобы окончательно осесть брусчатку и создать необходимую плотность между ними, чтобы они оставались устойчивыми.

Основной принцип уплотнения любого материала одинаков: укладывать материал слоями и уплотнять между ними.

Конечно, мы не говорим, что это единственный способ укладывать и уплотнять материалы, потому что все ситуации индивидуальны.

Имея опыт и понимание оборудования для уплотнения, различных сред, типов камня, заполнителя и других доступных материалов, вы сможете эффективно настроить этот передовой процесс для достижения наилучших результатов для вашего проекта.

Но если вы не уверены или только начинаете — следование этому руководству станет хорошей отправной точкой для достижения фантастического результата.

Знайте факты о уплотнении | Для Construction Pros

Существуют различные типы уплотнительного оборудования, предназначенные для различных применений, но основная цель одна и та же: уплотнение почвы с целью создания прочного основания.Технически уплотнение почвы — это удаление из почвы воздушных пустот с помощью приложенной силы. С меньшим количеством воздушных пустот почва становится более плотной и способна выдерживать больший вес.

Механическое уплотнение грунта ускоряет естественный процесс оседания грунта и, в некоторых случаях, делает возможным строительство на маргинальных строительных площадках. Вкратце, трамбовки используются на ограниченных участках на связных / глинистых почвах. Пластинчатые уплотнители используются на ограниченных территориях, как правило, для уплотнения песчаных и гравийных грунтов, а уплотнители траншей используются на связных грунтах в траншеях или на больших площадях и рядом с конструкциями.Выбор подходящей машины для работы зависит от ряда факторов.

Почва будет вашим проводником

При выборе подходящей уплотнительной машины для работы лучше всего начать с правильной идентификации почвы. Почвы делятся на две основные категории: зернистые и связные. Гранулированные почвы состоят в основном из песка и гравия. Частицы достаточно крупные и крупные, чтобы их можно было увидеть невооруженным глазом.

Гранулированный грунт можно формовать, но он легко крошится. Они лучше всего уплотняются энергией вибрации, которая снижает силы трения на контактных поверхностях, позволяя частицам свободно падать под их весом.В то же время, когда частицы почвы вибрируют, они на мгновение отделяются друг от друга, позволяя им поворачиваться и скручиваться, пока они не найдут положение, ограничивающее их движение.

Зернистые почвы слабо связаны, поэтому влага легко отводится. Они представляют собой отличную основу для строительства и не требуют ударов или трамбовки.

Читать дальше: Наука уплотнения грунта

С другой стороны, связные почвы состоят из илов и глин.Частицы очень маленькие и кажутся гладкими при растирании между пальцами. Во влажном состоянии связные почвы липкие, и им можно придать практически любую форму. В сухом состоянии этот тип почвы имеет тенденцию быть очень твердым и трудно крошащимся.

Связные грунты лучше всего уплотняются ударной силой. Ударная сила трамбовки или траншейного катка вызывает эффект сдвига, который выдавливает воздушные пустоты и лишнюю воду между частицами.

Некоторые почвы подходят для строительства, а другие — нет.Целью уплотнения является увеличение несущей способности, предотвращение оседания и уменьшение просачивания воды и повреждений от мороза. Если почва не уплотнена должным образом, конструкция, построенная на фундаменте, не будет должным образом поддерживаться.

Виды техники для уплотнения грунта


После того, как тип почвы определен, рассмотрите объем работы, чтобы определить, какая часть оборудования уплотнит этот тип почвы за наиболее эффективное время. Виброплиты очень маневренные, поэтому они идеально подходят для работы в ограниченном пространстве.Катки имеют преимущество на больших открытых площадках, где есть много места для передвижения.

Та же логика применима к трамбовщикам. Трамбовщик следует использовать на связных грунтах в ограниченном пространстве, а траншейный каток (с подушечным барабаном) следует использовать в траншеях большего размера и на открытых площадках.

Панели

обычно делятся на три класса:

  • Передние пластины — считаются начальным уровнем и в основном используются для сложных пейзажей / ландшафтов, таких как жилые дома или тротуары, которые меньше по размеру и имеют размер от 2 до 4 дюймов.подъемники
  • Реверсивные от малых до средних
  • Реверсивные большие

Реверсивные подъемники популярны среди профессионалов, поскольку они позволяют сэкономить время и деньги. Они быстро выполняют работу, удобны для оператора, но больше по размеру и их труднее транспортировать.

Читать далее: Формула возмещения затрат на оборудование

Повышение безопасности с помощью уплотнительного оборудования


Уплотнение почвы как приложение не сильно изменилось за прошедшие годы, но в уплотняющее оборудование были внесены улучшения в отношении долговечности, технического обслуживания и комфорта оператора.Более того, повышение осведомленности и забота о безопасности, вероятно, является самой большой тенденцией, влияющей на уплотнительное оборудование.

Концепция безопасности выходит за рамки традиционной концепции защиты оператора от несчастного случая с травмой. Теперь она расширяется, чтобы защитить оператора от длительного воздействия шума, вибрации рук и выхлопных газов.

Пример общей защиты оператора и рабочей площадки можно найти в современных траншейных уплотнителях, которые обеспечивают дистанционное управление с помощью радиочастоты или инфракрасного излучения.Например, с помощью траншейного катка RTxSC3 с инфракрасным дистанционным управлением от Wacker Neuson оператор остается вдали от пыли и шума, производимых машиной, но должен постоянно находиться в зоне прямой видимости от контроллера до принимающего глаза. Эта технология управления устраняет опасные слепые зоны, если агрегат перемещается за препятствиями и другими препятствиями или если оператор отвлекается, обеспечивая лучшую защиту рабочей площадки и рабочих.

Компания Wacker Neuson добавила третью приемную проушину наверху катка, которая обеспечивает бесперебойную работу катка при движении под поперечинами опор.Кроме того, машина перестанет двигаться и вибрировать, если оператор окажется в пределах трех футов от чувствительных глаз катка или отпустит джойстики контроллера, следя за тем, чтобы оператор всегда находился на безопасном расстоянии от машины.

Со своей стороны, BOMAG использует радиочастотное дистанционное управление на своих траншейных уплотнителях, поскольку это позволяет оператору сохранять безопасное расстояние от траншейного уплотнителя или опасной зоны, обеспечивая при этом максимальную надежность. Траншейные уплотнители BOMAG также оснащены системой безопасности оператора BOMAG (BOSS), которая автоматически отключает машину, если оператор оказывается на опасном расстоянии от машины во время работы.

При использовании трамбовки в траншеях возникает одна проблема: в глубоких траншеях выхлопу негде выйти. Окись углерода (CO) представляет потенциальную опасность для здоровья оператора. В сотрудничестве с производителем двигателей Honda и в соответствии с Berufsgenossenschaft der Bauwirtschaft (Профессиональная ассоциация строительной индустрии в Германии) Weber MT разработал трамбовку с низким уровнем выбросов SRV 590. Улучшенный уровень выбросов этой новой модели с GXR 120 двигатель свел оценку риска этой машины к безвредной.

Тем не менее, управление трамбовкой — непростая задача для оператора, когда тысячи фунтов силы уплотнения ударяются о землю со скоростью 700 ударов в минуту. Чтобы помочь оператору усвоить удар, все оборудование Weber MT оснащено различными амортизаторами, расположенными по всей машине, для обеспечения комфорта оператора и плавной работы.

Точно так же уплотнители с виброплитой, движущиеся вперед, предлагают дополнительную функцию комфорта, которая помогает защитить оператора от таких вещей, как повреждение нервов, что типично при работе с уплотнительным оборудованием.Однако точное управление машинами, оснащенными направляющей шиной с низким уровнем вибрации, может быть довольно сложной задачей.

Однонаправленные виброплиты CF 1 PRO, CF 2 PRO и CF 3 PRO представляют собой виброплиты, специально разработанные с направляющими стержнями, которые обеспечивают низкие вибрации рук, а также точное управление машиной для длительного использования. С учетом этого направляющая шина была отделена от ручки, чтобы обеспечить эластичное соединение между двумя компонентами. Захваты с резиновым покрытием снабжены «амортизатором», установленным на кронштейне из высококачественного стекловолокна с помощью небольшого сильфона.

Технология помогает безупречно работать

Трудно судить о производительности уплотнения, но многие современные машины оснащены визуальными индикаторами уплотнения, чтобы гарантировать, что они используются в пределах своих рабочих параметров. Это особенно полезно для менее опытных операторов. Индикаторы могут защитить от недостаточного и чрезмерного уплотнения. Wacker Neuson, например, предлагает систему контроля уплотнения Compatec для своих больших реверсивных пластин.

Compatec — это удобный для чтения дисплей, который оператор может видеть во время работы машины.Он быстро дает оператору обратную связь об относительном ходе уплотнения, а также предупреждает оператора, когда машина чрезмерно уплотняет материал.

Аналогичным образом, технология COMPATROL-CCD Weber MT работает через датчик, установленный на опорной плите каждого уплотнителя почвы. Во время уплотнения этот датчик измеряет изменения в вибрационном поведении плиты. Такое поведение напрямую связано с жесткостью или плотностью уплотняемого грунта.

Используя анализ частотного диапазона, система может в режиме реального времени предоставлять информацию о состоянии уплотнения почвы, указывая ее состояние оператору с помощью шкалы светодиодов на встроенной приборной панели.Если другие светодиоды не загораются во время последовательных проходов по почве, оператор знает, что достигнуто максимальное уплотнение.

Реверсивные катки BOMAG предлагаются с индикатором жесткости почвы Economizer, который мгновенно отображает результаты определения жесткости почвы на светодиодном индикаторе. Это позволяет операторам быстро реагировать на меняющиеся условия и дает им уверенность в том, что работа выполнена правильно. Это не только обеспечивает качество уплотнения, но и экономит время и деньги, позволяя выполнять работы за меньшее количество проходов.

Прочность и экономичность

Современные трамбовки более прочные и долговечные. Например, недавние изменения в трамбовках Wacker Neuson включают уникальную четырехступенчатую систему фильтрации воздуха. Сюда входит усовершенствованный циклонный предварительный фильтр, предназначенный для более эффективного удаления пыли. Основной элемент с пропускной способностью на 20% больше, чем в предыдущей конструкции, по-прежнему использует движение трамбовки для самоочистки, а фильтр «последнего шанса» четвертой ступени предотвращает попадание пыли во время замены фильтра.

Пыль — неотъемлемый враг двигателей, поэтому эта новая система фильтрации обеспечит практически свободный от пыли двигатель, увеличивая срок его службы и повышая долговечность.

Экономия топлива — еще одна область технического прогресса. Имея это в виду, BOMAG разработала свою систему управления ECOMODE, которая обеспечивает минимальный расход топлива. В рамках ECOMODE системы ориентированы на потребности, позволяя снизить потребление дизельного топлива на 20% по сравнению с обычными машинами того же класса производительности без ECOMODE.

Дополнительные ресурсы для уплотнения грунта:

Выбор подходящего трамбовщика

Выбор подходящего уплотнителя плиты для работы

Безопасное и эффективное уплотнение грунта в траншеях

Сравнение характеристик несущей способности песка грунт, обработанный свайным уплотнением и гравием

  • Barksdale, R.Д. (1981). «Улучшение строительной площадки в Японии с использованием свай для уплотнения песка». Технологический институт Джорджии , Атланта, стр. 48–75.

    Google Scholar

  • Барксдейл, Р.Д. и Бахус, Р.С. (1983). Проектирование и строительство каменных колонн Том , Отчет № FHWA / RD-83/026, FHWA, Вашингтон, округ Колумбия, стр. 141–151.

    Google Scholar

  • Эноки, М., Яги, Н., Ятабэ, Р., Ичимото, Э. (1991). «Характеристики сдвига композитного грунта и ее применение для анализа устойчивости». Усовершенствования глубокого фундамента: проектирование, строительство и испытания , ASTM STP 1089, стр. 19–31.

    Google Scholar

  • Гринвуд, Д.А. (1970). «Механическое улучшение почвы под землей». Proc. Конференция по наземному строительству , Институт гражданского строительства, стр. 9–20.

  • Hansbo, S.(1994). Основы инженерных разработок в геотехнической инженерии , Vol. 95. С. 450–455.

    Google Scholar

  • Hughes, J.M.O. и Уизерс, штат Нью-Джерси (1974). «Армирование мягких связных грунтов каменной колонной». Земляная инженерия , Vol. 7, № 3, май, стр. 42–49.

    Google Scholar

  • Ким, Дж. К., Хонг, Э. Дж., Ким, С. И., и Чон, С.С. (2002). «Грузоосадочные характеристики песчаных свай уплотнения (SCP) в мягком грунте». Журнал гражданского строительства , KSCE, Vol. 22, № 4, с. 423–432.

    Google Scholar

  • Мадхав, М.Р. и Виткар, П.П. (1978). «Ленточный фундамент на слабой глине, укрепленной гранулированной траншеей или сваей». Канадский геотехнический журнал , Vol. 15. С. 605–609.

    Артикул Google Scholar

  • Везич, А.С. (1972). «Расширение полостей в бесконечном массиве грунта». Журнал отдела механики грунтов и фундаментостроения , ASCE. Vol. 98, No. SM3, pp. 265–290.

    Google Scholar

  • Wong, H.Y. (1975). «Виброфлотация — ее воздействие на слабосвязные почвы». Гражданское строительство , № 824, стр. 44–67.

    Google Scholar

  • Юн, М.Дж., Лим, Дж.К., Парк, Л.К., и Ю, С.Х. (2004). «Исследование прочности на сдвиг песчаной уплотнительной сваи с композитным грунтом и смешанным грунтом». Ежегодная конференция KSCE и Civil Expo 2004 , стр. 4–131.

  • Основания и основания для бетонных плит

    Хорошо уплотненное земляное полотно защищает конструкцию от грязи и обеспечивает равномерную опору плиты. Липпинкотт и Джейкобс

    То, что находится под вашей бетонной плитой, имеет решающее значение для успешной работы. Это ничем не отличается от фундамента под здание.Плита на земле (или плита на уровне грунта) по определению не должна быть самонесущей. «Система поддержки грунта» под ним служит для поддержки плиты.

    ЧТО ТАКОЕ ПОДБАЗА / ПОДГРУППА?

    Терминология, используемая для систем поддержки грунта, к сожалению, не полностью согласована, поэтому давайте следовать определениям Американского института бетона, начиная снизу:

    • Земляное полотно — это естественный грунт (или улучшенный грунт), обычно утрамбованный.
    • Основание — это слой гравия поверх земляного полотна.
    • Основание (или слой основания) — это слой материала поверх основания и непосредственно под плитой.

    Найдите подрядчиков по изготовлению плит и фундаментов рядом со мной

    Уплотненное основание защищает рабочих от грязи.Сеть энергоэффективных зданий

    Единственный слой, который является абсолютно необходимым, — это земляное полотно — вы должны иметь грунт, чтобы положить на него плиту поверх. Если природный грунт относительно чистый и уплотняемый, то вы можете положить на него плиту без дополнительных слоев. Проблема заключается в том, что почва может плохо дренироваться, и она может быть грязной во время строительства, если намокнет, она может плохо уплотняться, и может быть трудно получить ровную поверхность и получить надлежащий уровень. Как правило, верхняя часть земляного полотна должна иметь уклон с точностью до плюс или минус 1.5 дюймов от указанной отметки.

    Основание и базовое поле, или и то, и другое дают несколько хороших результатов. Чем толще основание, тем большую нагрузку может выдержать плита, поэтому, если на плиту будут лежать тяжелые нагрузки, такие как грузовики или вилочные погрузчики, проектировщик, вероятно, укажет толстое основание. Нижнее основание также может действовать как разрыв капилляров, предотвращая попадание воды из уровня грунтовых вод в плиту. Материал основания обычно представляет собой достаточно дешевый гравий без большого количества мелких частиц.

    Переработанный щебень — отличный источник материала основания. Производитель бетона

    Базовый курс наверху основания облегчает получение надлежащего уклона и выравнивание. Если вы используете что-то вроде колье из более тонкого материала наверху основания, оно поддержит ваших людей и оборудование во время укладки бетона. Это также сохранит одинаковую толщину плиты, что позволит сэкономить деньги на бетоне — самой дорогой части системы. Плоский базовый слой также позволит плите легко скользить при ее усадке, уменьшая ограничение и риск появления трещин при сжатии бетона после укладки (усадка при высыхании).

    Вся основание и базовая система должны иметь толщину не менее 4 дюймов — толще, если инженер считает, что это необходимо для надлежащей поддержки. Материал основного слоя, согласно ACI 302, «Конструкция бетонных полов и плит», должен быть «уплотняемым, легко поддающимся обрезке, гранулированным заполнителем, который будет оставаться стабильным и поддерживать строительное движение». ACI 302 рекомендует материал с содержанием мелких частиц от 10 до 30% (проходящий через сито № 100) без глины, ила или органических материалов. Хорошо работает промышленный заполнитель — также может работать и заполнитель из измельченного вторичного бетона.Допуски по основному слою составляют +0 дюймов и минус 1 дюйм для этажей классов 1-3 (типичные полы с низким допуском) или +0 дюймов и минус ¾ дюймов для полов с более высокими допусками.

    А КАК НАСЧЕТ ПОЧВЫ?

    Песчаный грунт легко сжимается, но при строительстве может легко образоваться колеи. Вольная реформатская церковь Южной реки

    Вес плиты и всего, что на ней находится, в конечном итоге будет поддерживаться почвой. Когда выкапывают строительную площадку, обычно почва перемещается — высокие места вырезаются, а низкие места заполняются.Затем все должно быть уплотнено перед укладкой бетона, основания и основания.

    Тип почвы определяет, что должно произойти перед укладкой плиты. Существует три основных типа почвы, и вот что вам следует знать о каждом:

    • Органические почвы , то, что вы могли бы назвать верхними почвами, прекрасны для вашего сада, но ужасны под плитой. Органические почвы нельзя уплотнять, их необходимо удалить и заменить на сжимаемый наполнитель.
    • Зернистые грунты представляют собой песок или гравий.Вы можете легко увидеть отдельные частицы, и вода довольно легко стекает с них. Так же, как на пляже, когда вы строите замок из песка, если вы возьмете горсть влажной зернистой земли и сделаете шар, как только он высохнет, он рассыпется. Гранулированные грунты обладают высочайшей несущей способностью и легко уплотняются.
    • Связные грунты — глины. Если вы возьмете влажную пригоршню, вы можете свернуть ее в нитку, как пластилин для лепки. Между пальцами он оставляет ощущение жирности и гладкости, а отдельные частицы слишком малы, чтобы их можно было увидеть.Связные грунты часто трудно уплотнять и приобретают твердую твердую консистенцию в сухом состоянии, но они имеют более низкую несущую способность, чем зернистые грунты. Некоторые глины расширяются при намокании и сжимаются при высыхании, что делает их особенно трудными в качестве материалов земляного полотна. Лучший способ решить эту проблему — сначала хорошо уплотнить, а затем не дать им намокнуть (обеспечив дренаж). Но по мере того, как земля под плитой со временем высыхает, она сжимается, и плита оседает. Это не большая проблема, если плита изолирована от опор и колонн, а также от любых труб, проходящих через плиту, чтобы она могла немного осесть и равномерно осесть.Часто с экспансивными глинами лучшим подходом является структурная плита, которая вообще не опирается на почву, или плита после растяжения, которая плавает над почвой, но не полагается на нее в качестве структурной опоры.

    Дополнительное натяжение часто является лучшим решением для плиты на плохой почве. Бетон Дж. К. Эскамиллы

    Большинство естественных почв, конечно же, представляют собой смесь и поэтому характеризуются преобладающим типом материала. Величина веса, которую почва может выдержать до того, как она разрушится, — это ее несущая способность, обычно выражаемая в фунтах на квадратный фут.Однако конструкция основана на допустимом давлении грунта, что увеличивает предельную несущую способность.

    Давайте посмотрим на вес, который обычно должен выдерживать грунт земляного полотна. Плита толщиной 6 дюймов весит около 75 фунтов на квадратный фут. Согласно Международному жилищному кодексу, временная нагрузка (все, что не является частью самого здания) варьируется от примерно 20 до примерно 60 фунтов на квадратный фут — 50 фунтов на квадратный фут в гараже. Это дает нам 125 фунтов на квадратный фут для поддержки почвы.Чистая песчаная почва может иметь допустимое давление почвы до 2000 фунтов на квадратный фут. Даже плохая почва — ил или мягкая глина — может иметь допустимое давление на почву в 400 фунтов на квадратный фут.

    Таким образом, мы можем видеть, что допустимое давление грунта для плиты редко является проблемой. Однако существует потребность в равномерной опоре, потому что, если одна часть плиты оседает больше, чем другая, именно тогда мы получаем изгиб плиты — и, возможно, трещины и неравномерную оседание. Важно знать, какие области были вырезаны, а какие заполнены — убедитесь, что области заполнения были хорошо уплотнены.Фактически, любая почва, которая была нарушена во время раскопок, должна быть уплотнена.

    УНИФОРМА ОПОРА

    Ключ к системе поддержки почвы — это равномерная, а не сильная опора. Конечно, он должен иметь возможность поддерживать плиту, и на большей части поверхности это не проблема, по крайней мере, в середине плиты, поскольку нагрузка распределяется по такой большой площади. Хорошая прочная опора на краях и в любых стыках может быть другим вопросом — чтобы предотвратить растрескивание и выкрашивание стыков, нам необходимо поддерживать плиту в тех местах, где она может вести себя как консоль и изгибаться в основание.Но с хорошей базой это тоже не проблема.

    Что происходит с бетонной плитой, если опора неоднородна?

    Бетон очень прочен на сжатие и не так силен на растяжение. В плите напряжение часто создается изгибом. Когда кусок бетона изгибается, он сжимается с одной стороны и растягивается с другой. Бетонная плита может прогнуться вогнутой вверх (как улыбка), если земляное полотно имеет мягкое пятно посередине, вызывая растяжение дна. Он может загибаться вниз (как хмурый взгляд) на свободных краях или в суставах, вызывая натяжение верха.Так что, если вся ваша бетонная плита не поддерживается снизу «системой поддержки грунта», она будет легче сгибаться и, вероятно, треснет.

    Почему земляное полотно и основание позволяют бетону вообще двигаться, разве он не должен быть полностью жестким?

    Дело в том, что любой грунт или гравийное основание будет сжиматься, если нагрузка будет достаточно высокой, если только плита не будет размещена на твердой породе. И в некотором смысле это хорошо, потому что плиты скручиваются, и если основание может немного отклоняться, оно может продолжать поддерживать плиту, даже когда она скручивается.Но если он не обеспечивает равномерной поддержки, если плита должна перекрывать мягкие участки, плита, вероятно, треснет. На плиту даже не обязательно должна быть большая нагрузка — обычно достаточно собственного веса, поскольку плита на уровне грунта обычно не рассчитана даже на постоянную нагрузку. И когда он действительно треснет, эта трещина будет проходить через всю плиту. Если опора под плитой достаточно плохая, вы можете получить дифференциальную осадку по трещине, которая оставляет очень неприятную неровность и очень недовольна владельцу.

    После уплотнения плотность грунта может быть проверена с помощью оборудования для ядерных испытаний. Bechtel

    КАК ПОДГОТОВКА / ОСНОВАНИЕ ВЛИЯЕТ НА КОНСТРУКЦИЮ ПЛИТ?

    Мы прилагаем все усилия, чтобы получить надлежащую систему поддержки грунта, и в итоге мы получаем единое исходное значение для конструкции плиты. Наиболее часто используемым значением является модуль реакции земляного полотна, k . Это значение не связано напрямую с несущей способностью, и k не сообщает проектировщику, является ли грунт сжимаемым или расширяющимся.Он показывает, насколько жестко основание / земляное полотно при небольших прогибах (около 0,05 дюйма).

    Теперь давайте посмотрим, почему нам нужно знать, насколько гибким является земляное полотно. Для начала важно понять, что плита на земле спроектирована как «простой» бетон. Это означает, что мы не рассчитываем на то, что арматурная сталь выдержит любую нагрузку. Но подождите, скажете вы, в плите есть сталь — сетка и арматура. Да, но эта сталь нужна только для контроля трещин — чтобы они плотно скреплялись.Обычно он не проходит через суставы — в суставах мы хотим передавать только поперечные силы, а не изгибающие моменты и, конечно, не поперечное ограничение. Это то, для чего в первую очередь нужен стык, чтобы допустить боковую усадку в плите.

    Если земляное полотно оседает под серединой плиты или по краям, неподдерживаемая часть может привести к трещинам или разрушению плиты.

    Итак, если мы не рассчитываем на то, что сталь выдержит любую нагрузку, тогда бетон должен быть достаточно прочным, чтобы выдерживать изгиб.А поддержка, которую он получает снизу, определяет, насколько он будет изгибаться. Как мы уже обсуждали, бетон не так силен при растяжении, и поскольку половина изгиба приходится на растяжение, он не так силен при изгибе. Но что делает его более прочным при изгибе, так это более толстая плита.

    Плохо уплотненное земляное полотно или нагрузка, превышающая расчетную для плиты, могут привести к растрескиванию стыков. Билл Палмер

    Чем слабее земляное полотно или чем тяжелее нагрузки, тем толще должна быть плита.Прочность бетона также играет важную роль, но большинство бетонных плит составляет от 3000 до 4000 фунтов на квадратный дюйм, так что это не главный фактор. Прочность бетона на растяжение обычно принимается от 10 до 15% от прочности на сжатие, то есть всего около 400 или 500 фунтов на квадратный дюйм. Сравните это с пределом прочности арматуры класса 60, который составляет 60 000 фунтов на квадратный дюйм.

    Здесь следует помнить, что бетонная плита должна быть жесткой, но мы не ожидаем, что основание будет бесконечно жестким. Плита немного осядет, и это нормально с точки зрения дизайна — опять же, если оседание будет однородным.Однако опасность возникает на краях плиты или в швах, которые достаточно широки, чтобы позволить плите с обеих сторон осесть независимо друг от друга. На этих свободных краях вес, который может выдержать плита, зависит от жесткости основания и прочности плиты на изгиб, которая в основном зависит от толщины плиты.

    Прочтите «Предотвращение трещин в бетоне» для получения дополнительной информации.

    КАК МЫ МОЖЕМ УЛУЧШИТЬ ПОДГОТОВКУ?

    Большинство улучшений земляного полотна достигается за счет уплотнения почвы.В экстремальных ситуациях, когда почва особенно плохая или при высоких нагрузках, можно использовать стабилизацию грунта. В этом процессе портландцемент, хлорид кальция или известь смешиваются с почвой, после чего она уплотняется. Грунт земляного полотна также можно выкопать и смешать с гравием, а затем утрамбовать.

    Для некоторых сложных грунтов основание может располагаться поверх слоя георешетки.

    Уплотнение почвы — это процесс выдавливания как можно большего количества воздуха и влаги, чтобы сдвинуть твердые частицы почвы вместе — это делает почву более плотной и, как правило, чем выше плотность почвы, тем выше ее несущая способность.Хорошо уплотненные почвы также не позволяют влаге так легко входить и выходить.

    Итак, уплотнение выполняет следующее:

    • Уменьшает степень сжатия (оседания) почвы, когда плита находится на ней
    • Увеличивает допустимый вес (несущая способность)
    • Предотвращает повреждение от мороза (вспучивание) при промерзании почвы под плитой
    • Уменьшает отек и сокращение

    Насколько грунт может быть уплотнен, инженер-геолог (или инженер по грунтам) измеряет, помещая грунт в цилиндр и удаляя по нему — серьезно.Стандартные или модифицированные тесты Проктора (в каждом из которых используется разный вес для сжатия почвы) определяют взаимосвязь между плотностью почвы и влажностью и говорят нам о максимально разумной плотности почвы, которая может быть достигнута в поле.

    Что мы пытаемся определить с помощью теста Проктора, так это содержание влаги в почве, которое облегчит ее уплотнение и приведет к наивысшей плотности — помните, что плотность напрямую связана с уплотнением. Слишком мало влаги, и почва становится сухой и плохо сжимается; слишком много влаги, и вы не сможете легко выдавить воду.Для достижения наилучшего уплотнения оптимальное содержание влаги обычно находится в диапазоне от 10% до 20%. Поэтому, когда вы услышите, что в соответствии со спецификацией, почва должна иметь 95% максимальной модифицированной плотности по Проктору, вы будете знать, что вам нужно, чтобы содержание влаги было примерно правильным, чтобы достичь такого уровня уплотнения.

    Кривая плотности почвы-влажности определяет оптимальное содержание влаги и максимальную плотность, достижимую в поле.

    Если вы не собираетесь проводить испытания Проктора, есть несколько простых полевых испытаний, чтобы получить приблизительное представление о несущей способности и содержании влаги:

    • Для определения влажности используйте ручной тест.Сожмите в руке комок земли. Если он пудровый и не держит форму, значит, он слишком сухой; если он превращается в шар, а при падении распадается на несколько частей, это примерно так; Если он оставляет влагу на руке и не ломается при падении, значит, он слишком влажный.
    • Глина, в которую можно вдавить большой палец на несколько дюймов с умеренным усилием, выдерживает нагрузку в диапазоне от 1000 до 2500 фунтов на квадратный дюйм
    • Рыхлый песок, в который вы едва можете вдавить арматуру №4 вручную, имеет несущую способность от 1000 до 3000 фунтов на квадратный дюйм
    • Песок, которым можно забить арматурный стержень №4 примерно на 1 фут с помощью 5-фунтового молотка, имеет несущую способность более 2000 фунтов на квадратный дюйм

    Также помните, что уплотнять нужно не только грунт (земляное полотно).Любые подосновы или основные слои, которые обычно представляют собой гранулированные материалы, также должны быть хорошо уплотнены до необходимой толщины подъема.

    Подробнее о строительстве высококачественных плит на уклоне.

    Уплотнитель плит Видео
    Время: 02:18
    Правильное функционирование и использование виброплитового уплотнителя для подготовки бетонного основания перед укладкой бетона

    УПЛОТНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

    Есть два способа уплотнения почвы или земляного полотна — статическая сила или вибрация.Статическая сила — это просто вес машины. Вибрационная сила использует какой-то механизм для вибрации почвы, который уменьшает трение между частицами почвы, позволяя им легче сжиматься.

    Тип грунта (или материала земляного полотна) определяет тип оборудования, необходимого для уплотнения:

    • Связные грунты необходимо разрезать, чтобы получить уплотнение, поэтому вам нужна машина с высокой ударной силой. Трамбовка — лучший выбор, а для более крупных работ — каток с опорными лапами (похожий на каток с опорными лапами).Подъемники для уплотнения связных грунтов должны быть не толще 6 дюймов.
    • Гранулированный грунт требует, чтобы частицы вибрировали только для того, чтобы сблизить их. Виброплиты или ролики — лучший выбор. Подъемники для гравия могут быть толщиной до 12 дюймов; 10 дюймов для песка.

    Для больших работ, таких как шоссе или большие плиты, для уплотнения используются большие подвижные вибрационные катки, либо с гладкими катками, либо с овальными катками. Ходовые катки с мягкими катками, которые разминают почву, или с гладкими вибрирующими катками, подходят для работы среднего размера.Для небольших работ два наиболее распространенных типа уплотнительного оборудования — это виброплиты (односторонние или реверсивные) и трамбовки.

    Статической силы иногда бывает достаточно для уплотнения сыпучих грунтов. Миннесота DOT Катки с овальной лапкой используются для уплотнения связных грунтов.

    Вот некоторые подробности о каждом из типов оборудования:

    • Трамбовки , иногда называемые прыгающими домкратами, различаются по весу от 130 до 185 фунтов. Эти инструменты отлично подходят для уплотнения почвы в траншее или для вязких глин на небольших площадях, поскольку они обеспечивают высокую ударную силу (большая амплитуда, низкая частота).Они не подходят для уплотнения сыпучих материалов, таких как базовые слои.
    • Виброплиты идеально подходят для уплотнения сыпучих грунтов и оснований. Доступен в весах от 100 до 250 фунтов с размером пластины от 1 до 1,5 футов на 2 фута. Вибрация имеет меньшую амплитуду, но более высокую частоту, чем у трамбовки, и сбалансирована, чтобы машина двигалась вперед.
    • Реверсивные виброплиты хорошо работают на сыпучих почвах или с зернисто-связными смесями.С двумя эксцентриковыми грузами вибрация может быть обращена вспять для перемещения машины вперед или назад или для остановки, чтобы сжать одну мягкую точку. По деньгам это хорошие машины благодаря своей универсальности.
    Трамбовки отлично подходят для уплотнения связных грунтов и на ограниченных территориях.
    Wacker Neuson Компакторы с виброплитой хорошо подходят для уплотнения сыпучих грунтов.
    Wacker Neuson

    Подробнее о требованиях к уплотнению бетоноукладчиков.

    РАЗМЕЩЕНИЕ БЕТОНА

    Итак, мы наконец-то утрамбовали земляное полотно, установили и утрамбовали основание и основной слой.Но что произойдет, если в этот момент есть задержка перед укладкой бетона? Если основание подвергается дождю или замерзанию перед укладкой бетона, оно может превратиться из готового в слишком мягкое.

    Для большинства внутренних плит пароизоляция должна быть помещена поверх основания перед укладкой бетона.

    Лучший способ узнать, правильно ли уплотнено основание и готово ли оно к установке плиты, — это испытательная прокатка, при которой тяжело нагруженный грузовик (например, полностью загруженный автобетоносмеситель) проезжает по основанию непосредственно перед укладкой бетона, чтобы увидеть, любые области тонут больше других.Это должно быть сделано на какой-то решетке, и шины не должны погружаться в поверхность более чем на ½ дюйма. Если есть колеи или перекачка воды в какой-либо части основания или земляного полотна, тогда эта область нуждается в дополнительном уплотнении или добавлении гранулированных материалов — или просто для высыхания. В худшем случае траншеи или отстойники можно прорезать и откачать воду.

    Непосредственно перед укладкой бетона вы можете также установить гидроизоляцию. Для внутренних полов лучше всего расположить между основным слоем и бетоном.Подробнее об этом см. Пароизоляция для бетонных плит.

    Узнайте больше о надлежащей подготовке земляного полотна для промышленных полов и проездов.

    Последнее обновление: 31 июля 2018 г.

    свай уплотнения песка: теория и практика для разработки морских месторождений | Международная конференция по океаническим и полярным исследованиям

    РЕЗЮМЕ

    Сваи для уплотнения песка широко используются во многих странах для проектов разработки морских месторождений. Эти сваи помогают повысить устойчивость за счет снижения потенциала разжижения и осадки различных структур, построенных на «земле, отмытой от моря».Эти сваи могут значительно «ускорить процесс рассеивания порового давления», что приведет к сокращению времени консолидации и «увеличению прочности грунта на сдвиг». В статье представлены существующие теории уплотнения песчаных свай в различных типах грунтов. Были рассмотрены методы строительства песчаных свай, которые включают в себя сваю для уплотнения песка, отвод песка, прочную сваю из песка и гигантскую сваю для уплотнения. Наконец, были представлены общие критерии проектирования и существующая практика строительства свай для уплотнения песка в проектах разработки морских месторождений.

    ВВЕДЕНИЕ

    Сваи для уплотнения песка использовались в течение последних 30 лет для проектов мелиорации морских земель, которые включают строительство аэропорта, металлургического комбината, нефтеперерабатывающих заводов и хранилищ природного газа, портовых и портовых сооружений и т. Д. и эффективный способ улучшения рыхлых песчаных и мягких глинистых грунтов для крупномасштабных мелиоративных работ с моря. Сваи для уплотнения песка помогают увеличить несущую способность и снизить вероятную осадку и потенциал разжижения почвы, в которой они построены.Они также действуют как дренаж и, следовательно, ускоряют время, необходимое для первичного уплотнения насыщенных глинистых грунтов. Метод виброуплотнения для строительства сваи для уплотнения песка был первоначально разработан Мураямой в 1958 г. С тех пор технология строительства сваи для уплотнения песка была значительно усовершенствована и включает в себя отводы из песка, прочную кучу песка и гигантскую сваю для уплотнения различной степени. уплотнения и состояния площадки.

    ТЕОРИЯ ПРОЕКТИРОВАНИЯ ПЕСЧАННЫХ СВАЙ УПЛОТНЕНИЯ

    Как рассчитать протокол испытаний на уплотнение

    Это продолжение предыдущей статьи, которую я опубликовал, Как провести испытание на уплотнение или испытание плотности на месте, о расчете отчета об испытании на уплотнение .Здесь мы собираемся вычислить насыпную плотность песка до степени уплотнения почвы.

    Я действительно хотел бы продолжить эту статью, чтобы полностью показать полный процесс получения результатов теста от использования образцов в расчетах. Таким образом, каждый инженер участка, , инженер проекта, консультант, инспектор, а также студенты инженерных специальностей должны знать, как это делается. Это будет руководство и поможет им изучить процедуры.

    Вот шаги расчетов для определения теста на уплотнение или отчета об испытании плотности на месте.

    1. Вычислите объемную плотность песка

    Расчет насыпной плотности песка должен быть произведен в лаборатории перед переходом на площадку. Вот значения, указанные в таблице ниже.

    Значения взяты из лаборатории
    V 0,00785 м³ Объем калибровочной емкости
    M1 17050 г Масса песка перед заливкой в ​​контейнер
    M2 3,425 гм Среднее значение массы песка в конусе
    M3 2192 г Среднее значение массы песка, остающегося в разливочном цилиндре

    Затем вычислите массу песка Ms, для заполнения контейнера.Из формулы в статье, указанной выше.

    Ms = 17, 050 — 3, 420 — 2, 192

    Следовательно, Ms = 11, 438 г.

    Насыпная плотность песка, ρs = 11, 438 г / 0,00785 м³

    Следовательно, ρs = 1,457,07 кгм / м³.

    2. Рассчитайте объемную плотность почвы

    После получения всех значений фактического испытания на уплотнение на месте. Перейдем непосредственно к расчетам, потому что нас действительно волнует, «как получить степень уплотнения?» и как это вычисляется? Так что, если у вас есть прямо сейчас отчет об испытаниях из сторонней лаборатории , вы можете попробовать использовать решения, которые мы здесь сделали, чтобы знать, как рассчитывается отчет об испытаниях.

    Ниже приведен параметр для расчета объемной плотности грунта, который был получен в результате фактического испытания на уплотнение на месте. Из , пункт 5 «Как провести испытание на уплотнение или испытание на плотность на месте», извлеченный из ямы грунт следует поместить в чистый контейнер или пластиковый контейнер. Он будет взвешен как масса вынутого грунта (Me).

    Значения взяты на сайте
    Me 10, 345 г Масса вынутого грунта
    M1 17, 050 г Масса песка перед заливкой в ​​скважину
    M2 3, 425 г Масса песка в конусе (среднее значение)
    M4 5, 155 г Масса песка после заливки в скважину (среднее значение)

    Mf = 17, 050 — 3, 425 — 5, 155

    Следовательно, Mf = 8, 470 г

    Насыпная плотность грунта , ρso = (10, 345 г / 8, 470 г) x 1.45 мг / м³ = 1,78 мг / м³

    3. Расчет влажности.

    Ниже представлен лабораторный анализ того же образца, взятого с сайта.

    Wc = 177,5 г. — Масса контейнера в граммах.

    W1 = 1045,7 г. — Контейнер для массы и влажный образец в граммах.

    W2 = 975,6 г. — Масса контейнера и высушенного в печи образца в граммах.

    Масса воды

    Ww = W1 — W2 = 1, 045,7 — 975,6 = 70,1 г.

    Масса твердой частицы

    Ws = W2 — Wc = 975.6 — 177,5 = 798,1 г.

    Содержание влаги

    MC = (Ww / Ws) x 100 = (70,1 / 798,1) x 100

    Следовательно, MC = 8,78%

    4. Расчет сухой плотности почвы

    После получения результата содержания влаги вы можете рассчитать ρd по формуле, написанной в разделе «Как провести испытание на уплотнение или испытание плотности на месте».

    ρd = (100 x 1,78) / (100 + 8,78)

    Следовательно, ρd = 1,64 Мг / м³

    5.Рассчитайте степень уплотнения

    Степень уплотнения является основой или окончательной приемкой после ее прохождения. В спецификации обычно говорится: «Степень уплотнения должна быть не менее 95 процентов от максимальной плотности в сухом состоянии (MDD)».

    Обратите внимание, что сначала вы должны взять образец грунта, в котором вы собираетесь провести испытание на уплотнение, и протестировать его для «Тест Проктора» , где вы получите максимальную плотность в сухом состоянии или MDD, которая будет использоваться при расчете степени уплотнения. Уплотнение.

    MDD, например, который будет использоваться в этом расчете, составляет 1,7 Mg / m3, но MDD может варьироваться в зависимости от типа вашего грунта . Ниже приведен расчет степени уплотнения .

    DOC = (1,64 / 1,7) x 100

    Следовательно,

    Степень уплотнения, DOC = 96,5%

    Испытание на уплотнение пройдено и является удовлетворительным, поскольку 96,5 процента выше предела в 95 процентов. Теперь можно продолжить последующее действие.

    Если вам понравилась эта статья, поделитесь ею в своей любимой социальной сети над этой статьей.

    Спасибо!

    Об авторе
    Ноэль

    Привет! Добро пожаловать на мой блог. Меня зовут Ноэль Мадес, и я автор сайта qualityengineersguide.com. По профессии я инженер-строитель, но я специализировался и прошел путь в области инженерии качества. Я проработал инженером по качеству в известных компаниях Объединенных Арабских Эмиратов почти одиннадцать лет.

    Глава 5 — NHI-05-037 — Geotech — Мосты и конструкции

    Справочное руководство по геотехническим аспектам дорожных одежд

    Глава 5.0 Геотехнические данные для проектирования дорожного покрытия

    5.1 Введение

    В этой главе описывается определение конкретных геотехнических данных, необходимых для проектирования гибких и жестких покрытий. Хотя здесь основное внимание уделяется исключительно геотехническим данным, очевидно, что для проектирования дорожного покрытия требуется много другой важной информации, включая характеристики движения, свойства материала для слоев связанного асфальта и / или портландцемента, желаемую надежность и другие детали.Эти исходные данные обычно предоставляются другими организациями, а не геотехнической группой.

    Большинство входных данных, описанных в этой главе, относятся к свойствам материала несвязанных слоев дорожного покрытия и грунта земляного полотна. Другие необходимые входные данные включают геометрическую информацию, такую ​​как толщина слоя, но они, как правило, не требуют пояснений и здесь не обсуждаются. Вклады в окружающую среду / климат также рассматриваются в этой главе. Хотя эти входные данные не являются «геотехническими» сами по себе, они напрямую влияют на поведение несвязанных материалов через их влияние на содержание влаги и циклы замораживания / оттаивания.Кроме того, во многих агентствах группа, ответственная за определение входных данных для окружающей среды, плохо определена, и поэтому эта ответственность может быть возложена на геотехническую группу.

    При рассмотрении материала в этой главе руководствуемся несколькими соображениями:

    • Обрабатываются только явные проектные данные. Как описано в главе 3, могут быть другие геотехнические проблемы (, например, , устойчивость откоса насыпи), которые могут оказать значительное влияние на характеристики покрытия, но которые не учитываются явно в процессе проектирования покрытия.
    • Измеренные входные параметры для конкретного проекта часто недоступны во время проектирования, особенно для предварительного проектирования. Особенно это касается свойств материала. Следовательно, в этой главе большое внимание уделяется «типичным» значениям и / или эмпирическим корреляциям, которые можно использовать для оценки исходных данных проекта. Эти оценки могут использоваться для предварительного проектирования, исследования чувствительности и других целей. Ясно, однако, что для окончательного проектирования предпочтительнее измеренные значения для конкретного проекта.
    • Многие исходные данные о свойствах материала могут быть определены лабораторными или полевыми испытаниями. Полевые испытания рассматриваются в главе 4, и соответствующие ссылки на материалы главы 4 включены здесь, где это уместно.
    • В данной главе делается попытка уравновесить охват между текущим эмпирическим Руководством по проектированию AASHTO 1993 г. и предстоящим механистически-эмпирическим подходом к проектированию NCHRP 1-37A (далее именуемым Руководством по проектированию NCHRP 1-37A). Несмотря на то, что геотехнические данные, необходимые для этих двух подходов к проектированию, частично совпадают ( e.грамм. , модуль упругости земляного полотна), есть существенные отличия. Входные данные для Руководства AASHTO 1993 года меньше по количеству и в основном являются эмпирическими (, например, , коэффициенты дренирования слоя), в то время как исходные данные для Руководства NCHRP 1-37A более многочисленны и фундаментальны (, например, , гидравлическая проводимость в зависимости от влажности). связи).
    • В этой главе описаны только проектные данные. В случаях, когда требуется некоторый промежуточный анализ для определения исходных данных проекта ( e.грамм. , для эффективного модуля реакции земляного полотна в Руководстве 1993 г. — см. Раздел 5.4.6), здесь также описывается методология анализа. Использование исходных данных в общих проектных расчетах описано отдельно в Приложениях C и D к Руководствам по проектированию 1993 г. и NCHRP 1-37A, соответственно.

    Одним из следствий всего вышесказанного является то, что эта глава довольно длинная; это необходимо для обеспечения достаточного охвата всех разнообразных геотехнических данных, требуемых двумя процедурами проектирования.Во-первых, обобщаются геотехнические данные, требуемые Руководствами по проектированию AASHTO и NCHRP 1-37A 1993 года (раздел 5.2). Затем геотехнические данные подробно описываются по категориям. Ниже приводится дорожная карта разделов этой главы, в которых описываются различные категории входных данных для геотехнического проектирования:

    • 5.2 НЕОБХОДИМЫЕ ГЕОТЕХНИЧЕСКИЕ ВХОДЫ
      • 5.2.1 1993 Руководство по проектированию AASHTO
      • 5.2.2 Руководство по проектированию NCHRP 1-37A
      • 5.2.3 Другие геотехнические свойства
    • 5.3 ФИЗИЧЕСКИЕ СВОЙСТВА
      • 5.3.1 Соотношение веса и объема
      • 5.3.2 Определение физических свойств
      • 5.3.3 Идентификация проблемной почвы
      • 5.3.4 Другие совокупные тесты
    • 5.4 МЕХАНИЧЕСКИЕ СВОЙСТВА
      • 5.4.1 Калифорния передаточное число (CBR)
      • 5.4.2 Стабилометр (значение R)
      • 5.4.3 Модуль упругости (упругости)
      • 5.4.4 Коэффициент Пуассона
      • 5.4.5 Коэффициенты структурного слоя
      • 5.4.6 Модуль реакции грунтового основания
      • 5.4.7 Трение интерфейса
      • 5.4.8 Характеристики остаточной деформации
      • 5.4.9 Коэффициент бокового давления
    • 5.5 ТЕРМО-ГИДРАВЛИЧЕСКИЕ СВОЙСТВА
      • 5.5.1 1993 Руководство AASHTO
      • 5.5.2 Руководство по проектированию NCHRP 1-37A
    • 5.6 ВХОДЫ ДЛЯ ОКРУЖАЮЩЕЙ СРЕДЫ / КЛИМАТА
      • 5.6.1 1993 Руководство AASHTO
      • 5.6.2 Руководство по проектированию NCHRP 1-37A

    Глава завершается разделом, описывающим разработку окончательных проектных значений для каждого входа при наличии нескольких оценок, например, , свойства материала измеряются как в полевых условиях, так и в лаборатории. Большинство исходных данных дизайна также демонстрируют значительную пространственную, временную и внутреннюю изменчивость. Все эти проблемы должны быть согласованы, чтобы разработать обоснованные входные значения для использования в окончательном проекте покрытия.

    5.2 Требуемые геотехнические данные
    5.2.1 1993 Руководство по проектированию AASHTO

    Как описано ранее в главе 3, руководство AASHTO по проектированию дорожного покрытия претерпело изменения в нескольких версиях за более чем 40 лет после проведения дорожных испытаний AASHO. Текущая версия — Руководство 1993 года. Геотехнические данные, необходимые для проектирования гибкого покрытия с использованием Руководства 1993 г., сведены в Таблицу 5-1. Также показаны перекрестные ссылки на разделы этого руководства, в которых описывается определение соответствующих геотехнических данных.Как ранее описывалось в главе 3, геотехнические данные для Руководства 1986 года идентичны таковым для Руководства 1993 года. Обратите внимание, что значения толщины D и для несвязанных слоев включены в качестве геотехнических данных для гибкого покрытия в Таблице 5-1; хотя они обычно считаются выходными данными из проекта (, т.е. , определяется из SN и других определенных входных данных), могут быть случаи, когда толщина слоя фиксирована и для которых дизайн затем фокусируется на выборе материалов слоев, имеющих достаточную конструктивную способность .

    коэффициент слоя) 2 3
    Таблица 5-1. Необходимые геотехнические данные для проектирования гибкого покрытия с использованием Руководства AASHTO 1993 г.
    Свойство Описание Раздел
    M R Модуль упругости земляного полотна 5.4.3
    Основание упругости E BS 5,4,3
    м 2 Коэффициент влажности основного слоя 5.5.1
    D 2 Толщина основного слоя
    E SB Модуль упругости основания (используется для определения коэффициента структурного слоя) 5.4.3
    Коэффициент влажности основного слоя 5.5.1
    D 3 Толщина основного слоя
    θ Скорость набухания 5.6.1
    V R Максимальное потенциальное разбухание 5.6.1
    P S Вероятность набухания 5.6.1
    5.6 Скорость вспучивания 9049 .1
    ΔPSI MAX Максимально возможная потеря работоспособности из-за морозного пучения 5.6.1
    P F Вероятность морозного пучения 5.6.1

    Примечание: Дополнительные наборы свойств слоев (E i , m i , D i ) требуются, если в конструкции дорожного покрытия более двух несвязанных слоев (за исключением естественного земляного полотна) .

    Геотехнические данные, необходимые для проектирования жесткого покрытия с использованием Руководства 1993 г., сведены в Таблицу 5-2. Опять же, эти входные данные идентичны входным данным для Руководства 1986 года. Первые пять свойств в таблице 5-2 используются для определения эффективного модуля реакции земляного полотна k в методике Руководства 1993 года.Геотехнические данные, необходимые для проектирования жесткого покрытия с использованием необязательного альтернативного подхода в приложении 1998 года, такие же, как и для подхода 1993 года; в приложении 1998 г. изменена только процедура анализа.

    Фактор армирования дизайн в JRCP) . 1
    Таблица 5-2. Необходимые геотехнические данные для проектирования жестких покрытий с использованием Руководства AASHTO 1993 г.
    Свойство Описание Раздел
    M R Модуль упругости земляного полотна 5.4.3
    E SB Модуль упругости основания 5.4.3
    D SB Толщина основания
    D к жесткому фундаменту
    LS Фактор потери опоры 5,4.6
    C d Фактор дренажа 5.5.1
    Friction 5.4.7
    θ Скорость набухания 5.6.1
    V R Максимальное потенциальное разбухание 5.6.1
    P S
    φ Скорость морозного пучения 5.6.1
    ΔPSI MAX Максимальная потенциальная потеря работоспособности из-за морозного пучения 5.6.1
    P морозное пучение 5.6.1

    Последние шесть параметров в обеих таблицах — это параметры окружающей среды, требуемые Руководством 1993 года для определения потери эксплуатационной пригодности из-за набухания обширных грунтов земляного полотна и морозного пучения. Хотя это не являются геотехническими параметрами в строгом смысле слова, пагубные эффекты набухания и морозного пучения сосредоточены в земляном полотне и других несвязанных слоях и, таким образом, являются важными геотехническими аспектами конструкции дорожного покрытия.

    5.2.2 NCHRP 1-37A Руководство по проектированию

    Механико-эмпирическая методология, лежащая в основе Руководства по проектированию NCHRP 1-37A, требует значительно большего объема входной информации, чем требуется для процедур эмпирического проектирования в Руководстве AASHTO 1993 года. Эти исходные данные также имеют тенденцию быть более фундаментальными величинами по сравнению с часто эмпирическими исходными данными в Руководстве 1993 года. Это понятно, учитывая существенные различия между механистически-эмпирическими и эмпирическими методологиями проектирования.

    Иерархический подход к проектированию входных данных

    Уровень проектных работ в любом инженерном проектировании должен быть соизмерим со значимостью разрабатываемого проекта.Маломощные второстепенные дороги не требуют — а у большинства агентств нет ресурсов для обеспечения — такого же уровня проектных усилий, как и городские магистральные дороги большого объема.

    Признавая эту реальность, был разработан иерархический подход для определения входных данных при проектировании дорожного покрытия в Руководстве по проектированию NCHRP 1-37A. Иерархический подход основан на философии, согласно которой уровень инженерных усилий, прилагаемых для определения исходных данных, включая значения свойств материалов, должен соответствовать относительной важности, размеру и стоимости дизайн-проекта.В руководстве NCHRP 1-37A:

    предусмотрены три уровня входных данных для проектирования.
    • Входные данные уровня 1 обеспечивают наивысший уровень точности и самый низкий уровень неопределенности. Исходные данные Уровня 1 обычно используются для проектирования тротуаров с интенсивным движением или там, где есть серьезные безопасные или экономические последствия раннего отказа. Исходные материалы Уровня 1 требуют лабораторной или полевой оценки, такой как испытание модуля упругости или неразрушающее испытание на прогиб. Входные данные уровня 1 требуют больше ресурсов и времени для получения, чем другие более низкие уровни.
    • Входные данные
    • Уровня 2 обеспечивают промежуточный уровень точности и наиболее близки к типичным процедурам, используемым в более ранних версиях Руководства по проектированию дорожных покрытий AASHTO. Этот уровень может использоваться, когда ресурсы или испытательное оборудование недоступны для характеристики Уровня 1. Входные данные Уровня 2 обычно получаются из ограниченной программы тестирования или оцениваются с помощью корреляций или опыта (возможно, из базы данных агентства). Модуль упругости, оцененный на основе корреляций с измеренными значениями CBR, является одним из примеров входящего материала Уровня 2.
    • Входы уровня 3 обеспечивают самый низкий уровень точности. Этот уровень может использоваться для конструкций, в которых последствия раннего отказа минимальны (, например, , дороги с низкой интенсивностью движения). Материальные затраты Уровня 3 обычно представляют собой значения по умолчанию, основанные на опыте местного агентства. Модуль упругости по умолчанию, основанный на классе грунта AASHTO, является примером входящего материала Уровня 3.

    Хотя интуитивно понятно, что исходные данные более высокого уровня (, т. Е. , более высокое качество) обеспечат более точные оценки характеристик покрытия, текущее состояние конструкции покрытия и ограниченную доступность исходных данных уровня 1 затрудняют количественную оценку этих преимуществ в настоящее время.Единственным исключением из этого правила является прогноз термического растрескивания в Руководстве по проектированию NCHRP 1-37A. Полные данные о свойствах материалов и окружающей среде Уровня 1 были получены в рамках программ стратегических исследований автомагистралей США и Канады примерно для 35 участков дорожного покрытия на севере США и в Канаде. Прогнозы термического растрескивания были сделаны на основе этих материалов Уровня 1, а также свойств материала Уровня 3 по умолчанию. Рисунок 5-1 суммирует различия между прогнозируемым и наблюдаемым термическим растрескиванием в единицах линейных футов трещин на 500 футов длины дорожного покрытия для каждого из полевых участков на основе входных материалов Уровня 1; Рисунок 5-2 суммирует те же результаты, основанные на материальных затратах Уровня 3.Сравнение этих двух рисунков ясно показывает, что более качественные материалы Уровня 1 значительно сокращают разброс между прогнозируемым и наблюдаемым растрескиванием.

    Рисунок 5-1. Прогнозирование термических трещин из Руководства по проектированию NCHRP 1-37A с использованием материалов уровня 1.

    Рисунок 5-2. Прогнозирование термических трещин из Руководства по проектированию NCHRP 1-37A с использованием материалов 3-го уровня.

    Входные данные проектирования в методологии NCHRP 1-37A могут быть указаны с использованием комбинации уровней для любого данного проекта.Например, модуль разрыва бетонного поверхностного слоя может быть указан в качестве входных данных Уровня 1, в то время как спектры транспортной нагрузки определяются с использованием подхода Уровня 2, а модуль упругости земляного полотна — с помощью оценки Уровня 3 на основе класса грунтового основания. Вычислительные алгоритмы и модели бедствия в Руководстве по проектированию NCHRP 1-37A (см. Приложение D) применяются одинаково, независимо от входных уровней. Однако входные данные более высокого уровня неявно повышают точность и надежность прогнозируемых характеристик покрытия.

    Таким образом, преимущества иерархического подхода к материалам и другим входным данным проекта заключаются в следующем:

    • Это дает инженеру большую гибкость в выборе инженерного подхода, соответствующего размеру, стоимости и общей важности проекта.
    • Это позволяет каждому агентству разработать первоначальную методологию проектирования в соответствии с его внутренними техническими возможностями.
    • Это очень удобный метод для постепенного повышения со временем технических навыков и навыков внутри организации.
    • По сути, он обеспечивает наиболее точный и экономичный дизайн, соответствующий финансовым и техническим ресурсам агентства.
    Требуемые геотехнические данные

    Геотехнические материалы для Руководства по проектированию NCHRP 1-37A сгруппированы по следующим категориям:

    • Механические свойства , которые используются в расчетной модели для связи приложенных структурных нагрузок с реакцией конструкции (Таблица 5-3 и Таблица 5-4).
    • Термогидравлические вводы , которые используются для соотнесения влияния окружающей среды с тепловым и гидравлическим состоянием системы (Таблица 5-5).
    • Модель бедствия Свойства, которые входят непосредственно в эмпирические модели характеристик покрытия (Таблица 5-6).

    Как описано ранее, Руководство по проектированию NCHRP 1-37A предусматривает три различных иерархических уровня качества входных данных: уровень 1 (высший), уровень 2 (промежуточный) и уровень 3 (низший). Для любого заданного входного параметра могут потребоваться разные свойства для входов Уровня 1, Уровня 2 и Уровня 3. Например, для оценки модуля упругости земляного полотна на Уровне 1 для нового строительства требуются свойства, измеренные в лаборатории, тогда как для Уровня 2 вместо этого требуются CBR или другие аналогичные свойства индекса, а для Уровня 3 требуется только класс грунта AASHTO или USCS.Иерархические уровни для каждого геотехнического входа включены в таблицы с 5-3 по 5-6. Руководство NCHRP 1-37A рекомендует использовать для проектирования наилучшие доступные данные (самый высокий уровень входных данных). Однако не требуется одинаковый уровень качества для всех входных данных в проекте.

    1. Оценки M R и ν также необходимы для неглубоких коренных пород.
    2. Только для проектов нового строительства / реконструкции.
    3. В первую очередь для реабилитационных конструкций.
    4. Для уровня 2 M R можно оценить напрямую или определить из корреляций с одним из следующих: CBR ; R ; a i ; DCP ; или PI и P200 .
    5. Только для несвязанных слоев основания и подосновы.
    1. Оценки M R и ν также требуются для неглубоких коренных пород в новых / реконструируемых проектах.
    2. Из тестирования FWD для реабилитационных проектов. Для новых / реконструируемых проектов k динамический определяется из оценок Уровня 2 M R .
    3. Для Уровня 2, M R можно оценить напрямую или определить из корреляций с одним из следующих: CBR ; R ; a i ; DCP ; или PI и P200 .
    9049 и дренаж 3.2 характеристики воды .2 9049 -6. Свойства материала модели бедствия, необходимые для Руководства по проектированию NCHRP 1-37A.
    Таблица 5-5.Термогидравлические вводы, необходимые для Руководства по проектированию NCHRP 1-37A.
    Свойство Описание Уровень Раздел
    1 2 3
    Глубина подземных вод
    Объем инфильтрации 5.5.2. G s Удельный вес твердых частиц 5.3.2
    γ d max Максимальный вес сухого агрегата
    w opt Оптимальное гравиметрическое содержание воды 5.3.2
    PI 5,3 Индекс пластичности D 60 Коэффициент градации 5.3.2
    P200 Процент прохода 0,075 мм (No.200 сито) 5.3.2
    Гидравлические свойства
    a f , b f , c f , h r 5.5.2
    k sat Насыщенная гидравлическая проводимость (проницаемость) 5.5,2
    PI Индекс пластичности Процент прохода 0,075 мм (сито № 200) 5.3.2
    Тепловые свойства
    K Сухая теплопроводность
    Q Сухая теплоемкость 5.5.2
    AASHTO класс грунта Таблица
    Свойство Описание Уровень Раздел
    1 2 3
    k 1 R1 Параметр Ringutting 5.4.8
    5.2.3 Другие геотехнические свойства

    В дополнение к явным проектным данным, перечисленным в Таблице 5-1 и Таблице 5-2 для Руководства AASHTO 1993 г. и Таблицы 5-3 — Таблицы 5-6 для Руководства NCHRP 1-37A, при укладке дорожного покрытия обычно требуются другие геотехнические свойства. проектирование и строительство. К ним относятся стандартные свойства, необходимые для идентификации и классификации почвы, контроля уплотнения и контроля качества / контроля качества в полевых условиях.

    5.3 Физические свойства

    «Физические свойства» дают самое общее описание несвязанных материалов.Эти свойства также часто используются в корреляциях для более фундаментальных инженерных свойств, таких как жесткость или проницаемость. Основными интересующими физическими свойствами являются удельный вес твердых тел, содержание воды, удельный вес (плотность), характеристики градации, пластичность (пределы Аттерберга), классификация и характеристики уплотнения.

    5.3.1 Соотношение веса и объема

    Перед описанием различных методов испытаний грунтов полезно ознакомиться с некоторыми общепринятыми терминами механики грунтов и основными соотношениями веса и объема.Для получения дополнительных сведений обратитесь к учебникам по основам механики грунтов.

    Образец почвы представляет собой многофазный материал, состоящий из твердых зерен почвы, воды и воздуха (рис. 5-3). Вес и объем образца почвы зависит от удельного веса зерен почвы (твердых частиц), размера пространства между зернами почвы (пустоты и поры) и количества пустот, заполненных водой (содержание влаги и степень увлажнения). насыщенность). Общие термины, связанные с отношениями массы и объема, показаны в Таблице 5-7.Особо следует отметить коэффициент пустотности е, который является общим показателем относительной прочности и сжимаемости образца грунта; , то есть , низкие отношения пустот обычно указывают на сильные грунты с низкой сжимаемостью, в то время как высокие отношения пустот часто указывают на слабые и сильно сжимаемые грунты. Выбранные соотношения вес-объем (удельный вес) представлены в Таблице 5-8. Типичные значения пористости, пустотности, содержания воды и удельного веса представлены в Таблице 5-9 для ряда типов почв.

    Рисунок 5-3. Взаимосвязь между объемом и массой / массой насыпного грунта (McCarthy, 2002).

    Таблица 5-7. Термины в отношениях веса и объема (по Cheney and Chassie, 1993).
    Свойство Символ Единицы 1 Как получено (AASHTO / ASTM) Непосредственное применение
    Содержание влаги w D по измерению ) Классификация и соотношение массы и объема
    Удельный вес G s D По измерению (T 100 / D 854) Расчет объема
    Масса устройства FL -3 Путем измерения или соотношения веса и объема Классификация и расчеты давления
    Пористость n D Из соотношения веса и объема Определяет относительный объем твердых веществ к общему объему почва
    Коэффициент пустот e D Из соотношения веса и объема 904 97 Определяет относительный объем пустот к объему твердых тел.
    1. F = Сила или вес; L = длина; D = безразмерный.Хотя по определению содержание влаги представляет собой безразмерную фракцию (отношение веса воды к весу твердых веществ), обычно оно выражается в процентах путем умножения фракции на 100.
    Таблица 5-8. Отношения удельного веса к объему.
    Случай Взаимосвязь Применимые геоматериалы
    Идентичность почвы:
    1. G s w = S e
    2. Общий вес единицы:
      γ t = (1 + w) G s γ w
      (1 + e) ​​
    3. 0 Все типы 9049 горных пород
    Ограничение веса единицы Только твердая фаза: w = e = 0: γ Порода = G s γ w Максимальное ожидаемое значение для твердого кремнезема составляет 27 кН / м 3
    Масса сухого агрегата Для w = 0 (весь воздух в пустом пространстве): γ d = G s γ w / (1 + e) ​​ Используется для чистых песков и почвы над уровнем грунтовых вод
    Вес влажного устройства (общий вес устройства) Переменные количества воздуха и воды: γ t = G s γ w (1 + w) / (1 + e) ​​с e = G s w / S Частично насыщенные почвы над уровнем грунтовых вод; зависит от степени насыщения (S, как десятичное).
    Насыщенный вес агрегата Установите S = 1 (все пустоты с водой): γ sat = γ w (G s + e) ​​/ (1 + e) ​​ Все почвы ниже уровня грунтовых вод ; Насыщенные глины и илы над уровнем грунтовых вод с полной капиллярностью.
    Иерархия: γ d ≤ γ t ≤ γ sat rock Проверка относительных значений

    Примечание: γ w = 9.8 кН / м 3 (62,4 фунт-фут) для пресной воды.

    130 9049 16,76
    Таблица 5-9. Типичные значения пористости, пустотности и удельного веса почв в их естественном состоянии (по Peck, Hanson, and Thornburn, 1974).
    Тип грунта Пористость
    n
    Пустота
    Соотношение
    e
    Вода
    Содержание
    Вт
    Масса устройства
    кН / м 3
    кН / м 3 192 9049 фунтов / куб. d γ sat γ d γ sat
    Песок однородный (рыхлый) 0.46 0,85 32% 14,1 18,5 90 118
    Песок однородный (плотный) 0,34 0,51 19% 10949
    Песок с хорошей фракцией (рыхлый) 0,40 0,67 25% 15,6 19,5 99 124
    Песок с хорошей фракцией (плотный) 0. 491 30 0,43 16% 18,2 21,2 116 135
    Ветрозащитный ил (рыхлый) 0,50 0,99 216 116
    Ледниковый до 0,20 0,25 9% 20,7 22,8 132 145
    Мягкая ледниковая глина 0.55 1,2 45% 11,9 17,3 76 110
    Жесткая ледниковая глина 0,37 0,6 22%
    Мягкая органическая глина 0,66 1,9 70% 9,1 15,4 58 98
    Мягкая органическая глина 0.75 3,0 110% 6,8 14,0 43 89
    Мягкая монтмориллонитовая глина 0,84 5,2 194 9049 9049 27497 5,2 194% 9049 9049
    5.3.2 Определение физических свойств

    Лабораторные и полевые методы (при необходимости) для определения физических свойств несвязанных материалов в системах дорожного покрытия описаны в следующих подразделах и таблицах.Также приведены типичные значения для каждого свойства. По физическим свойствам почвы разделены на следующие категории:

    • Объемные характеристики
      • Удельный вес (Таблица 5-10)
      • Содержание влаги (Таблица 5-11)
      • Масса устройства (Таблица 5-12)
    • Уплотнение
      • Испытания на уплотнение по Проктору (Таблица 5-13)
    • Градация
      • Механический ситовый анализ (Таблица 5-19)
      • Анализ ареометра (Таблица 5-20)
    • Пластичность
      • Пределы Аттерберга (Таблица 5-21)

    Градация и пластичность являются основными определяющими факторами для инженерной классификации почв с использованием либо AASHTO, либо унифицированной системы классификации почв.Классификация почв описана в рамках геологоразведочных работ в Разделе 4.7.2.

    Выявление проблемных почв (, например, , обширные глины) обычно основывается на их физических свойствах; эта тема рассматривается в конце этого раздела. Также кратко описаны другие дополнительные испытания, обычно используемые для контроля качества заполнителей, используемых в базовом и нижнем слоях, а также в асфальте и портландцементном бетоне.

    Объемные свойства

    При проектировании и строительстве дорожного покрытия наибольший интерес представляют следующие объемные характеристики:

    • Удельный вес (Таблица 5-10)
    • Содержание влаги (Таблица 5-11)
    • Масса устройства (Таблица 5-12)
    Таблица 5-10.Удельный вес грунта и твердых частиц заполнителя.
    Описание Удельный вес твердых частиц почвы G s — это отношение веса данного объема твердых частиц почвы при данной температуре к весу равного объема дистиллированной воды при этой температуре
    Использование в дорожных покрытиях
    • Расчет удельного веса грунта, коэффициента пустотности и других объемных свойств (см. Раздел 5.3.1).
    • Анализ ареометра для определения распределения частиц в мелкозернистых почвах (Таблица 5-20).
    Лабораторное определение AASHTO T 100 или ASTM D 854.
    Полевые измерения Не применимо.
    Комментарий Некоторые уточняющие слова, такие как истинный , абсолютный , кажущийся , объемный или масса и т. Д. Иногда добавляются к «удельному весу». Эти уточняющие слова изменяют смысл удельного веса относительно того, относится ли он к зернам почвы или к массе почвы.Зерна почвы имеют внутри проницаемые и непроницаемые пустоты. Если для определения истинного объема зерен исключить все внутренние пустоты в зернах почвы, полученный удельный вес будет называться абсолютным или истинным удельным весом (также называемым кажущимся удельным весом ). Если включены внутренние пустоты в зернах почвы, полученный удельный вес называется валовым удельным весом . Полное удаление воздуха из водно-грунтовой смеси во время испытания является обязательным при определении истинного или абсолютного значения удельного веса. сила тяжести.
    Типичные значения
    (Coduto, 1999)
    Песок темного цвета Песок смеси
    Тип грунта G S
    Чистый светлый песок (кварц, полевой шпат) 2,65
    Темный песок 2,72
    2,72
    2,72
    Глина 2,65
    Таблица 5-11.Содержание влаги.
    Описание Содержание влаги выражает количество воды, присутствующей в некотором количестве почвы. Гравиметрическая влажность или содержание воды w определяется в терминах веса почвы как w = W w / W s , где W w — это вес воды, а W s — вес твердых частиц почвы в образце.
    Использование в дорожных покрытиях
    • Расчет общего удельного веса почвы, коэффициента пустотности и других объемных свойств (см. Раздел 5.3.1).
    • Взаимосвязь с поведением почвы, другими свойствами почвы.
    Лабораторное определение Сушка почвы в обычной (температура 110 ± 5 ° C) или микроволновой печи до постоянного веса (AASHTO T 265, ASTM D 2216 / обычная печь или ASTM D 4643 / микроволновая печь).
    Полевые измерения Ядерный манометр (ASTM D2922).
    Комментарий Определение влажности или содержания воды — одна из наиболее часто выполняемых лабораторных процедур для почв.Содержание воды в почве в сочетании с данными, полученными в результате других испытаний, дает важную информацию о характеристиках почвы. Например, когда содержание воды in-situ в образце, взятом из-под уровня грунтовых вод, приближается к пределу жидкости, это указывает на то, что почва в ее естественном состоянии подвержена более сильным оседаниям.

    Для потоков жидкости влажность часто выражается как объемная влажность θ = V w / V t , где V w — объем воды, а V t — общий объем образца.Объемное содержание влаги также можно определить как θ = S n , где S — насыщенность, а n — пористость.

    Типичные значения См. Таблицу 5-9. Для сухих почв w 0 . Для большинства естественных почв 3 ≤ w ≤ 70% , Насыщенные мелкозернистые и органические почвы могут иметь весовое содержание влаги более 100%.
    Таблица 5-12. Единица измерения.
    Описание Удельный вес — это общий вес, деленный на общий объем пробы почвы.
    Использование в дорожных покрытиях
    • Расчет напряжений на месте.
    • Взаимосвязь с поведением почвы, другими свойствами почвы.
    • Контроль уплотнения (см. Подраздел Уплотнение ).
    Лабораторное определение Удельный вес ненарушенных мелкозернистых образцов почвы измеряется в лаборатории путем взвешивания части образца почвы и деления на ее объем. Это можно сделать с помощью образцов из тонкостенных трубок (Шелби), а также с помощью поршневых пробоотборников, пробоотборников Шербрук, Лаваля и NGI.Если ненарушенные образцы недоступны (, например, , для крупнозернистых грунтов), удельный вес следует определять на основе соотношений массы к объему (см. Таблицу 5-8).
    Полевые измерения Ядерный манометр (ASTM D2922), песчаный конус (ASTM D1556).
    Комментарий Удельный вес также обычно называют плотностью .

    Общий удельный вес зависит от влажности почвы (Таблица 5-8). Необходимо соблюдать различия между сухой ( γ d ), насыщенной ( γ sat ) и влажной или общей массой ( γ t ).Следовательно, содержание влаги должно быть получено одновременно с удельным весом, чтобы можно было преобразовать общий вес к сухому.

    Типичные значения См. Таблицу 5-9.
    Уплотнение

    Уплотнение почвы — одна из важнейших геотехнических проблем при строительстве дорожных покрытий и связанных с ними насыпей и насыпей. Уплотнение во многих отношениях улучшает инженерные свойства грунтов, в том числе:

    • повышенной упругой жесткости, что снижает кратковременные упругие деформации при циклическом нагружении.
    • снижает сжимаемость, что снижает вероятность чрезмерной длительной осадки.
    • повышенной прочности, которая увеличивает несущую способность и снижает возможность нестабильности (, например, , для склонов).
    • уменьшена гидравлическая проводимость (проницаемость), что препятствует прохождению воды через почву.
    • уменьшил коэффициент пустотности, что снижает количество воды, которая может удерживаться в почве, и, таким образом, помогает поддерживать желаемые свойства прочности и жесткости.
    • снижена эрозионная стойкость.

    Уплотнение обычно количественно выражается в единицах эквивалентной сухой массы γ d почвы как меры количества твердых материалов, присутствующих в единице объема. Чем больше твердых материалов, тем прочнее и устойчивее будет грунт. Стандартные лабораторные испытания (таблица 5-13) включают уплотнение нескольких образцов при разном содержании воды ( w ). Общий вес единицы ( γ т ) и содержание воды измеряются для каждого уплотненного образца.Эквивалентный сухой вес единицы затем вычисляется как:

    (5.1)

    Если удельный вес твердых тел G s известен, уровень насыщения ( S ) и коэффициент пустотности ( e ) также можно определить с помощью следующих двух идентификаторов:

    (5.2)

    G s w = S e

    (5,3)
    γ t = G s γ w (1 + w)
    (1 + e) ​​

    Пары эквивалентного сухого веса vs.Значения влагосодержания нанесены на график зависимости влажности от плотности на кривой уплотнения, как показано на Рисунке 5-4. Кривые уплотнения обычно демонстрируют четко выраженный пик, соответствующий максимальной массе сухой единицы ( d ) max ) при оптимальном содержании влаги ( w opt ). Хорошей практикой является построение кривой нулевых воздушных пустот ( ZAV ), соответствующей 100-процентному насыщению, на графике влажность-плотность (см. Рисунок 5-4). Измеренная кривая уплотнения не может упасть выше кривой ZAV, если был использован правильный удельный вес.Пиковая или максимальная масса сухой единицы обычно соответствует уровням насыщения от 70 до 85 процентов.

    Рисунок 5-4. Типичное соотношение влажности и плотности при стандартном испытании на уплотнение.

    Относительное уплотнение ( C R ) — это отношение (выраженное в процентах) плотности уплотненного или естественного грунта на месте к максимальной плотности, достигаемой в заданном испытании на уплотнение:

    (5,4)
    C R = γ d × 100%
    d ) max

    e.грамм. , 95%) при строительстве или подготовке фундаментов, оснований, оснований и оснований дорожных одежд и насыпей. Требования к содержанию влаги в уплотнении относительно оптимального содержания влаги также могут быть включены в спецификации по уплотнению. Конструкция и выбор методов улучшения характеристик прочности и жесткости отложений во многом зависят от относительного уплотнения.

    Относительная плотность ( DR ) (ASTM D 4253) часто является полезным параметром при оценке технических характеристик зернистых грунтов.Это определяется как:

    (5.5) 28

    в котором и e max — минимальные и максимальные значения коэффициента пустотности для почвы. Относительную плотность также можно выразить через массу сухих единиц:

    (5,6)
    D r = e max — e × 100%
    e max — e min
    23 % макс.
    D r = γ d — (γ d ) мин d ) % макс
    d ) max — (γ d ) min γ d

    В таблице 5-14 представлена ​​классификация по относительной плотности почвы плотность для сыпучих грунтов.

    Таблица 5-13. Характеристики уплотнения.
    Описание Характеристики уплотнения выражаются в виде зависимости эквивалентной массы сухой единицы от влажности почвы при заданном уровне энергии уплотнения. Особый интерес представляют максимальный эквивалентный сухой вес единицы и соответствующее оптимальное содержание влаги при заданном уровне энергии уплотнения.
    Использование на тротуарах
    • В сочетании с другими испытаниями ( e.грамм. , модуль упругости), определяет влияние плотности грунта на инженерные свойства.
    • Контроль качества на местах / контроль качества для уплотнения естественного земляного полотна, уложенного основания и слоев основания, а также насыпей насыпи.
    Лабораторное определение Чаще всего используются два набора протоколов испытаний:
    • AASHTO T 99 (Стандартный Проктор), T 180 (Модифицированный Проктор)
    • ASTM D 698 (Стандартный Проктор), D 1557 (Модифицированный Проктор)

    Испытания на уплотнение проводятся с использованием нарушенных подготовленных грунтов с добавками или без них.Обычно почва, проходящая через сито № 4, смешивается с водой для формирования образцов с различным содержанием влаги в диапазоне от сухого состояния до влажного. Эти образцы уплотняются слоями в форме с помощью молотка при заданной номинальной энергии уплотнения, которая является функцией количества слоев, веса молотка, высоты падения и количества ударов (см. Таблицу 5-15). Эквивалентный сухой удельный вес определяется на основе содержания влаги и удельного веса уплотненного грунта. Построена кривая зависимости веса сухой единицы от содержания влаги (Рисунок 5-4), а максимальная ордината на этой кривой обозначена как максимальная масса сухой единицы ( d ) max ).Содержание воды, при котором возникает этот максимум, называется оптимальным содержанием влаги ( w opt ) или OMC.

    Полевые измерения Полевые определения содержания влаги (Таблица 5-11) и веса единицы (Таблица 5-12) используются для проверки того, соответствует ли уплотненный в полевых условиях материал спецификациям конструкции.
    Комментарий Если для строительства будут использоваться различные почвы, следует установить соотношение влажности и плотности для каждого основного типа почвы или почвенной смеси, ожидаемой на участке.

    Когда добавки, такие как портландцемент, известь или зола, используются для определения максимальной плотности смешанного уплотненного грунта в лаборатории, следует позаботиться о том, чтобы удвоить ожидаемый период задержки между смешиванием и уплотнением в полевых условиях. Следует иметь в виду, что эти химические добавки начинают вступать в реакцию, как только их добавляют во влажную почву. Они вызывают существенные изменения свойств почвы, в том числе плотности, достижимой путем уплотнения. Предполагается, что период между смешиванием и уплотнением в поле составит, например, три часа, затем в лаборатории уплотнение почвы также следует отложить на три часа после смешивания стабилизирующих добавок.

    Типичные значения См. Таблицу 5-16, где указаны минимальные уровни уплотнения, рекомендованные AASHTO. Типичные диапазоны удельного веса уплотненной единицы и оптимального содержания влаги для классов почв USCS и AASHTO приведены в Таблице 5-17 и Таблице 5-18, соответственно.
    9048 15-35
    Таблица 5-14. Консистенция сыпучих грунтов при различной относительной плотности.
    Относительная плотность Dr (%) Описание
    85-100 Очень плотный
    65-85 Плотный
    35-65 средний
    Свободный
    0-15 Очень свободный
    кг Вес молота ударов на слой
    Таблица 5-15.Принципиальные отличия стандартного и модифицированного теста Проктора.
    Standard Proctor Modified Proctor
    Стандарты AASHTO T 99
    ASTM D 698
    AASHTO T 180
    ASTM D 1557
    10,0 фунта (44,5 кН)
    Высота падения молота 12 дюймов (305 мм) 18 дюймов (457 мм)
    Количество слоев почвы 3 5 2
    25 25
    Общая энергия уплотнения 12,400 фут-фунт / фут 3
    (600 кН-м / м 3 )
    56000 фут-фунт / фут 3
    (2700 кН-м / м 3 )
    Таблица 5-16.Рекомендуемые минимальные требования для уплотнения насыпей и земляного полотна (ААШТО, 2003).
    AASHTO Класс грунта Минимальный процент уплотнения (%) a
    Насыпи Подкладки
    <50 футов в высоту > 50 футов в высоту
    2 , A-3 ≥ 95 > 95 100
    A-2-4, A-2-5 ≥ 95 ≥ 95 100
    A-2-6 , A-2-7 > 95 b ≥ 95 c
    A-4, A-5, A-6, A-7 ≥ 95 — — b ≥ 95 c
    1. На основе стандартного Проктора (AASHTO T 99).
    2. Данным материалам требуется особое внимание к дизайну и конструкции.
    3. Уплотнение при содержании влаги в пределах 2% от оптимального.
    смеси: гравий / песок 929
    Таблица 5-17. Типичная плотность уплотнения и оптимальное содержание влаги для типов почв USCS (по Картеру и Бентли, 1991).
    Описание грунта USCS Class Масса уплотненного сухого агрегата Оптимальное содержание влаги (%)
    (фунт / фут3) (кН / м3)
    хорошие сорта, чистые GW 125-134 19.6-21,1 8-11
    слабосортный, чистый GP 115-125 18,1-19,6 11-14
    хорошо отсортированный, мелкая иловость GM 119-134 18,6-21,1 8-12
    хорошо гранулированный, с небольшим содержанием глины GC 115-125 18,1-19,6 9-14
    Пески и песчаные Почвы:
    хорошие, чистые ЮЗ 109-131 17.2-20,6 9-16
    слабосортный, малый ил SP 94-119 15,7-18,6 12-21
    хорошо сортированный, мелкая иловость SM 109-125 17,2-19,6 11-16
    хорошо отсортированный, с небольшим содержанием глины SC 106-125 16,7-19,6 11-19
    Fined грунты малопластичные:
    илы ML 94-119 14.7-18,6 12-24
    глины Класс 94-119 14,7-18,6 12-24
    илы органические OL 81-100 21-33
    Мелкозернистые почвы высокой пластичности:
    илы MH 69-94 10,8-14,7 24-40
    496 глины 81-106 12.7-18,6 19-36
    органические глины OH 66-100 10,3-15,7 21-45
    Гравий / гравий с гравием песчаные смеси Диатомовые или слюдистые илы
    Таблица 5-18. Типичная плотность уплотнения и оптимальное содержание влаги для типов почв AASHTO (по Картеру и Бентли, 1991).
    Описание грунта Класс AASHTO Масса уплотненного сухого агрегата Оптимальное содержание влаги (%)
    (фунт / фут3) (кН / м3)
    А-1 115-134 18.1-21.1 5-15
    Илистый или глинистый гравий и песок A-2 109-134 17.2-21.1 9-18
    Пески с плохой зернистостью A 3 100-119 15,7-18,6 5-12
    Мелкопластичные илистые пески и гравий A-4 94-125 14,7-19,6 10-20
    A-5 84-100 13.2-15,7 20-35
    Пластичная глина, песчаная глина A-6 94-119 14,7-18,6 10,30
    Высокопластичная глина A-7 81 -115 12,7-18,1 15-35
    Градация

    Градация, или распределение размеров частиц в почве, является важным описательным признаком почв. Почва текстурная ( например, , гравий, песок, илистая глина и т. Д.) и инженерная (см. раздел 4.7.2) классификации основаны в значительной степени на градации, и многие инженерные свойства, такие как проницаемость, прочность, потенциал набухания и восприимчивость к действию мороза, тесно связаны с параметрами градации. Градация измеряется в лаборатории с помощью двух тестов: механического ситового анализа для песка и более крупной фракции (Таблица 5-19) и теста ареометра для ила и более мелкого глинистого материала (Таблица 5-20).

    Градация определяется процентным содержанием (чаще всего по весу) почвы, которая мельче, чем заданный размер («процент прохождения») по сравнению сразмером с зернышко. Градация иногда альтернативно выражается в процентах грубее, чем данный размер зерна. Характеристики градации также выражаются в параметрах D n , где D — это наибольший размер частиц в n % самой мелкой фракции почвы. Например, D 10 — это наибольший размер частиц в 10% самой мелкой фракции почвы; D 60 — это частицы самого большого размера в 60% самой мелкой фракции почвы.

    Таблица 5-19. Гранулометрический состав крупных частиц (механический ситовый анализ).
    Описание Гранулометрический состав — это процентное содержание почвы мельче заданного размера по сравнению с размером зерна. Крупные частицы определяются размером более 0,075 мм (0,0029 дюйма или сито № 200).
    Использование в дорожных покрытиях
    • Классификация почв (см. Раздел 4.7.2)
    • Корреляция с другими инженерными свойствами
    Лабораторное определение Гранулометрический состав крупных частиц определяется методом механической промывки ситовый анализ (AASHTO T 88, ASTM D 422).Репрезентативный образец промывают через серию сит (рис. 5-5). Количество, оставшееся на каждом сите, собирают, сушат и взвешивают, чтобы определить процент материала, прошедшего через сито. На рис. 5-7 показаны примеры гранулометрического состава песчаных, иловых и глинистых грунтов, полученные в результате испытаний с использованием механического сита и ареометра (таблица 5-20).
    Полевые измерения Не применимо.
    Комментарий Получение репрезентативного образца является важным аспектом этого теста.Когда образцы сушат для тестирования или «промывания», может возникнуть необходимость разбить комья почвы. Следует соблюдать осторожность, чтобы избежать раздавливания частиц мягкого карбоната или песка. Если почва содержит значительное количество волокнистых органических материалов, они могут забивать отверстия сита во время промывки. Материал, оседающий на сите во время стирки, следует постоянно перемешивать, чтобы избежать засорения. Отверстия из мелкой сетки или ткани легко деформируются в результате нормального обращения и использования. Их следует часто менять.Простой способ определить, следует ли заменять сита, — это периодическая проверка натяжения ткани сита на его раме. Ткань должна оставаться натянутой; если он проседает, значит, он деформирован и подлежит замене. Частая причина серьезных ошибок — использование «грязных» сит. Некоторые частицы почвы из-за своей формы, размера или характеристик адгезии имеют тенденцию оседать в отверстиях сита.
    Типичные значения Типичные диапазоны размеров частиц для различных структурных категорий почвы следующие (ASTM D 2487):
    • Гравий: 4.75-75 мм (0,19 — 3 дюйма; сита от 4 до 3 дюймов)
    • Песок: 0,075 — 4,75 мм (0,0029 — 0,19 дюйма; сита от 200 до 4)
    • Ил и глина: <0,075 мм (0,0029 дюйма; сито № 200)
    Таблица 5-20. Гранулометрический состав мелких частиц (анализ на ареометре).
    Описание Гранулометрический состав — это процентное содержание почвы мельче заданного размера по сравнению с размером зерна. Мелкие частицы определяются как частицы размером менее 0.075 мм (0,0029 дюйма или сито № 200).
    Использует
    • Классификация почвы (см. Раздел 4.7.2)
    • Корреляция с другими инженерными свойствами
    Лабораторное определение Гранулометрический состав мелких частиц определяется с помощью ареометрического анализа (AASHTO Т 88, ASTM D 422). Грунт размером менее 0,075 мм (0,0029 дюйма или сито № 200) смешивают с диспергатором и дистиллированной водой и помещают в специальный мерный цилиндр в состоянии жидкой суспензии (рис. 5-6).Плотность смеси периодически измеряется калиброванным ареометром для определения скорости оседания частиц почвы. Относительный размер и процентное содержание мелких частиц определяются на основе закона Стокса для оседания идеализированных сферических частиц. На рис. 5-7 показаны примеры гранулометрического состава песчаных, иловых и глинистых грунтов, полученные с помощью механического сита (таблица 5-19) и испытаний на ареометре.
    Полевые измерения Не применимо.
    Комментарий Основная ценность ареометрического анализа заключается в получении глинистой фракции (в процентах мельче 0,002 мм). Это связано с тем, что поведение почвы для связной почвы зависит главным образом от типа и процента глинистых минералов, геологической истории месторождения и содержания в нем воды, а не от распределения частиц по размерам.

    Повторяющиеся результаты могут быть получены, если почвы в основном состоят из обычных минеральных ингредиентов. Результаты могут быть искажены и ошибочны, если состав почвы не принимается во внимание для внесения поправок на удельный вес образца.

    Этот метод не позволяет определить размер частиц высокоорганических почв.

    Типичные значения
    • Ил: 0,075 — 0,002 мм (0,0029 — 0,000079 дюйма)
    • Глина: <0,002 мм (0,000079 дюйма)

    Рисунок 5-5. Лабораторные сита для механического анализа гранулометрического состава. Показаны (справа налево) сита № 3/8 ​​дюйма. (9,5 мм), № 10 (2,0 мм), № 40 (250 мкм) и №200 (750 мкм) и примерный размер частиц почвы, включая (справа налево): средний гравий, мелкий гравий, средне-крупный песок, ил и сухую глину (каолин).

    Рисунок 5-6. Аппарат почвенного ареометра (http://www.ce.siue.edu/).

    Рисунок 5-7. Типичное распределение зерна по размеру для нескольких типов почв.

    Пластичность

    Пластичность описывает реакцию почвы на изменение содержания влаги. Когда добавление воды в почву меняет ее консистенцию с твердой и жесткой на мягкую и податливую, считается, что почва проявляет пластичность.Глины могут быть очень пластичными, илы лишь слегка пластичны, а песок и гравий не пластичны. Для мелкозернистых грунтов инженерное поведение часто более тесно связано с пластичностью, чем с градацией. Пластичность — ключевой компонент AASHTO и Единой системы классификации почв (раздел 4.7.2).

    Пластичность почвы определяется количественно в пределах Аттерберга. Как показано на Рисунке 5-8, предельные значения Аттерберга соответствуют значениям влажности, при которых консистенция почвы изменяется по мере ее постепенного высыхания от жидкого навоза:

    • Предел жидкости ( LL ), который определяет переход между жидким и пластическим состояниями.
    • Предел пластичности ( PL ), который определяет переход между пластическим и полутвердым состояниями.
    • Предел усадки ( SL ), который определяет переход между полутвердым и твердым состояниями.
    • Обратите внимание на рисунок 5-8, что общий объем почвы изменяется по мере ее высыхания до достижения предела усадки; высыхание ниже предела усадки не приводит к дополнительному изменению объема.

    Важно понимать, что пределы Аттерберга не являются фундаментальными свойствами материала.Скорее их следует интерпретировать как значения индекса, определенные стандартизированными методами испытаний (таблица 5-21).

    Рисунок 5-8. Изменение общего объема и плотности почвы с изменением содержания воды для мелкозернистой почвы (из McCarthy, 2002).

    Таблица 5-21. Пластичность мелкозернистых грунтов (пределы Аттерберга).
    Описание Пластичность описывает реакцию почвы на изменения содержания влаги. Пластичность определяется пределами Аттерберга.
    Использование в дорожных покрытиях
    • Классификация почв (см. Раздел 4.7.2)
    • Корреляции с другими инженерными свойствами
    Лабораторное определение Пределы Аттерберга определены с использованием протоколов испытаний, описанных в AASHTO T89 (жидкость предел), AASHTO T90 (предел пластичности), AASHTO T 92 (предел усадки), ASTM D 4318 (пределы жидкости и пластичности) и ASTM D 427 (предел усадки). Репрезентативная проба отбирается из части почвы, проходящей через участок No.40 сито. Содержание влаги варьируется для определения трех стадий поведения почвы с точки зрения консистенции:
    • Предел жидкости (LL) определяется как содержание воды, при котором 25 ударов ограничителя жидкости (Рисунок 5-9) закрывают стандартную канавку, прорезанную в пятне почвы на расстояние 12,7 см (1/2 в.). Альтернативная процедура в Европе и Канаде использует устройство конуса падения для достижения лучшей повторяемости.
    • Предел пластичности (PL) — это содержание воды, при котором нить грунта скатывается до диаметра 3 мм (1/8 дюйма).), рухнет.
    • Предел усадки (SL) определяется как такое содержание воды, ниже которого не происходит дальнейшего изменения объема почвы при дополнительной сушке.
    Полевые измерения Не применимо.
    Комментарий Пределы Аттерберга обеспечивают общие показатели содержания влаги относительно консистенции и поведения почв. LL определяет нижнюю границу жидкого состояния, а PL определяет верхнюю границу твердого состояния.Разница называется индексом пластичности (PI = LL — PL) . Индекс ликвидности (LI) , определяемый как LI = (w — PL) / PI , где w — естественное содержание влаги, является индикатором консистенции почвы в естественных условиях на месте.

    Важно понимать, что пределы Аттерберга являются приблизительными и эмпирическими значениями. Изначально они были разработаны для агрономических целей. Их широкое использование инженерами привело к разработке большого количества эмпирических зависимостей для характеристики почв.

    Принимая во внимание несколько субъективный характер процедуры испытания, пределы Аттерберга должны выполняться только опытными специалистами. Отсутствие опыта и осторожности может привести к серьезным ошибкам в результатах испытаний. Оптимальное содержание влаги при уплотнении часто находится вблизи предела пластичности.

    Типичные значения См. Таблицу 5-22.

    Рисунок 5-9. Устройство для проверки предела жидкости.

    Таблица 5-22.Характеристики почв с разными показателями пластичности (по Сауэрс, 1979).
    Индекс пластичности Классификация Прочность в сухом состоянии Визуально-ручная идентификация сухого образца
    0 — 3 Непластичный Очень низкий Легко распадается Слегка пластичный Легкий Легко раздавливается пальцами
    15-30 Средний пластик Средний Трудно раздавить пальцами
    > 30 Очень пластиковый 9049 пальцами
    5.3.3 Идентификация проблемной почвы

    Два особых условия, которые часто необходимо проверять для естественных грунтов земляного полотна, — это возможность набухания глин (Таблица 5-23) или просадочных илов (Таблица 5-25).

    Набухающие почвы демонстрируют большие изменения объема почвы при изменении влажности почвы. Потенциал объемного набухания почвы зависит от количества глины, ее относительной плотности, влажности и плотности уплотнения, проницаемости, местоположения уровня грунтовых вод, наличия растительности и деревьев, а также нагрузки на перекрывающие породы.Потенциал набухания также зависит от минералогического состава мелкозернистых грунтов. Монтмориллонит (смектит) обладает высокой способностью к набуханию, иллит имеет характеристики набухания от незначительных до умеренных, а каолинит почти не проявляет себя. Одномерный тест на потенциал набухания используется для оценки давления набухания и набухания в процентах, создаваемых набухающими грунтами (таблица 5-23).

    Складывающиеся грунты демонстрируют резкие изменения прочности при приближении влажности к насыщению.В сухом состоянии или при низкой влажности просыпающиеся грунты создают вид устойчивых отложений. При высоком содержании влаги эти почвы разрушаются и внезапно уменьшаются в объеме. Рыхлые почвы чаще всего встречаются в лессовых отложениях, которые сложены ветровыми илами. Другие разрушающиеся отложения включают остаточные почвы, образованные в результате удаления органических веществ путем разложения или выщелачивания определенных минералов (карбоната кальция). В обоих случаях нарушенные пробы, взятые из этих отложений, будут классифицированы как ил.Лесс, в отличие от других несвязных грунтов, будет стоять почти на вертикальном склоне до тех пор, пока не пропитается. Он имеет низкую относительную плотность, малую удельную массу и высокий коэффициент пустотности. Одномерный тест на потенциал обрушения используется для определения разрушающихся грунтов (Таблица 5-25).

    Таблица 5-23. Набухание глин.
    Описание Набухание — это большое изменение объема почвы, вызванное изменениями содержания влаги.
    Использование в дорожных покрытиях Набухание грунта земляного полотна может серьезно повлиять на характеристики дорожного покрытия.Набухающие почвы должны быть идентифицированы, чтобы их можно было удалить, стабилизировать или учесть при проектировании дорожного покрытия.
    Лабораторное определение Потенциал набухания измеряется с использованием протоколов испытаний AASHTO T 258 или ASTM D 4546. Испытание на набухание обычно проводят в аппарате для уплотнения. Потенциал набухания определяется путем наблюдения за набуханием ограниченного с боков образца образца, когда он нагнетается и заливается. В качестве альтернативы, после того, как образец залит водой, его высоту поддерживают постоянной за счет добавления нагрузок.Вертикальное напряжение, необходимое для поддержания нулевого изменения объема, — это давление набухания.
    Полевые измерения Не применимо.
    Комментарий Это испытание может проводиться на ненарушенных, отформованных или уплотненных образцах. Если структура грунта не ограничена (, то есть , опора моста), так что может происходить набухание в поперечном и вертикальном направлениях, можно использовать трехосные испытания для определения характеристик трехмерного набухания.
    Типичные значения Потенциал набухания можно оценить с точки зрения физических свойств почвы; см. Таблицу 5-24.
    9049 9049
    Таблица 5-24. Оценка потенциала зыби (Хольц и Гиббс, 1956).
    % мельче 0,001 мм Пределы Аттерберга Вероятное расширение,% общего изменения объема * Потенциал расширения
    PI (%) SL (%)
    > 35 <11 > 30 Очень высокий
    20-31 25-41 7-12 20-30 Высокий
    13-23 -28 10-16 10-30 Средний
    <15 <18 > 15 <10 Низкий

    * На основе нагрузки 6.9 кПа (1 фунт / кв. Дюйм).

    Таблица 5-25. Обрушение почв.
    Описание Гибкие грунты демонстрируют значительное снижение прочности при приближении содержания влаги к насыщению, что приводит к разрушению скелета грунта и значительному уменьшению объема грунта.
    Использование в дорожных покрытиях Складывающиеся грунты земляного полотна могут оказать серьезное пагубное влияние на характеристики дорожного покрытия. Складывающиеся грунты необходимо идентифицировать, чтобы их можно было удалить, стабилизировать или учесть при проектировании дорожного покрытия.
    Лабораторное определение Потенциал коллапса измеряется с использованием протокола испытаний ASTM D 5333. Потенциал обрушения предполагаемых грунтов определяется путем помещения ненарушенного, уплотненного или повторно отформованного образца в кольцо консолидометра. Прилагается нагрузка, и почва насыщается, чтобы измерить величину вертикального смещения.
    Полевые измерения Не применимо.
    Комментарий Обрушение во время смачивания происходит из-за разрушения глиняной связки, которая обеспечивает первоначальную прочность этих грунтов.Повторная формовка и уплотнение также могут разрушить исходную структуру.
    Типичные значения Отсутствуют.
    5.3.4 Другие совокупные тесты

    Существует широкий спектр других испытаний механических свойств, которые проводятся для измерения качества и долговечности заполнителей, используемых в качестве подстилок и оснований в системах дорожного покрытия, а также в качестве составных частей асфальта и портландцементного бетона. Эти другие совокупные тесты приведены в Таблице 5-26. Дополнительную информацию можно найти в справочнике The Aggregate Handbook , опубликованном Национальной каменной ассоциацией (Barksdale, 2000).Недавнее исследование NCHRP предоставляет дополнительную полезную информацию об испытаниях заполнителей, используемых в несвязанных слоях дорожного покрытия (Saeed, Hall, and Barker, 2001).

    Индекс частиц
    Таблица 5-26. Прочие тесты на качество и долговечность заполнителя.
    Свойство Использование Спецификация AASHTO Спецификация ASTM
    Качество мелкозернистого заполнителя
    Эквивалент песка Измерение относительной доли фракции песчаной мелочи и пыли в пластиковом материале Нет.4 сита T 176 D 2419
    Угловатость мелкого заполнителя (также называемая неуплотненными воздушными пустотами) Показатель внутреннего трения мелкого заполнителя в методе расчета асфальтовой смеси Superpave T 304 C 1252
    Качество грубого заполнителя
    Угловатость грубого заполнителя Показатель внутреннего трения крупного заполнителя в методе расчета асфальтовой смеси Superpave D 5821
    Плоские, удлиненные частицы в форме частиц метод расчета смеси D 4791
    Общее качество агрегатов
    Поглощение Процент воды, поглощенной проницаемыми пустотами T 84 / T 85 C 127 / C 128 Индексный тест формы частиц D 3398
    Деградация в Лос-Анджелесе Мера сопротивления грубого заполнителя истиранию и ударам T 96 C 131 или C 535
    Прочность Оценка устойчивости бетона к атмосферным воздействиям и другие применения T 104 C 88
    Долговечность Индекс совокупной долговечности T 210 D 3744
    Расширение Индекс совокупной пригодности
    Вредные материалы Описывает присутствие загрязняющих веществ, таких как сланец, куски глины, древесина и органические материалы T 112 C 142
    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *