Газораспределительный механизм назначение и устройство: Устройство газораспределительного механизма двигателя внутреннего сгорания: назначение, принцип работы

Содержание

Лабораторная работа «Газораспределительный механизм (грузовые автомобили)»

Бюджетное профессиональное образовательное учреждение Омской области

«Седельниковский агропромышленный техникум»

 

 

 

 

Лабораторная работа

«Газораспределительный механизм

(грузовые автомобили)»

МДК 01.02  Устройство, техническое обслуживание и ремонт автомобилей

по профессии СПО 23.01.03  Автомеханик

 

 

 

 

 

Составил: Баранов Владимир Ильич                                                                                                             мастер производственного обучения

 

 

 

 

 

 

Седельниково, Омской области, 2019-2020 учебный год

 

Министерство образования Омской области БПОУ                                              «Седельниковский агропромышленный техникум»

Рекомендации разработаны в соответствии с Письмом Минобразования РФ от 05 апреля 1999 N 16-52-58 ин/16-13 «О рекомендациях по планированию, организации и проведению лабораторных работ и практических занятий в образовательных учреждениях среднего профессионального образования», требованиями ФГОС СПО, порядком организации и осуществления образовательной деятельности по образовательным программам среднего профессионального образования, утвержденным Министерством образования и науки Российской Федерации приказ № 464 от 14 июня 2013 года.

МДК 01.02 Устройство, техническое обслуживание и ремонт автомобилей

Тема: Газораспределительный механизм.

Тема занятия: лабораторная работа «Газораспределительный механизм (грузовые автомобили)».

Время: 2 часа.

Цели работы: изучить устройство и взаимодействие деталей газораспределительного механизма грузовых автомобилей, последовательность их разборки и сборки; научиться собирать клапанный механизм, устанавливать распределительные зубчатые колеса по меткам, регулировать привод механизма.

Задачи занятия:

Обучающие:

Формирование и усвоение приемов  проведения разборочно-сборочных работ с изучением деталей газораспределительного механизма.

Формирование у студентов профессиональных навыков при выполнении разборочно-сборочных  газораспределительного  механизма. 

Развивающие:

 

Формирование у студентов умения оценивать свой уровень знаний и стремление его повышать, осуществлять поиск информации, необходимой для эффективного выполнения профессиональных задач;

Развитие навыков самостоятельной работы, внимания, координации движений, умения осуществлять текущий и итоговый контроль, оценку и коррекцию собственной деятельности, нести ответственность за результаты своей работы.

 

Воспитательные:

 

Воспитание у студентов аккуратности, трудолюбия, бережного отношения к оборудованию и инструментам, работать в коллективе и команде.

Понимание сущности и социальной значимости своей будущей профессии, пробуждение эмоционального интереса к выполнению работ.

Дидактические задачи:

Закрепить полученные знания, приемы, умения и навыки по выполнению    разборочно-сборочных работ с изучением деталей газораспределительного механизма.

Требования к результатам усвоения учебного материала.

Студент в ходе освоения темы занятия и выполнения лабораторной работы  должен:

иметь практический опыт:

— снятия и установки агрегатов и узлов автомобиля.

уметь:

— снимать и устанавливать агрегаты и узлы автомобиля.

знать:

— устройство и конструктивные особенности обслуживаемых автомобилей;

— назначение и взаимодействие основных узлов ремонтируемых автомобилей.

В ходе занятия у студентов формируются 

Профессиональные компетенции:

ПК 1.3. Разбирать, собирать узлы и агрегаты автомобиля и устранять неисправности.

Общие компетенции:

ОК 1. Понимать сущность и социальную значимость будущей профессии, проявлять к ней устойчивый интерес.
ОК 3. Анализировать рабочую ситуацию, осуществлять текущий и итоговый контроль, оценку и коррекцию собственной деятельности, нести ответственность за результаты своей работы.

ОК 4. Осуществлять поиск информации, необходимой для эффективного выполнения профессиональных задач.

ОК 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.

ОК 6. Работать в команде, эффективно общаться с коллегами, руководством, клиентами.

 

Литература:

Ламака Ф.И. Лабораторно-практические работы по устройству грузовых автомобилей : учеб. пособие для нач. проф. образования /Ф.И. Ламака. — 8-е изд., стер. — М. : Издательский центр «Академия», 2013. — 224 с.

Кузнецов А.С. Техническое обслуживание и ремонт автомобилей: в 2 ч. – учебник для нач. проф. образования / А.С. Кузнецов. — М.: Издательский центр «Академия», 2012.

Кузнецов А.С. Слесарь по ремонту автомобилей (моторист): учеб. пособие для нач. проф. образования / А.С. Кузнецов. – 8-е изд., стер. – М.: Издательский центр «Академия», 2013.

Автомеханик / сост. А.А. Ханников. – 2-е изд. – Минск: Современная школа, 2010.

Виноградов В.М. Техническое обслуживание и ремонт автомобилей: Основные и вспомогательные технологические процессы: Лабораторный практикум: учеб. пособие для студ. учреждений сред. проф. образования / В.М. Виноградов, О.В. Храмцова. – 3-е изд., стер. – М.: Издательский центр «Академия», 2012.

Петросов В.В. Ремонт автомобилей и двигателей: Учебник для студ. Учреждений сред. Проф. Образования / В.В. Петросов. – М.: Издательский центр «Академия», 2005.

Карагодин В.И. Ремонт автомобилей и двигателей: Учебник для студ. Учреждений сред. Проф. Образования / В.И. Карагодин, Н.Н. Митрохин. – 3-е изд., стер. – М.: Издательский центр «Академия», 2005.

Оборудование: двигатели грузовых автомобилей; головки блоков цилиндров в сборе; детали газораспределительного механизма; съемники и приспособления для выполнения разборочно-сборочных и регулировочных работ; пресс; динамометрическая рукоятка; наборы рожковых, торцевых и накидных ключей.
 

Содержание работы: с помощью плакатов изучить общее устройство газораспределительных механизмов двигателей различных грузовых автомобилей.

Выучить названия всех деталей.
 

Описание устройства.  Газораспределительный механизм обеспечивает своевременный впуск в цилиндр горючей смеси (в карбюраторных двигателях) или воздуха (в дизелях) и выпуск отработавших газов. На тактах сжатия и рабочего хода газораспределительный механизм надежно изолирует камеры сгорания от окружающей среды.
В двигателях грузовых автомобилей (и автомобиля «Волга») распределительные валы приводятся во вращение зубчатыми колесами, одно из которых установлено на коленчатом валу, а другое — на распределительном валу. Для правильного соединения

зубчатых колес на них имеются метки. На автомобилях ЗИЛ-5301 зубчатое колесо коленчатого вала приводит во вращение промежуточное зубчатое колесо, далее вращательное движение передается зубчатым колесам распределительного вала и привода насоса высокого давления.
В двигателе автомобиля ИЖ -2126 для привода распределительного вала, который расположен на головке блока, на коленчатом и распределительном валах имеются звездочки, соединенные цепью, натяжение которой регулируется натяжной звездочкой,
установленной на рычаге нажимного устройства.
В двигателях ЗМЗ-4061, -4063 привод двух распределительных валов, установленных на головке блока, осуществляется двухступенчатой цепью: первая ступень передает вращение на промежуточный вал, вторая — приводит во вращение распределительные
валы. Использование распределительных валов гидравлических натяжителей исключает необходимость регулировки натяжения цепей.
Распределительный вал обеспечивает своевременное открытие и закрытие впускных и выпускных клапанов. Плотное закрытие клапанов обеспечивают пружины, установленные на стержнях клапанов. Вал имеет опорные шейки. Двигатели автомобилей ВАЗ трехопорные. Двигатель ЯМЗ-741 имеет шесть опорных шеек. Для открытия и закрытия клапанов имеются кулачки.
Для привода насоса на распределительном валу имеется эксцентрик, а для привода масляного насоса и прерывателя-распределителя — зубчатое колесо. На переднем конце вала на шпонке имеется зубчатое колесо привода распределительного вала. Посредством опорных шеек распределительные валы вращаются во втулках, выполняющих роль подшипников.
Распределительные валы двигателей могут иметь цепной привод (двигатели автомобилей Chevrolet Niva и Ford Focus), ременный привод (двигатели автомобилей Renault Logan и Lada Priora) и комбинированный привод (двигатели автомобилей Hyundai
Accent и Kia Rio). Привод может быть шестеренчатым, т.е. осуществляться цилиндрическими шестерням и или с помощью системы промежуточных валов с коническими или винтовыми шестернями. При комбинированном приводе распределительные валы выпускных клапанов приводятся в работу зубчатым ремнем,
а от них, с помощью цепи, приводятся в работу распределительные валы впускных клапанов.
Двигатели автомобилей Ford Focus, Chevrolet Niva, Hyundai Santa Fe, Hyundai Accent, Renault Logan и многих других имеют по одному распределительному валу.
По два вала имеют двигатели автомобилей Kia Rio, Lada Priora, отдельные модели Hyundai Accent, UAZ Hunter, УАЗ — 469: один вал приводит в работу впускные клапаны, а другой — выпускные.
Дизель Chevrolet Captiva имеет один распределительный вал, который приводит в работу два впускных и два выпускных клапана на каждый цилиндр с помощью пальцев-толкателей роликового типа и мостиков клапанов.
От осевого перемещения распределительные валы двигателей автомобилей КамАЗ, ЗИЛ-433100, ГАЗ-3307, ГАЗ-31029 «Волга», «ГАЗель» удерживаются упорным фланцем и распорной втулкой.
Наружный диаметр распорной втулки меньше, чем внутренний диаметр отверстия упорного фланца, поэтому втулка находится внутри упорного фланца. Распорная втулка на 0,1 …0,2 мм шире фланца. Фланец двумя болтами крепится к блоку цилиндров. Таким образом, распределительный вал может перемещаться на 0,1 …0,2 мм.
Распределительные валы автомобилей марки ВАЗ удерживаются от осевого перемещения фланцем, расположенным между головкой цилиндров и корпусом вспомогательных агрегатов. В автомобилях ЗИЛ-5301 распределительный вал удерживается от осевого перемещения передней втулкой опорной шейки (со стороны вентилятора), которая имеет специальный упорный буртик.
Усилия от кулачков распределительного вала к клапану и штанге передаются посредством толкателей, которые воспринимают боковые усилия при вращении кулачков распределительного вала.

В двигателях ЗМ З-4061, -4063 автомобилей «ГАЗель» и двигателях автомобилей ВАЗ-2112 используются гидротолкатели.
Клапаны открывают и закрывают впускные и выпускные каналы, по которым в цилиндры поступает горючая смесь или воздух и выходят отработавшие газы.

Клапан состоит из головки и стержня. На конце стержня имеются кольцевые проточки. В клапанный узел входят: клапан, вставленный в направляющую втулку, стопорное кольцо, маслоотражательный колпачок, опорная шайба пружины, внутренняя пружина, наружная пружина, тарелка пружин, два сухаря, толкатель и регулировочная шайба. Плавный переход от стержня к головке уменьшает сопротивление потоку газов, особенно на такте впуска, повышает прочность клапана, улучшает теплоотвод. Головка клапана может быть плоской, выпуклой, тюльпанообразной. При нижнем расположении распределительного вала и верхнем расположении клапанов передача усилий от толкателей к коромыслу осуществляется с помощью штанг, которые должны обладать хорошей устойчивостью к продольному изгибу, иметь как можно меньшую массу и высокую износостойкость рабочих поверхностей. Для обеспечения стабильности зазоров в клапанном механизме при нагревании и охлаждении двигателя штанги изготовляют из материалов, имеющих одинаковое линейное расширение с материалом блока цилиндров. В противном случае нарушится тепловой зазор в клапанном механизме, что негативно влияет на рабочий процесс.

Двигатели автомобилей «ГАЗель», кроме двигателей ЗМЗ-4061 и -4063, а также двигатели автомобилей ИЖ-2126, ГАЗ-31029 «Волга», ГАЗ-3307 имеют штанги из алюминиевой трубки со стальными наконечниками.
В двигателях ЗМЗ-4061 и -4063 автомобилей «ГАЗель», а также двигателях автомобилей ЗИЛ-5301, ВАЗ, блоки цилиндров которых изготовлены из серого чугуна, имеются трубчатые стальные штанги с запрессованными в оба конца стальными наконечниками.
Коромысла клапанов литые стальные. В отверстие ступицы коромысла запрессована втулка из листовой оловянистой бронзы.
Длинное плечо коромысла заканчивается цилиндрической поверхностью, прошедшей закалку до твердости 55 HRC. Короткое плечо имеет на конце резьбовое отверстие, куда ввернут регулировочный винт. В ниж нем закаленном конце регулировочного винта им еется сферическое углубление для верхнего наконечника штанги, а в верхнем конце — прорезь для отвертки. Нижний конец выполнен в виде шестигранника под ключ. Регулировочный винт стопорится контргайкой.
Для подачи масла к верхнему наконечнику штанги регулировочный винт имеет продольный канал, выполненный со стороны головки винта примерно на две трети длины. Канал соединен через радиальный канал и круговую проточку на стержне винта с каналом в коротком плече коромысла. Выход канала совмещен с отверстием втулки коромысла, которое соединено со смазочной канавкой втулки. Канавка служит для равномерного распределения смазочного материала по всей поверхности трения втулки и его подвода к каналу коромысла от отверстия в оси коромысла.

Порядок разборки газораспределительного механизма:
1) снять крышки коромысел с прокладками;
2) отвернуть гайки и снять оси коромысел;
3) отвернуть гайки головок блоков цилиндров, снять головки блоков цилиндров и прокладки;
4) если распределительный вал располагается в блоке цилиндров, то отвернуть болты упорного фланца и вынуть распределительный вал с зубчатым колесом;
5) разобрать клапанный механизм на стенде;
6) для снятия клапанных пружин с отдельных клапанов использовать приспособления;
7) выпрессовать направляющие втулки клапанов с помощью выколотки;
8) с помощью щупа, вставляемого между упорным фланцем распределительного вала и ступицей зубчатого колеса газораспределительного механизма, проверить осевой зазор распределительного вала, который должен составлять 0,1. ..0,2 мм;
9) изучить устройство деталей газораспределительного механизма;
10) вставить собранный распределительный вал в отверстия блока, смазав предварительно его опорные шейки моторным маслом. При зацеплении зубчатых колес газораспределительного механизма метки на зубчатых колесах должны находиться друг против друга. Боковой зазор в зацеплении должен быть 0,025…0,1 мм, в противном случае следует подобрать другую пару;
11) через отверстия в зубчатом колесе распредели тельного вала с помощью торцевого ключа закрепить на блоке цилиндров ромбообразный упорный фланец. Под головку болтов подложить пружинные шайбы;
12) надеть на шпильки прокладку и крышку распределительных зубчатых колес, сцентрировав ее по переднему концу коленчатого вала с помощью оправки;
13) притереть клапаны, используя притирочную пасту, состоящую из одной части шлифовочного порошка М-20 и двух частей масла Н-20А. Перед началом притирки проверить исправность клапанов;
14) установить клапаны в направляющие втулки, предварительно смазав стержни моторным маслом.
 

Порядок сборки газораспределительного механизма:
1) все детали очистить, промыть, продуть сжатым воздухом и смазать моторным маслом;
2) на направляющие втулки клапанов напрессовать маслоотражательные колпачки, уложить прокладку под головку блока цилиндров, установить головку блока цилиндров, закрепить ее гайками с шайбами. Момент затяжки гаек динамометрическим ключом 8,3…9,0 Н м;
3) собрать оси коромысел с коромыслами, установить на головку блока цилиндров и закрепить;
4) вставить на место толкатели и штанги;
5) отрегулировать тепловые зазоры между носиком коромысла и стержнем клапана, которые должны составлять 0,4…0,45 мм;

6) установить прокладку и крышку коромысла и закрепить их винтами с шайбами.
 

КОНТРОЛЬНЫЕ ВОПРОСЫ
1. Опишите назначение газораспределительного механизма и его основные детали.
2. Каково назначение и устройство распределительных валов?
3. Как удерживаются распределительные валы различных двигателей от осевого смещения?
4. Опишите устройство распределительных зубчатых колес. Как осуществляется их соединение с зубчатым колесом коленчатого вала?
5. Каково устройство толкателей различных двигателей?
6. Опишите назначение, устройство и работу клапанов различных двигателей.


 

Газораспределительный механизм (ГРМ) Назначение и устройство | АВТОМОБИЛИЯ

Газораспределительный механизм (ГРМ) обеспечивает своевременный впуск в цилиндры свежего заряда горючей смеси и выпуск отработавших газов. Он включает в себя элементы привода, распределительную шестерню, распределительный вал, детали привода клапанов, клапана с пружинами и направляющие втулки.

Распределительный вал служит для открытия клапанов в определенной последовательности в соответствии с порядком работы двигателя. Распредвалы отливают из специального чугуна или отковывают из стали. Трущиеся поверхности распределительных валов для уменьшения износа подвергнуты закалке при помощи нагрева токами высокой частоты.

Распредвал может располагаться в картере двигателя либо в головке блока цилиндров. Существуют двигатели с двумя распредвалами в головке цилиндров (в многоклапанных ДВС). Один используется для управления впускными клапанами, второй — выпускными. Такая конструкция называется DOHC (Double Overhead Camshaft). Если распредвал один, то такой ГРМ именуется SOHC (Single OverHead Camshaft). Распредвал вращается на цилиндрических шлифованных опорных шейках.

Привод клапанов осуществляется расположенными на распределительном валу кулачками. Количество кулачков зависит от числа клапанов. В разных конструкциях двигателей может быть от двух до пяти клапанов на цилиндр (3 клапана — два впускных, один выпускной; 4 клапана — два впускных, два выпускных; 5 клапанов — три впускных, два выпускных). Форма кулачков определяет моменты открытия и закрытия клапанов, а также высоту их подъема.
Привод распределительного вала от коленчатого вала может осуществляться одним из трех способов: ременной передачей, цепной передачей, а при нижнем расположении распредвала — зубчатыми шестернями. Цепной привод отличается надежностью, но его устройство сложнее и цена выше. Ременной привод существенно проще, но ресурс зубчатого ремня ограничен, а в случае его разрыва могут наступить тяжелые последствия.

При обрыве ремня распредвал останавливается, а коленвал продолжает вращаться. Чем это грозит? В простых двухклапанных моторах, где, как правило, поршень конструктивно не достает до головки открытого клапана, ремонт ограничивается заменой ремня. В современных многоклапанных двигателях при обрыве ремня поршни ударяются о клапана, «зависшие» в открытом состоянии. В результате сгибаются стержни клапанов, а также могут разрушиться направляющие втулки клапанов. В редких случаях разрушается поршень.

Еще тяжелее при обрыве ремня приходится дизелям. Так как камера сгорания у них находится в поршнях, то в ВМТ у клапанов остается очень мало места. Поэтому при зависании открытого клапана разрушаются толкатели, распредвал и его подшипники, велика вероятность деформирования шатунов. А если обрыв ремня произойдет на высоких оборотах, возможно даже повреждение блока цилиндров.

Рабочий цикл четырехтактного двигателя происходит за два оборота коленвала. За это время должны последовательно открыться впускные и выпускные клапаны каждого цилиндра. Поэтому распредвал должен вращаться в два раза медленнее коленвала, а, следовательно, шестерня распредвала всегда в два раза больше шестерни коленвала. Клапаны в цилиндрах должны открываться и закрываться в зависимости от направления движения и положения поршней в цилиндре. При такте впуска, когда поршень движется от в.м.т. к н.м.т.,mobi_net впускной клапан должен быть открыт, а при тактах сжатия, рабочего хода и выпуска — закрыт. Чтобы обеспечить такую зависимость, для правильной установки на шестернях ГРМ делают метки.

Привод клапанов может осуществляться разными способами. При нижнем расположении распредвала, в картере двигателя, усилие от кулачков передается через толкатели, штанги и коромысла. При верхнем расположении возможны три варианта: привод коромыслами, привод рычагами и привод толкателями.

Коромысла (другие названия — роликовый рычаг или рокер) изготавливают из стали. Коромысло устанавливают на полую ось, закрепленную в стойках на головке цилиндров. Одной стороной коромысла упираются в кулачки распредвала, а другой воздействуют на торцевую часть стержня клапана. В отверстие коромысла для уменьшения трения запрессовывают бронзовую втулку. От продольного перемещения коромысло удерживается при помощи цилиндрической пружины. Во время работы двигателя в связи с нагревом клапанов их стержни удлиняются, что может привести к неплотной посадке клапана в седло. Поэтому между стержнем клапана и носком коромысла должен быть определенный тепловой зазор.

Во втором варианте распредвал располагается над клапанами, и приводит их в действие посредством рычагов. Кулачки распределительного вала действуют на рычаги, которые, поворачиваясь на сферической головке регулировочного болта, другим концом нажимают на стержень клапана и открывают его. Регулировочный болт ввернут во втулку головки цилиндров и стопорится контргайкой. Существуют ГРМ, в которых между рычагом и клапаном устанавливается гидрокомпенсатор. Такие механизмы не требуют регулировки зазор…

Понравилась статья?

Ставь лайк и подписывайся на канал!

Так ты будешь получать больше интересной и полезной информации.

Типы и устройство газораспределительных механизмов

 

Какое назначение газораспределительного механизма в двигателе?

Газораспределительный механизм служит для своевременного впуска в цилиндры карбюраторного двигателя горючей смеси или воздуха (в дизельном двигателе) и выпуска отработавших газов из цилиндров в соответствии с протеканием рабочего цикла двигателя.

Какого типа газораспределительный механизм применяется на двигателях современных автомобилей отечественного производства?

На автомобильных двигателях отечественного производства применяется клапанный газораспределительный механизм с нижним или верхним расположением клапанов и установкой распределительного вала в блоке или в головке блока цилиндров. На большинстве двигателей в цилиндре устанавливают по два клапана: впускной, открывающий доступ горючей смеси или воздуха в цилиндр, и выпускной, открывающий выход отработавших газов из цилиндра.

На некоторых двигателях (спортивных, гоночных) автомобилей устанавливают два впускных и один выпускной клапаны, а иногда два впускных и два выпускных клапана. на каждый цилиндр. Управление клапанами осуществляется кулачками распределительного вала, который приводится во вращение от коленчатого вала с помощью шестерен или звездочек с цепным или ременным приводом.

Так как в течение рабочего цикла четырехтактного двигателя каждый из клапанов должен открыться по одному разу, то распределительный вал за два оборота коленчатого вала должен повернуться один раз. Следовательно, передаточное отношение между ними 2 : 1.

Как устроен и работает газораспределительный механизм с нижним расположением клапанов?

Газораспределительный механизм с нижним расположением клапанов (двигатели автомобилей ГАЗ-51, Г АЗ-52-04 и другие) состоит (рис.16) из распределительного вала 4 с кулачками 3 и шестерней 2, находящейся в постоянном зацеплении с шестерней 1, закрепленной на коленчатом валу; толкателей 5 с регулировочным болтом 7 и контргайкой 6; клапана 12 с пружиной 10, сухариками 9 и опорной конической шайбой 8; направляющей клапана 11 и седла клапана 13.

Рис.16. Газораспределительный механизм с нижним расположением клапанов.

Работает такой механизм так. При вращении коленчатого вала крутящий момент от шестерни 1 передается шестерне 2, которая жестко закреплена на распределительном валу и вращает его. Распределительный вал, поворачиваясь, своим кулачком 3 воздействует на толкатель 5 и поднимает его, а он через регулировочный болт 7 воздействует на клапан 12 и открывает его. Пружина 10 при этом сжимается. При дальнейшем вращении распределительного вала кулачок, поворачиваясь, прекращает воздействовать на толкатель и клапан, а пружина, распрямляясь, закрывает клапан.

Для плотного закрытия клапана необходимо, чтобы между стержнем клапана и толкателем был тепловой зазор, величина которого устанавливается заводом-изготовителем. Обычно он находится в пределах 0,15-0,30 мм для впускного клапана и 0,20-0,40 мм для выпускного.

В процессе эксплуатации двигателя тепловой зазор может изменяться. Поэтому для его регулировки в торец толкателя ввернут, регулировочный болт 7 с контргайкой 6, а на самом толкателе выполнены лыски для удерживания толкателя, от проворачивания при регулировке зазора.

Как устроен газораспределительный механизм с верхним расположением клапанов?

На большинстве современных автомобильных двигателей применяется газораспределительный механизм с верхним расположением клапанов. Это позволяет улучшить форму камеры сгорания, лучше наполнить цилиндры горючей смесью или воздухом, повысить степень сжатия и экономичность работы двигателя. Газораспределительный механизм с верхним расположением клапанов при нижнем расположении распределительного вала (рис.17) состоит из распределительного вала 1 с кулачками 2 и опорными шейками 3; толкателя 4; штанги 5; коромысла 6 с регулировочным винтом 7 и контргайкой 8, установленных на оси 9; деталей 10 крепления пружины на стержне клапана, к которым относятся сухарики 11 с внешней конической поверхностью и внутренним буртиком, коническая втулка 12, опорная шайба 13 и маслоотражательный колпачок 14, изготовленный из маслостойкой резины; пружины 15, стремящейся удерживать клапан в закрытом положении; направляющей втулки 16; клапана 17; гнезда клапана 18.

Рис.17. Газораспределительный механизм с верхним расположением клапанов.

При сборке пружину сжимают и устанавливают маслоотражательный колпачок 14 (только для впускного клапана), опорную шайбу 13, коническую втулку 12 и сухарики 11 так, чтобы их буртик вошел в кольцевую выточку на стержне клапана. При отпускании пружины она, распрямляясь, давит на коническую поверхность втулки и сухариков, удерживаясь на стержне клапана. Вторым концом пружина упирается в головку блока через опорную шайбу.

Как работает, газораспределительный, механизм с верхним расположением клапанов?

При вращении распределительного вала 1 кулачок 2 воздействует на толкатель 4 и поднимает его, а он через штангу 5 передает усилие на коромысло 6, которое, поворачиваясь на оси 9, вторым своим концом давит на стержень клапана 17 и открывает его. Пружина 15 при этом сжимается.

При дальнейшем вращении распределительного вала кулачок прекращает воздействовать на толкатель, и пружина, распрямляясь, плотно закрывает клапан в гнезде 18. Для регулировки теплового зазора между стержнем клапана и коромыслом предусмотрен регулировочный винт 7 с контргайкой 8.

В чем особенность расположения деталей газораспределительного механизма V-образных двигателей?

На V-образных двигателях автомобилей ГАЗ-53А, ЗИЛ-130, КамАЗ-5320 и других устанавливают один распределительный вал. Толкатели и штанги располагаются наклонно.

Может ли располагаться распределительный вал в головке блока цилиндров?

На двигателях автомобилей ВАЗ, «Москвич-2140» и других распределительный вал распложен непосредственно в головке блока цилиндров и приводится во вращение от коленчатого вала с помощью звездочек и цепи или специального зубчатого ремня. При этом толкатели и штанги отсутствуют, что позволяет увеличить частоту вращения коленчатого вала до 5000 об/мин и более при хорошем наполнении цилиндров горючей смесью.

На рисунке 18 показан газораспределительный механизм двигателя автомобиля «Москвич-2140», в котором клапаны располагаются в два ряда, что способствует лучшей очистке цилиндров от отработавших. газов и более полному их наполнению горючей смесью. Распределительный вал 4 установлен в головке блока на подшипниках и приводится во вращение от коленчатого вала 15 с помощью ведущей 10 и ведомой 13 звездочек, соединенных между собой втулочно-роликовой цепью 14 с натяжным устройством 11 и 12.

Рис.18. Газораспределительный механизм с цепным приводом.

Кулачки распределительного вала при вращении воздействуют непосредственно на коромысло 5 впускного клапана 9 или коромысло 3 выпускного клапана 1, открывая их. Закрываются клапаны с помощью пружин 8. В коромысла ввернуты регулировочные болты с контргайками 7. В нижней части коромысла установлены наконечники 2 из специальной стали для уменьшения износа.

Какие формы камер сгорания применяются на автомобильных двигателях и какое их влияние на рабочий цикл двигателя?

Форма камеры сгорания оказывает существенное влияние на рабочий процесс двигателя, а следовательно, на его мощность и экономичность. На двигателях с нижним расположением клапанов (автомобили ГАЗ-52-04, ЗИЛ-157К и другие) применяется Г-образная камера сгорания (рис. 19, а). В такой камере при сжатии создается интенсивное завихрение горючей смеси, повышающее скорость горения, что снижает появление детонации. Наличие узкой щели (1,5-2,0 мм) между сводом камеры и поршнем 1, когда он находится в ВМТ, способствует охлаждению горючей смеси, наиболее удаленной от свечи 2, что также снижает возможность появления детонации. Однако эта камера сгорания имеет и существенные недостатки: низкую степень сжатия (не более 6,5) и большую поверхность охлаждения, что ведет к усиленной теплоотдаче через стенки, а следовательно, к уменьшению мощности и экономичности двигателя. На последних моделях рядных двигателей с верхним расположением клапанов (автомобили ГАЗ-24 «Волга», ВАЗ, «Москвич-2140» и другие) применяется полусферическая (шатровая) камера сгорания (рис.19, б), а на V-образных двигателях (автомобили ЗИЛ-130, ГАЗ-53А и других) – клиновая (рис. 19, в). Такие камеры имеют минимальную поверхность охлаждения и минимальные тепловые потери, что исключает появление детонации и позволяет повысить степень сжатия. Следовательно, повышается мощность и экономичность таких двигателей.

Рис.19. Формы камер сгорания:
а – Г-образная; б – полусферическая; в – клиновая; г – неразделенная.

На автомобильных дизельных двигателях обычно применяется неразделенная камера сгорания (рис.19, г). При этом головка блока цилиндров плоская, а углубление для камеры сгорания выполнено в днище поршня.

Такая форма камеры сгорания обеспечивает равномерное распыление впрыскиваемого форсункой 3 жидкого топлива, его испарение, смешивание с нагретым воздухом, образование горючей смеси и ее самовоспламенение с минимальными тепловыми потерями, что позволяет получить большую мощность двигателя.

***
Проверьте свои знания и ответьте на контрольные вопросы по теме «Газораспределительный механизм»

вал, газораспределительный, газораспределительный механизм, двигатель, камера, клапан, механизм, толкатель, цилиндр

Смотрите также:

Образовательная платформа московских колледжей

Модуль

Устройство автомобилей

Занятие

Назначение, классификация, устройство, принцип действия газораспределительного механизма

Материалы

Лекция «Назначение, классификация, устройство, принцип действия газораспределительного механизма»

Скачать

Контроль знаний

Назначение, классификация, устройство, принцип действия газораспределительного механизма

Устройство газораспределительного механизма ГАЗ 24 (стр.

1 из 4)

Министерство образования Российской Федерации

Главное Управление общего и профессионального образования

Администрации Иркутской области

ПРОФЕССИОНАЛЬНЫЙ ЛИЦЕЙ №32

Допускается к защите

Зам. директора по УПР И. И. Яркова

ПИСЬМЕННАЯ ЭКЗАМЕНАЦИОННАЯ РАБОТА

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

Профессия: 30.20 «Слесарь по ремонту автомобилей»

«Слесарь по топливной аппаратуре»

Выпусник ________________________________________________________________________

Руководитель ______________________________________________________________________

Консультанты: _____________________________________________________________________

Техника безопасности _______________________________________________________________

Нормоконтроль ____________________________________________________________________

г. Ангарск, 2004 год

Отзыв

Руководителя о качестве письменно экзаменационной работы учащегося профессионального лицея № 32

Учащийся _______________________________________________________________________

Профессия__________________________________________________________________________________________________________________________________________________________

Тема________________________________________________________________________________________________________________________________________________________________

Задание

По квалификационной работе

Учащегося группы № 36 «а»

Тема________________________________________________________________________________________________________________________________________________________________

Пояснительная записка должна содержать:

1. Назначение, устройство и принцип работы___________________________________________

2. Техническое обслуживание________________________________________________________

3. Неисправности и ремонт__________________________________________________________

4. Организация рабочего места автослесаря____________________________________________

5. Техника безопасности при Т. О. и ремонте___________________________________________

Графическая часть должна содердать:

Чертёж____________________________________________________________

К заданию должно быть приложено:

1. Дневник производственной практики_________________________________

2. Производственная характеристика___________________________________

Зам. Директора по учебно – производственной работе Ярков И.И.___________

Преподователь Карелов Ю. М.
Содержание.

1. Назначение.

2. Устройство.

3. Принцип работы.

4. Техническое обслуживание.

5. Неисправности и ремонт.

6. Организация рабочего места авто слесаря.

7. Техника безопасности при ТО и ремонте.

8. Охрана окружающей среды.

9. Список используемой литературы.

Приложения:

1. Макет клапанов ГРМ.

2. Дневник производственной практики.

3. Производственная характеристика.

Назначение

Механизм газораспределения служит для своевременного впуска в цилиндры двигателя горючей смеси и выпуска из них отработавших газов.

Устройство газораспределительного механизма

В двигателях автомобилей применяют газораспределительные механизмы с нижним (ГАЗ-51А, ЗИЛ-164А, и др.) и верхним (ГАЗ-24, ГАЗ-53, ЗИЛ-130, ЯМЗ и др.) расположением клапанов. Верхнее расположение клапанов имеет ряд преимуществ, способствующих повышению мощности и экономичности двигателя:

a) компактная камера сгорания с более коротким путём горения рабочей смеси препятствует возникновению детонации и позволяет повысить степень сжатия;

b) отношение поверхности камеры сгорания к её объёму на 30-35% меньше по сравнению с Г-образной камерой, что сокращает потери тепла в охлаждающую жидкость и повышает КПД двигателя;

c)


возможность увеличения размеров и высоты подъёма впускных клапанов, а, следовательно, повышение коэффициента наполнения;

d) доступность регулировки клапанного механизма.

Рис. 1. Устройство КШМ и ГРМ двигателя ГАЗ-24.

1. Шплинт оси коромысел. 2. Плоские шайбы оси коромысел. 3. Пружинистая шайба оси коромысел. 4. Стойка оси коромысел. 5. Распорная пружина коромысел. 6. Коромысло клапана. 7. Контргайка регулировочного винта клапана. 8. Регулировочный винт клапана. 9. Шестерня распределительного вала. 10. Упорный фланец распределительного вала. 11. Распорное кольцо распределительного вала. 12. Штанга толкателя. 13. Толкатель клапана. 14. Распределительный вал. 15. Втулки распределительного вала. 16. Зубчатый обод маховика. 17. Маховик. 18. Масло отражательный гребень коленчатого вала. 19. Болт крепления маховика. 20. Гайка болта крепления маховика. 21. Уплотнительная прокладка. 22. Держатель сальника заднего подшипника. 23. Набивка сальника заднего подшипника. 24. Верхний вкладыш коренного подшипника. 25. Нижний вкладыш коренного подшипника. 26. Коленчатый вал. 27. Распределительная шестерня. 28. Шкив коленчатого вала. 29. Храповик коленчатого вала. 30. Метка для установки поршня в в.м.т. 31. Метка для установки зажигания. 32. Болт крепления шестерни распределительного вала. 33. Шайба шестерни распределительного вала. 34. Маслоотражатель коленчатого вала. 35. Маслоотражатель переднего сальника. 36. Передний сальник коленчатого вала. 37. Ступица шкива коленчатого вала. 38. Зубчатая шайба храповика. 39. Призматическая шпонка ступицы шкива. 40. Отражатель крышки распределительных шестерен. 41. Штифт установки зажигания. 42. Сегментарная шпонка шестерни распределительных шестерен. 43. Крышка распределительных шестерен. 44. Сегментная шпонка распределительной шестерни. 45. Упорная шайба коленчатого вала. 46. Передняя шайба упорного подшипника. 47. Штифт передней шайбы упорного подшипника. 48. Крышка переднего коренного подшипника. 49. Маслосъемное кольцо (составное). 50. Поршень. 51. Верхнее компрессионное кольцо. 52. Нижнее компрессионное кольцо. 53. Стопорное кольцо поршневого пальца. 54. Поршневой палец. 55. Шатун. 56. Болт шатуна. 57. Вкладыши шатуна. 58. Крышка шатуна. 59. Гайка болта шатуна. 60. Контргайка болта шатуна. 61. Прокладка гильзы цилиндра. 62. Гильза цилиндра. 63. Вставка гильзы цилиндра. 64. Седло клапана. 65. Выпускной клапан. 66. Впускной клапан. 67. Втулка выпускного клапана. 68. Втулка впускного клапана. 69. Стопорное кольцо втулки впускного клапана. 70. Масло отражательный колпачок. 71. Опорная шайба пружины клапана. 72. Пружина клапана. 73.Тарелка пружины клапана. 74. Сухарь клапана

Распределительный вал.

Распределительный вал — стальной кованый; имеет пять опорных шеек. Для удобства сборки шейки имеют разные диаметры: первая — 52 мм, вторая — 51 мм, третья — 50 мм, четвертая — 49 мм, пятая — 48 мм. Шейки опираются на втулки, свернутые из сталебаббитовой ленты и запрессованные в отверстия в перегородках блока цилиндров. Поверхности шеек распределительного вала, кулачков, эксцентрика и зубьев шестерни привода масляного насоса закалены до высокой твердости. Профили впускного и выпускного кулачков одинаковы. Кулачки по ширине шлифованы на конус. Коническая поверхность кулачка в сочетании со сферическим торцом толкателя при работе двигателя сообщает толкателю вращательное движение. Вследствие этого износ направляющей толкателя и его торца делается равномерным и небольшим.


Распределительный вал приводится от коленчатого вала косозубой шестерней. На коленчатом валу находится стальная шестерня с 28 зубьями, а на распределительном валу — текстолитовая шестерня с 56 зубьями. Применение текстолита обеспечивает бесшумность работы шестерен. Обе шестерни имеют по два отверстия с резьбой М8Х1.25 для съемника. Распределительный вал вращается в 2 раза медленнее коленчатого. От осевых перемещений распределительный вал удерживается упорным стальным фланцем. Фланец расположен между торцом шейки вала и ступицей шестерни с зазором 0,1-0,2 мм. Осевой зазор обеспечивается распорным кольцом, зажатым между шестерней и шейкой вала. Для улучшения приработки поверхности упорного фланца фосфатированы. Шестерня закреплена на распределительном валу при помощи шайбы и болта и резьбой М12Х1.25. Болт ввертывается в торец вала. На шестерне коленчатого вала против одного из зубьев нанесена метка «0», а против соответствующей впадины шестерни распределительного вала нанесена риска. При установке распределительного вала эти метки должны быть совмещены.

Клапаны и толкатели.

Толкатели — стальные, поршневого типа. Торец толкателя направлен отбеленным чугуном и шлифован по сфере радиусом 750 мм (выпуклость середины торца равна 0,11 мм). Внутри толкателя имеется сферическое углубление радиусом 8,73 для нижнего конца штанги. Вблизи нижнего торца сделаны два отверстия для стока масла из внутренней полости толкателя. Штанги толкателей изготовлены из дюралюминиевого прутка. На концы напрессованы стальные закаленные наконечники со сферическими торцами. Нижний наконечник, сопрягающийся с толкателем, имеет торец с радиусом сферы 8,73 мм, а верхний, входящий в углубление в регулировочном винте коромысла — 3,5 мм. Длина штанги двигателя 24Д — 283 мм, двигателя 24-01 — 287 мм.

Газораспределительный механизм трактора

Категория:

   Тракторы

Публикация:

   Газораспределительный механизм трактора

Читать далее:



Газораспределительный механизм трактора

Устройство. Газораспределительный механизм состоит из клапанов (рис. 10), устанавливаемых в чугунных втулках, запрессованных в головку блока, пружин, соединенных с клапанами при помощи сухариков и тарелок, коромысел с регулировочными болтами, штанг, толкателей и распределительного вала с кулачками.

Приводится в действие механизм при помощи распределительных шестерен, передающих вращение распределительному валу от коленчатого вала. Шестерня, установленная на распределительном валу, имеет число зубьев в два раза больше, чем шестерня, укрепленная на коленчатом валу, и поэтому распределительный вал вращается с частотой в 2 раза меньшей, чем частота вращения коленчатого вала.

Для того чтобы обеспечить плотное закрытие впускных и выпускных каналов, их входные отверстия — гнезда клапанов выполняют в виде шлифованной фаски под углом 45°.. Такую же фаску делают и на клапане.

Рекламные предложения на основе ваших интересов:

Действие. При работе двигателя вращение от коленчатого вала через шестерни передается распределительному валу, на котором в определенном порядке установлены кулачки. Когда кулачок займет верхнее положение, он поднимает толкатель.

Толкатель при этом поднимет штангу, которая, упираясь в головку болта, повернет коромысло вокруг его оси, и левая, более длинная часть коромысла, нажмет на стержень клапана Клапан опустится и откроет отверстие соответствующего трубопровода, а пружина сожмется.

Как только кулачок, вращаясь, сойдет с толкателя, клапан под действием распрямляющейся сжатой пружины поднимется и плотно прижмется к гнезду с большой силой (200…400 Н) и герметически закроет отверстие трубопровода.

Рис. 10. Газораспределительный механизм:
1 — клапан- 2 —втулка; 3 — пружина; 4 — тарелка; 5 — коромысло; 6 — регулировочный болт; 7 — штанга; 8, 14 — толкатели; 9 — кулачок; 10, 11 — шестерни; 12 — гнездо клапана; 13 — сухарик.

Рекламные предложения:


Читать далее: Топливовоздушная смесь для трактора

Категория: — Тракторы

Главная → Справочник → Статьи → Форум


ГРМ — газораспределительный механизм

Содержание

1. Введение

2. Назначение, устройство и принцип работы

3. Конструктивная особенность

4. Неисправности. Причины, способы определения и устранения

5. Техническое обслуживание и ремонт

6. Оборудование, инструменты, приспособления и материалы

7. Безопасные условия труда. Охрана окружающей среды

Заключение

Список литературы

ГРМ — сокращение от «газораспределительный механизм». Механизм распределения впуска горючей смеси и выпуска отработавших газов в цилиндрах двигателя внутреннего сгорания. Осуществляется путём открытия и закрытия впускных и выпускных клапанов цилиндров при помощи распределительного вала (распредвала) и кулачкового механизма. Распредвал имеет жёсткую синхронизацию вращения с коленвалом, реализованную с помощью зубчаторемённой или цепной передачи. Как правило, на высокофорсированных двигателях обрыв или проскальзывание ремня ГРМ или цепи ГРМ приводит к выходу двигателя из строя.

2. Назначение, устройство и принцип работы

Газораспределительные механизмы различают по расположению клапанов в двигателе. Они могут быть с верхним (в головке цилиндров) и нижним (в блоке цилиндров) расположением клапанов. Наиболее распространен газораспределительный механизм с верхним расположением клапанов, что облегчает доступ к клапанам для их обслуживания, позволяет получить компактную камеру сгорания и обеспечить лучшее наполнение ее горючей смесью или воздухом.

Газораспределительный механизм состоит из:

распределительного вала;

механизма привода распределительного вала;

клапанного механизма.

Работу газораспределительного механизма рассмотрим на примере двигателя с V-образным расположением цилиндров.

Распределительный вал находится в «развале» блока двигателя, то есть между его правым и левым рядами цилиндров, и приводится во вращение от коленчатого вала через блок распределительных шестерен. При цепном или ременном приводе вращение распределительного вала осуществляется с помощью соответственно цепной или зубчатой ременной передачи.

При вращении распределительного вала кулачок набегает на толкатель и поднимает его вместе со штангой. Верхний конец штанги надавливает на регулировочный винт, установленный во внутреннем плече коромысла. Коромысло, проворачиваясь на своей оси, наружным плечом нажимает на стержень клапана и открывает отверстие впускного или выпускного клапана в головке цилиндров строго в соответствии с фазами газораспределения и порядком работы цилиндров.

Под фазами газораспределения понимают моменты начала открытия и конца закрытия клапанов, которые выражаются в градусах угла поворота коленчатого вала относительно мертвых точек. Фазы газораспределения подбирают опытным путем в зависимости от числа оборотов двигателя и конструкции впускных и выпускных зависимости от числа оборотов двигателя и конструкции впускных и выпускных патрубков. Заводы-изготовители указывают фазы газораспределения для своих двигателей в виде таблиц или диаграмм.

Правильность установки газораспределительного механизма определяется по установочным меткам, которые располагаются на распределительных шестернях или приводном шкиве блока цилиндров двигателя.

Отклонение при установке фаз приводит к выходу из строя клапанов или двигателя в целом. Постоянство фаз газораспределения сохраняется только при соблюдении регламентируемого теплового зазора в клапанном механизме данной модели двигателя. Нарушение величины этого зазора приводит к ускоренному износу клапанного механизма и потери мощности двигателя.

Для правильной работы двигателя кривошипы коленчатого вала и кулачки распределительного вала должны находиться в строго определенном положении относительно друг друга. Поэтому при сборке двигателя распределительные шестерни вводятся в зацепление по имеющимся на их зубьях меткам: одной — на зубе шестерни коленчатого вала, а другой — между двумя зубьями шестерни распределительного вала. На двигателях, имеющих блок распределительных шестерен, установка их производится также по меткам.

Последовательность чередования одноименных тактов в различных цилиндрах называется порядком работы цилиндров двигателя, который зависит от расположения цилиндров и конструктивного исполнения коленчатого и распределительного валов.

Распределительный вал служит для открытия и закрытия клапанов газораспределительного механизма в определенной последовательности согласно с порядком работы цилиндров двигателя.

Распределительные валы отковывают из стали с последующей цементацией и закаливанием токами высокой частоты. На некоторых двигателях валы отливают из

высокопрочного чугуна. В этих случаях поверхность кулачков и шеек вала отбеливается и затем шлифуется. Для уменьшения трения между шейками и опорами в отверстия запрессовывают стальные, покрытые антифрикционным слоем, или металлокерамические втулки.

Между опорными шейками распределительного вала располагаются кулачки, по два на каждый цилиндр, — впускной и выпускной. Помимо этого на валу крепится шестерня для привода масляного насоса и прерывателя-распределителя и имеется эксцентрик для привода топливного насоса.

Шестерни распределительных валов изготовляют из чугуна или текстолита, приводную распределительную шестерню коленчатого вала — из стали. Зубья у шестерен косые, что вызывает осевое перемещение вала. Для предупреждения осевого смещения предусмотрен упорный фланец, который закреплен на блоке цилиндров между торцом передней опорной шейки вала и ступицей распределительной шестерни.

В четырехтактных двигателях рабочий процесс происходит за четыре хода поршня или два оборота коленчатого вала. Это возможно, если распределительный вал за это время сделает в два раза меньшее число оборотов. Поэтому диаметр шестерни, установленной на распределительном валу, делают в два раза большим, чем диаметр шестерни коленчатого вала.

3. Конструктивная особенность

4. Неисправности. Причины, способы определения и устранения

Стук рычагов привода клапанов. Характерный стук с равномерными интервалами, частота его меньше любого другого стука в двигателе. Заклинивание двигателя с обрывом одного или нескольких клапанов. Сопровождается деформацией боковин рабочей части рычагов, растрескиванием юбок тарелок клапанов (возможно разрушение тарелки), подрезанием упорных буртов сухарей со стороны тыльной части. Возможно столкновение выхлопных клапанов с днищами поршней. Обязательна осадка сухарей в тарелках клапанов

а) Самоотворачивание регулировочных болтов. Не выдержан момент затяжки контргаек, перетяжка контргаек.

Отрегулировать клапаны. При перетяжке заменить регулировочные болты.

б) Самоотворачивание регулировочных болтов вследствие превышения максимально допустимых оборотов двигателя.

Последствия устранить за счет виновных.

в) Износ кулачков распредвала. Работа пары «кулачок-рычаг» без зазора. Некачественная регулировка зазора.

С обратной стороны изношенного кулачка имеется радиальное засветление по всей длине обратной части. Заменить распредвал.

г) Износ кулачков распредвала, засветления с обратной стороны кулачка отсутствуют, возможна узкая полоса засветления у края противоположной части кулачка — след работы рычага с перекосом.

Заменить распредвал, рычаги.

д) Кулачки не изношены. Многократной регулировкой стук не устраняется. Отклонение геометрии кулачка распредвала.

Заменить распредвал, рычаги.

Снижение мощности двигателя, низкая компрессия одного или нескольких цилиндров

а) Выкрашивание наплавленного слоя тарелки клапана («прогар» клапана).

Заменить клапаны. Способствующими возникновению дефекта факторами являются отсутствие зазора «распредвал — рычаг» у данного клапана и повышенный температурный режим двигателя.

Стук газораспределительного механизма

а) Завышен зазор «регулировочная шайба — кулачок распредвала».

Произвести регулировку подбором шайбы нужного размера.

б) Завышен зазор «наружный диаметр регулировочной шайбы — диаметр гнезда в толкателе под шайбу».

Заменить шайбу, толкатель.

в) Износ кулачков распредвала и регулировочных шайб.

Заменить распредвал и регулировочные шайбы.

г) Завышен зазор «опорная шейка распредвала — подшипник». 

Заменить головку блока.

д) Разнотолщинность регулировочной шайбы по кругу контакта с кулачком (неравномерный износ).

Заменить дефектную шайбу.

е) Огранка (некруглость) толкателей по наружному диаметру, эллипсность.

Заменить толкатели.

ж) Недозатяжка, ослабление крепления звездочки привода распредвала. Деформация шпонки звездочки крепления распредвала, шпоночных пазов звездочки и распредвала.

Заменить дефектные детали.

з) Взаимное касание пружин при рабочем ходе клапанов.

Заменить пружины.

и) Износ направляющей втулки клапана.

Заменить втулки.

Обрыв клапанов

а) Дефект сварки стержня выхлопного клапана, посторонние включения в материале стержня впускного клапана.

Заменить поврежденные детали.

б) Заклинивание, разрушение подшипника водяного насоса. Срез зубьев или сбрасывание ремня привода распредвала со шкивов, рассогласование фаз газораспределения, столкновение клапанов с поршнями.

Заменить поврежденные детали.

в) Обрыв ремня привода распредвала.

Заменить поврежденные детали.

г) Ослабление натяжения ремня привода газораспределительного механизма, сбой фаз газораспределения.

Заменить поврежденные детали.

Примечание. В случае задира (износа) блока цилиндров крыльчаткой водяного насоса при разрушении подшипника блок цилиндров замены не требует, поскольку водяной насос имеет высокую производительность, при замене только водяного насоса характеристики работы системы охлаждения не нарушаются.

Износ эксцентрика привода бензонасоса

а) Засорение маслоканала заднего подшипника распредвала.

Продуть маслоканалы, заменить распредвал и толкатель бензонасоса.

б) Недосверлен маслоканал заднего подшипника распредвала.

Заменить распредвал, толкатель бензонасоса и головку блока цилиндров.

Замена ремня привода газораспределительного механизма (ГРМ) на двигателях ВАЗ-2110

ПОРЯДОК ВЫПОЛНЕНИЯ

Снимаем ремень привода генератора.

Ключом «на 10» отворачиваем болты передней крышки ГРМ: два сбоку и один в центре.

Снимаем крышку ГРМ.

Снимаем правое колесо и пластиковый щиток моторного отсека.

Головкой «на 19» проворачиваем коленчатый вал по часовой стрелке за болт крепления шкива до совмещения метки на зубчатом шкиве распределительного вала с установочным усиком на задней крышке привода ГРМ (B).

Сняв резиновую заглушку в верхней части картера сцепления убеждаемся, что риска на маховике расположена напротив прорези крышки картера сцепления. Так расположена риска на маховике двигателя при снятой коробке передач и головке блока цилиндров.

Фиксируем коленчатый вал от проворачивания, вставив через отверстие в картере сцепления отвертку между зубьями маховика.

Отворачиваем болт крепления шкива привода генератора.

Снимаем шкив привода генератора.

Ключом «на 17» ослабляем гайку крепления натяжного ролика.

Поворачиваем натяжной ролик в такое положение, при котором ремень будет максимально ослаблен.

Снимаем ремень ГРМ.

При замене натяжного ролика отворачиваем гайку его крепления и снимаем ролик со шпильки.

Под роликом установлена дистанционная шайба.

Устанавливаем ремень привода ГРМ в обратной последовательности. Надеваем ремень на шкив коленчатого вала. Затем, натягивая заднюю ветвь, надеваем ремень на шкив насоса охлаждающей жидкости и заводим за натяжной ролик. Надеваем ремень на шкив распределительного вала.

Вставив отвертку между двумя винтами или стержнями диаметром 4 мм, установленными в отверстие натяжного ролика, и поворачивая ролик против часовой стрелки, натягиваем ремень.

Затягиваем гайку крепления натяжного ролика.

Заворачиваем на место болт крепления шкива привода генератора и головкой «на 19» проворачиваем за болт коленчатый вал на два оборота по часовой стрелке.

Проверяем совпадение установочных меток коленчатого и распределительного валов.

При снятом шкиве привода генератора положение коленчатого вала удобно контролировать по совмещению меток на зубчатом шкиве коленчатого вала и крышке масляного насоса.

Схема привода распределительного вала

1 – зубчатый шкив коленчатого вала

2 – зубчатый шкив насоса охлаждающей жидкости

3 – натяжной ролик

4 – задняя защитная крышка

5 – зубчатый шкив распределительного вала

6 – зубчатый ремень

А – установочный выступ на задней защитной крышке

В – метка на шкиве распределительного вала

С – метка на крышке масляного насоса

D – метка на шкиве коленчатого вала

Если метки не совпадают, повторяем операцию по установке ремня.

Для регулирования натяжения ремня поворачиваем коленчатый вал против часовой стрелки так, чтобы метка на шкиве распределительного вала переместилась вниз от усика задней крышки на два зуба.

При нормальном натяжении ремня его передняя ветвь должна закручиваться на 90° большим и указательным пальцами руки с усилием 15–20 Н (1,5–2,0 кгс).Чрезмерное натяжение ремня снижает срок его службы, а также подшипников насоса охлаждающей жидкости и натяжного ролика.

Регулировка тепловых зазоров в клапанном механизме двигателя ВАЗ-2110

Замер и регулировку зазоров проводим на холодном двигателе.

ПОРЯДОК ВЫПОЛНЕНИЯ

Выводим наконечник троса привода дроссельной заслонки из кронштейна.

Ключом «на 10» отворачиваем две гайки крепления кронштейна троса привода дроссельной заслонки к ресиверу (только для двигателя ВАЗ-2111 и снимаем его.

Крестообразной отверткой ослабляем хомуты крепления двух отводящих шлангов вентиляции картерных газов и снимаем шланги со штуцеров клапанной крышки.

Крестообразной отверткой ослабляем хомут крепления подводящего шланга вентиляции картерных газов и снимаем шланг.

Ключом «на 10» отворачиваем две гайки крепления клапанной крышки.

Снимаем клапанную крышку.

В отверстиях клапанной крышки установлены резиновые уплотнительные втулки.

Снимаем прокладку клапанной крышки.

Снимаем переднюю крышку ремня привода ГРМ).

Проверка и регулировка зазоров в механизме привода клапанов

ПОРЯДОК ВЫПОЛНЕНИЯ

Порядок проверки и регулировки зазоров в механизме привода клапанов следующий.

Поворачиваем коленчатый вал по часовой стрелке до совмещения установочных меток на зубчатом шкиве распределительного вала и задней крышке ремня привода ГРМ.

Затем поворачиваем коленчатый вал еще на 40–50° (2,5–3 зуба на шкиве распределительного вала). В этом положении валов проверяем набором щупов зазоры у первого и третьего кулачков распределительного вала.

Зазор между кулачками распределительного вала и регулировочными шайбами должен быть 0,20 мм для впускных клапанов и 0,35 мм – для выпускных. Допуск на зазоры для всех кулачков составляет ±0,05 мм.

Если зазор отличается от нормы, то на шпильки корпусов подшипников распределительного вала устанавливаем приспособление для регулировки клапанов.

Вводим «клык» приспособления между кулачком и толкателем.

Разворачиваем толкатель так, чтобы прорезь в его верхней части была обращена вперед (по ходу автомобиля).

Нажимая вниз на рычаг приспособления, утапливаем «клыком» толкатель и устанавливаем между краем толкателя и распределительным валом фиксатор, который удерживает толкатель в нижнем положении.

Утапливание толкателей клапанов при замене регулировочной шайбы

1 – приспособление

2 – толкатель

Фиксирование толкателей клапанов при замене регулировочной шайбы

1 – фиксатор

2 – регулировочная шайба

Поднимаем рычаг приспособления в верхнее положение.

Пинцетом через прорезь поддеваем и извлекаем регулировочную шайбу.

При отсутствии приспособления для регулировки клапанов можно воспользоваться двумя отвертками.

Мощной отверткой, опираясь на кулачок, отжимаем толкатель вниз. Вставив ребро другой отвертки (с жалом шириной не менее 10 мм) между краем толкателя и распределительным валом, фиксируем толкатель.

Вынимаем пинцетом регулировочную шайбу.

Зазор регулируем подбором толщины регулировочных шайб. Для этого микрометром замеряем толщину шайбы. Толщину новой регулировочной шайбы определяем по формуле:

Н = В+(А–С), мм, где А – замеренный зазор; В – толщина снятой шайбы; С – номинальный зазор; Н – толщина новой шайбы.

Толщина шайбы маркируется на ее поверхности электрографом.

Новую шайбу устанавливаем в толкатель маркировкой вниз и убираем фиксатор

Еще раз проверяем зазор. При правильной регулировке щуп толщиной 0,20 или 0,35 мм должен входить в зазор с легким защемлением.

Снятие распределительного вала двигателей ВАЗ-2110.

ПОРЯДОК ВЫПОЛНЕНИЯ

Снимаем клапанную крышку головки цилиндров.

На двигателе ВАЗ-2111 ключом «на 10» отворачиваем две гайки крепления «массовых» проводов к шпилькам заглушки головки цилиндров и снимаем провода со шпилек.

Ключом «на 10» отворачиваем две гайки и один болт крепления заглушки.

Снимаем заглушку и ее уплотнительное кольцо.

На двигателе ВАЗ-2110 снимаем корпус вспомогательных агрегатов.

Снимаем зубчатый шкив распределительного вала. Отворачиваем верхнюю гайку крепления задней крышки ремня привода ГРМ.        

Ключом «на 13» равномерно в несколько приемов (до снятия давления пружин клапанов) отворачиваем десять гаек крепления корпусов подшипников распределительного вала.

Снимаем со шпилек передний и задний корпусы подшипников распределительного вала.

Немного отведя от головки блока цилиндров заднюю крышку ремня привода ГРМ, снимаем распределительный вал.

Снимаем сальник распределительного вала.

 ПОРЯДОК ВЫПОЛНЕНИЯ

Устанавливаем распределительный вал в следующей последовательности.

Очищаем сопрягаемые поверхности головки цилиндров и корпусов подшипников от старого герметика и масла.

Смазываем моторным маслом опорные шейки и кулачки распределительного вала. Укладываем вал в опоры головки цилиндров таким образом, чтобы кулачки первого цилиндра были направлены вверх.

На поверхности головки цилиндров, сопрягающиеся с корпусами подшипников в зоне крайних опор, наносим тонкий слой силиконового герметика.

Устанавливаем корпуса подшипников и затягиваем гайки их крепления в два приема.

Предварительно затягиваем гайки в последовательности, указанной на рисунке, до прилегания поверхностей корпусов подшипников к головке цилиндров. При этом необходимо следить за тем, чтобы установленные втулки корпусов свободно вошли в свои гнезда.

Окончательно затягиваем гайки моментом 21,6 Н•м (2,2 кгс.м) в той же последовательности.

После затяжки гаек тщательно удаляем остатки герметика, выдавленного из зазоров. Проверяем зазоры в клапанном механизме. Запрессовываем новый сальник распределительного вала (см. Замена сальника распределительного вала двигателей ВАЗ-2110, -2111).

Замена маслоотражательных колпачков клапанов двигателей ВАЗ-2110

ПОРЯДОК ВЫПОЛНЕНИЯ

Снимаем распределительный вал. Устанавливаем коленчатый вал в положение ВМТ поршней 1-го и 4-го цилиндров. В этом положении вала меняем маслоотражательные колпачки клапанов 1-го и 4-го цилиндров.

Вынимаем толкатель с регулировочной шайбой из гнезда головки блока цилиндров.

Выворачиваем свечу зажигания 1-го цилиндра.

Через свечное отверстие вставляем пруток из мягкого металла (диаметром около 8 мм) между днищем поршня и тарелкой клапана, на котором меняем колпачок.

Устанавливаем рассухариватель клапанов. Подпятник рассухаривателя упираем в тарелку клапана, а зацепной рычаг заводим за гайку, навернутую на шпильку крепления корпуса подшипников распределительного вала.

Сжимаем пружины и извлекаем пинцетом сухари.

Вынимаем тарелку пружин и сами пружины.

Специальными щипцами снимаем маслоотражательный колпачок с направляющей втулки клапана.

Смазав новый колпачок моторным маслом, напрессовываем его оправкой на направляющую втулку.

Собираем клапанный механизм 1-го цилиндра в обратной последовательности. Затем повторяем эти работы для 4-го цилиндра. После чего, провернув коленчатый вал на 180° (ВМТ поршней 2-го и 3-го цилиндров) аналогичным образом меняем маслоотражательные колпачки клапанов 2-го и 3-го цилиндров.

Собираем механизмы в обратной последовательности.

Замена сальника распределительного вала двигателей ВАЗ-2110

ПОРЯДОК ВЫПОЛНЕНИЯ

Снимаем ремень ГРМ.

Ключом «на 17» отворачиваем болт зубчатого шкива распределительного вала. Чтобы вал не проворачивался, пропускаем через отверстие в шкиве головку «на 10» с удлинителем и надеваем на гайку крепления задней крышки ремня привода ГРМ.

Поддеваем отверткой шкив распределительного вала и снимаем его.

Чтобы не потерять шпонку шкива, извлекаем ее из паза распределительного вала.

Поддеваем отверткой сальник и извлекаем его.

Смазав моторным маслом рабочую кромку нового сальника, подходящим отрезком трубы запрессовываем его.

Сборку проводим в обратной последовательности.

Слесарно-монтажные инструменты, применяемые на постах, должны быть исправными. Не допускается использование ключей с изношенными гранями и несоответствующих размеров, применение рычагов для увеличения плеча гаечных ключей, а также применение зубил и молотка для отвёртывания гаек. Рукоятки отвёрток, напильников, ножовок и так далее должны быть изготовлены из пластмассы или дерева, иметь гладкую, ровно зачищенную поверхность. Деревянные рукоятки во избежание раскалывания должны иметь металлические кольца.

Впрессовывать втулки, подшипники и другие детали следует при помощи прессов и специальных съёмников. Съёмники должны прочно и надёжно захватывать детали в месте приложения усилия.

Осмотровые канавы должны иметь направляющие предохранительные борта и содержатся в чистоте. Неиспользуемые осмотровые канавы должны быть огорожены или закрыты. Автомобили должны въезжать на канаву, когда в ней нет людей.

При постановке автомобиля на пост технического обслуживания или ремонта необходимо на рулевое колесо повесить табличку с надписью: “Двигатель не пускать – работают люди !”. Автомобиль при этом должен быть заторможен ручным тормозом и включением первой передачи в коробке передач.

При обслуживании автомобиля, установленного на подъёмнике, необходимо на механизме управления подъёмником укрепить табличку с надписью: “Не трогать – под автомобилем работают люди!”. Во избежание самопроизвольного опускания гидравлического подъёмника нужно после подъёма автомобиля откинуть предохранительные стойки или вставить штыри в отверстия предохранительных труб, выдвигающихся вместе с плунжерами.

Перед началом работ на автомобиле – самосвале с поднятым кузовом надо устанавливать упорную штангу, предотвращающую опускание кузова.

При техническом обслуживании и ремонте автомобиля со снятыми колёсами, вывешенного на домкратах, талях и кранах, разрешается приступать к работе только после установки автомобиля на подставки (козелки), при этом под неснятые колёса должны быть подложены упоры. Подставки должны быть прочными и надёжными (только металлическими).

При подъёме и транспортировании агрегатов нельзя находится под поднятыми частями автомобиля. Запрещается снимать, устанавливать и транспортировать агрегаты при заваливании их тросом и канатами без специальных захватов. Тележки для транспортирования должны иметь стойки и упоры, предохраняющие агрегаты от падения и перемещения по тележке.

Для осмотра автомобиля применяют переносные безопасные электролампы напряжением до 36 вольт с предохранительными сетками, при работе в осмотровых канавах напряжение не должно превышать 12 вольт. Ручные электроинструменты (дрели, гайковёрты) надо присоединять к сети только через штепсельные розетки с заземляющим контактом. Провода электроинструментов нужно подвешивать, не допуская прикосновения их с полом.

Приёмку автомобиля на ходу и проверку тормозов следует производить вне помещения; пускать двигатель и трогаться с места разрешается только по получении сигнала от рабочего, производящего регулировку.

Вождение автомобиля на территории автохозяйства, в том числе и опробование автомобилей после ремонта и регулировки, разрешается только лицам, имеющим удостоверение шофёра. Скорость движение не должна превышать: на подъездных путях и проездах – 10 км/ч, в производственных помещениях – 5 км/ч. обгон одного автомобиля другим на территории автохозяйства запрещается.

Техника безопасности при проведении ремонтных работ Гараж или бокс, где проводятся ремонтные работы, должен хорошо проветриваться, дверь — легко открываться как изнутри, так и снаружи. Проход к двери всегда держите свободным. При работе двигателя (особенно на пусковых режимах) выделяется оксид углерода (угарный газ) — ядовитый газ без цвета и запаха. Опасная для жизни концентрация оксида углерода может образоваться даже в открытом гараже, поэтому перед запуском двигателя обеспечьте принудительный отсос отработавших газов за пределы гаража. При отсутствии принудительной вытяжки можно запускать двигатель на короткое время, надев на выпускную трубу отрезок шланга и вынув его наружу. При этом система выпуска и ее соединение со шлангом должны быть герметичны.

При ремонте системы питания впрысковых двигателей необходимо отсоединять «отрицательную» клемму аккумуляторной батареи от «массы» и сбрасывать давление в системе.

На время сварочных работ запаситесь огнетушителем (лучше углекислотным). Перед этим отсоедините провода от всех клемм генератора и аккумуляторной батареи, отключите все электронные блоки управления от бортовой сети автомобиля, а контакт «массы» сварочного провода располагайте как можно ближе к месту сварки. Проследите за тем, чтобы электрический ток не проходил через подвижные (подшипники, шаровые опоры) или резьбовые соединения – иначе они могут быть повреждены.

При ремонте цепей электрооборудования или при риске их повреждения (сварка, рихтовка вблизи жгутов проводов) отключайте клемму «-» аккумулятора.

Для защиты рук от порезов и ушибов во время «силовых» операций надевайте перчатки (лучше кожаные). Для защиты глаз надевайте очки (лучше специальные, с боковыми щитками).

 При работе с электролитом очки обязательны

При возможности пользуйтесь ромбическим или гидравлическим домкратами взамен штатного — они более устойчивы и надежны. Не применяйте неисправный инструмент: рожковые ключи с «раскрывшимся» зевом или смятыми губками, отвертки со скругленным, скрученным шлицем или неправильно заточенные, пассатижи с плохо закрепленными пластмассовыми ручками, молотки с незафиксированной ручкой и т.п.

При вывешивании автомобиля (с помощью домкрата или подъемника) никогда не находитесь под ним. Предварительно убедитесь, что соответствующие силовые элементы кузова (усилители пола, пороги) достаточно прочны. Используйте для подъема автомобиля только штатные точки опоры. Запрещается вывешивать автомобиль на двух или более домкратах — используйте подставки промышленного изготовления. Запрещается нагружать или разгружать автомобиль, стоящий на домкрате (садиться в него, снимать или устанавливать двигатель). При ремонте автомобиля со снятым двигателем (силовым агрегатом) учитывайте, что развесовка по осям изменилась: при вывешивании на домкрате такой автомобиль может упасть. Работайте только на ровной нескользкой площадке, под невывешенные колеса подкладывайте упоры.

Отработанные масла способствуют возникновению рака кожи. При попадании масла на руки, вытрите их ветошью, а затем протрите специальным «средством для чистки рук» (или подсолнечным маслом) и вымойте теплой водой с мылом (запрещается мыть руки горячей водой, при этом вредные вещества легко проникают через кожу!).

При попадании на руки бензина, вытрите их чистой ветошью, а затем вымойте с мылом.

В охлаждающей жидкости системы охлаждения двигателя (антифризе) содержится этиленгликоль, который ядовит при попадании в организм и — в меньшей степени — при попадании на кожу. При отравлении антифризом нужно немедленно вызвать рвоту, промыть желудок, а в тяжелых случаях принять солевое слабительное (например, глауберову соль) и обратиться к врачу. При попадании на кожу – смыть большим количеством воды. То же при отравлении тормозной жидкостью. Электролит при попадании на кожу вызывает жжение, покраснение. Если электролит попал на руки или в глаза, вначале смойте его большим количеством холодной воды. Запрещается мыть руки с мылом! Затем руки можно промыть раствором питьевой соды или нашатырного спирта (из автомобильной аптечки). Помните, что серная кислота даже в малых концентрациях разрушает органические волокна – берегите одежду! Поэтому при работе с аккумуляторной батареей (электролит почти всегда присутствует и на ее поверхности) надевайте очки и защитную одежду (резиновые перчатки желательны).

Бензин, масла, тормозная жидкость почти не перерабатываются естественным путем. Тормозная жидкость содержит ядовитые гликолевые эфиры, масла – отработавшие минеральные и органические присадки, внешние загрязнения, продукты изнашивания. Свинцовые аккумуляторы, помимо свинца, содержат сурьму и другие элементы, образующие высокотоксичные для организма человека соединения, долго сохраняющиеся в почве. Резинотехнические изделия и пластмассы также практически не разлагаются в естественных условиях, а при сжигании образуют токсичные, в том числе канцерогенные соединения.

Охрана природы и рациональное пользование природных ресурсов одна из важнейших экономических и социальных задач государства.

Начиная с 1974 г. в перспективных и текущих планов социального экономического развития страны имеется раздел «Охрана природы». Общегосударственное служба наблюдения и контроля за уровнем загрязнения природной среды контролирует загрязнение атмосферного воздуха более чем в 450 городах страны, качество поверхностных вод, суши – более чем в 4 тыс. пунктов, на 1200 водных объектах.

В стране осуществляется широкая программа разработки и серийному освоению высокопроизводительного газа – и пылеулавлещего оборудования, систем сооружений по очистке промышленных и городских сточных вод с применением биологических и физико–химических методов. Ведутся большие работы по рекультивации земель, занятых под отвалы пустых пород на шахтах и карьерах. Во всех больших размеров ведутся посадки лесов взамен вырубленных. Размеры затопляемых при строительстве гидросооружений и земель ограничивается защитными дамбами, резко сокращён отвод пахотных земель для промышленного и гражданского строительства. Не допускается ввод в эксплуатацию промышленных объектов до окончания строительства очистных и пылегазоулавливающих сооружений.

Осуществляется новые меры по рациональному использованию и воспроизводству природных ресурсов. Предстоит усилить охрану природы, земли, её недр, атмосферного воздуха, водоёмов, животного и растительного мира.

Газораспределительный механизм предназначен для своевременного впуска в цилиндры двигателя горючей смеси и выпуска отработавших газов.

Газораспределительный механизм  состоит из:

 распределительного вала,

 рычагов,

 впускных и выпускных клапанов с пружинами,

 впускных и выпускных каналов.

Распределительный вал располагается в верхней части головки блока цилиндров. Составной частью вала являются его кулачки, количество которых соответствует количеству впускных и выпускных клапанов двигателя. Иными словами, над каждым клапаном расположен свой персональный кулачок. Именно эти кулачки, при вращении распределительного вала, обеспечивают своевременное, согласованное с движением поршней в цилиндрах, открытие и закрытие клапанов. Распределительный вал приводится во вращение от коленчатого вала двигателя с помощью цепной передачи или зубчатого ремня. Натяжение цепи привода регулируется специальным натяжителем, а ремня — натяжным роликом.

При вращении распределительного вала, кулачок набегает на рычаг, который, в свою очередь, нажимает на стержень соответствующего клапана и открывает его. Продолжая вращаться, кулачок сбегает с рычага, и под воздействием сильной пружины клапан закрывается. Ну, а дальше вы знаете – поршень, через открытый впускной или выпускной клапан, соответственно засасывает горючую смесь или выталкивает отработавшие газы. Когда же оба клапана в одном цилиндре закрыты – происходит такт сжатия или рабочий ход поршня.

Основные неисправности газораспределительного механизма двигателя.

Стуки в газораспределительном механизме появляются по причине увеличенных зазоров в клапанном механизм, износе подшипников или кулачков распределительного вала, рычагов, а также из-за поломки пружин клапанов. Для устранения стуков необходимо отрегулировать тепловой зазор, а изношенные детали и узлы следует заменить. Повышенный шум цепи привода распределительного вала появляется вследствие износа шарнирных соединений звеньев цепи и ее удлинения. Следует отрегулировать натяжение цепи, а при чрезмерном ее износе — заменить на новую. Потеря мощности двигателя и повышенная дымность выхлопных газов происходят при нарушении теплового зазора в клапанном механизме, неплотном закрытии клапанов, износе маслоотражательных колпачков. Зазор следует отрегулировать, изношенные колпачки поменять, а клапаны «притереть» к седлам.

Эксплуатация газораспределительного механизма двигателя.

Обратите внимание на тепловой зазор между рычагом и кулачком распределительного вала. Немного знаний физики и можно понять, что этот зазор должен быть строго определенного размера. Ведь при нагревании все детали двигателя расширяются, в том числе и детали газораспределительного механизма. Если тепловой зазор меньше нормального, то клапан будет открываться больше, чем ему положено и не будет успевать вовремя закрываться. А это нарушит рабочий цикл двигателя и, плюс ко всему, в скором времени придется менять «подгоревшие» клапаны.

Если же зазор между рычагом и кулачком распределительного вала будет очень большим, то клапан не сможет открываться полностью, что естественно не лучшим образом отразится на процессе заполнения цилиндров горючей смесью или выпуска отработавших газов. При неправильной установке теплового зазора, наблюдается целый шлейф неприятностей. Двигатель начинает работать неустойчиво, глохнуть и преподносить прочие «сюрпризы», описанные в неисправностях газораспределительного механизма. Используя инструкцию по эксплуатации своего личного автомобиля, следует периодически контролировать правильность «зазора в клапанах». Однако разговор идет о десятых долях миллиметра! Например, для двигателей ВАЗ, в зависимости от модели, тепловой зазор должен быть в пределах 0,15 – 0,35 мм. Если у вас есть соответствующие инструменты и решимость «залезть в двигатель», то после нескольких попыток можно научиться «регулировать клапана». Если же вы не собирались осваивать профессию автомеханика, то при подозрениях на «разрегулированные клапана», следует обратиться к специалистам.

При эксплуатации двигателя необходимо следить за натяжением цепи или зубчатого ремня привода распределительного вала и при необходимости его регулировать.

В начале автомобильной жизни не советую включать музыку сразу же после запуска двигателя. Проехав несколько километров, прислушайтесь, нет ли посторонних звуков из-под капота. Они могут быть самыми разными, но любой из них скажет, что не все в порядке. Обратитесь к механику — их много умельцев, работающих на любой автостоянке или в гаражах. Найдите одного, которому будете «сдаваться» со своей машиной. Обычно это недорого, и, как правило, качественно. Определив причину постороннего шума, конечно же, надо отремонтировать тот узел, который заявил о своем «заболевании». Ни одна неисправность не появляется, не предупредив об этом заранее. Если же во время движения вы ничего не слышите из-под капота своего автомобиля (не слышно или не умеете слышать), то дайте проехаться на своей машине знающему человеку. Проблемы начинающих водителей именно в том, что зачастую они не знают — как должен вести себя исправный автомобиль, какие шумы нормальные, а какие «говорят» о надвигающихся финансовых затратах. А знать это важно, так как многие ездят на машинах с аварийными узлами, думая, что так и должно быть.

1.        Анохин В.А. Отечественные автомобили М: Машиностроение,1977.

2.        Ильин Н.М. Электрооборудование автомобилей М: Транспорт,1978.

3.        Инструкция по охране труда для слесарей по ремонту автомобилей, двигателей и топливной аппаратуры на автоцентрах и станциях объединений «АвтоВАЗтехобслуживание» №.37.101.7072-85 взамен 37.101.7072-78.

4.        Михайловский Е.В. Серебряков К.Б. Тур Е.Я. Устройство автомобиля М: Машиностроение,1990.

5.        Молоков В.А., Зеленин С.Ф., Учебник по устройству автомобиля, М. 1987

6.        РЕМОНТ ОБСЛУЖИВАНИЕ ЭКСПЛУАТАЦИЯ ВАЗ 2110, 2111, 2112 (Жигули) //http://www.autoprospect.ru/vaz.

7.        Тур Е.Я. Серебряков К. Б. Устройство автомобиля М: Машиностроение 1990.

8.        Чумаченко Ю. Т., Герасименко А. И., Рассанов Б. Б. АВТОСЛЕСАРЬ. Устройство, техническое обслуживание и ремонт автомобилей, 2006 г. — 544 c

Как работает система доставки природного газа?

Как работает система доставки природного газа?

Как работает система доставки природного газа?

Перетекание газа от более высокого давления к более низкому — фундаментальный принцип системы подачи природного газа. Величина давления в трубопроводе измеряется в фунтах на квадратный дюйм.

Из скважины природный газ поступает в «сборные» линии, которые похожи на ветки на дереве, увеличиваясь по мере приближения к центральному пункту сбора.

Системы сбора

Системе сбора может потребоваться один или несколько полевых компрессоров для перемещения газа в трубопровод или на перерабатывающий завод. Компрессор — это машина, приводимая в действие двигателем внутреннего сгорания или турбиной, которая создает давление, чтобы «протолкнуть» газ по трубопроводам. Большинство компрессоров в системе подачи природного газа используют небольшое количество природного газа из собственных трубопроводов в качестве топлива.

Некоторые системы сбора природного газа включают установку для обработки, которая выполняет такие функции, как удаление примесей, таких как вода, диоксид углерода или сера, которые могут вызвать коррозию трубопровода, или инертных газов, таких как гелий, которые могут снизить энергетическую ценность газа.Перерабатывающие предприятия также могут удалять небольшие количества пропана и бутана. Эти газы используются в качестве химического сырья и в других целях.

Система передачи

Из системы сбора природный газ поступает в систему передачи, которая обычно состоит из трубопровода из высокопрочной стали протяженностью около 272 000 миль.

Эти большие линии передачи природного газа можно сравнить с национальной системой автомагистралей для автомобилей. Они перемещают большие объемы природного газа за тысячи миль от регионов добычи в местные распределительные компании (НРС).Давление газа в каждой секции трубопровода обычно составляет от 200 до 1500 фунтов на квадратный дюйм, в зависимости от типа зоны, в которой работает трубопровод. В качестве меры безопасности трубопроводы спроектированы и построены так, чтобы выдерживать гораздо большее давление, чем когда-либо фактически достигается в системе. Например, трубопроводы в густонаселенных районах работают при давлении менее половины от расчетного.

Многие крупные межгосударственные трубопроводы являются «кольцевыми» — есть две или более линий, идущих параллельно друг другу на одной полосе отчуждения.Это обеспечивает максимальную производительность в периоды пикового спроса.

Компрессорные станции

Компрессорные станции

расположены примерно через каждые 50-60 миль вдоль каждого трубопровода, чтобы повысить давление, которое теряется из-за трения природного газа, движущегося по стальной трубе. Многие компрессорные станции полностью автоматизированы, поэтому оборудование можно запускать или останавливать из центральной диспетчерской трубопровода. В диспетчерской также можно дистанционно управлять запорными клапанами в системе передачи.Операторы системы хранят подробные рабочие данные по каждой компрессорной станции и постоянно корректируют набор работающих двигателей, чтобы обеспечить максимальную эффективность и безопасность.

Природный газ движется по транспортной системе со скоростью до 30 миль в час, поэтому доставка газа из Техаса в пункт приема коммунальных услуг на северо-востоке занимает несколько дней. Попутно существует множество взаимосвязей с другими трубопроводами и другими инженерными системами, что дает системным операторам большую гибкость при транспортировке газа.

Линейный пакет

50-мильный участок 42-дюймовой линии электропередачи, работающий при давлении около 1000 фунтов, содержит около 200 миллионов кубических футов газа — этого достаточно для питания кухонной плиты более 2000 лет. Количество газа в трубе называется «линейным пакетом».

Повышая и понижая давление на любой сегмент трубопровода, трубопроводная компания может использовать этот сегмент для хранения газа в периоды, когда спрос на конце трубопровода меньше.Использование Linepack таким образом позволяет операторам трубопроводов очень эффективно справляться с почасовыми колебаниями спроса.

Трубопроводы природного газа и коммунальные службы используют очень сложные компьютерные модели потребительского спроса на природный газ, которые связывают суточные и почасовые тенденции потребления с сезонными и экологическими факторами. Вот почему клиенты могут положиться на надежность природного газа — когда он нужен, он есть.

Выходы

Когда природный газ по магистральному трубопроводу достигает местного газового предприятия, он обычно проходит через «затворную станцию».«Коммунальные предприятия часто имеют шлюзовые станции, принимающие газ во многих разных местах и ​​из нескольких разных трубопроводов. Затворные станции служат трем целям. Во-первых, они снижают давление в линии с уровней передачи (200–1 500 фунтов) до уровней распределения, которые варьируются от ¼ фунта до 200 фунтов. Затем добавляется одорант, характерный кислый запах, связанный с природным газом, так что потребители могут почувствовать запах даже небольшого количества газа. Наконец, шлюзовая станция измеряет расход газа, чтобы определить полученное количество утилитой.

Система распределения

От шлюзовой станции природный газ поступает в распределительные трубопроводы или «магистрали» диаметром от 2 до 24 дюймов. Внутри каждой распределительной системы есть секции, которые работают при разном давлении, с регуляторами, контролирующими давление. Некоторые регуляторы дистанционно управляются коммунальным предприятием для изменения давления в частях системы для оптимизации эффективности. Вообще говоря, чем ближе природный газ к потребителю, тем меньше диаметр трубы и ниже давление.

Как правило, центральный центр управления газовой компании непрерывно контролирует расход и давление в различных точках системы. Операторы должны гарантировать, что газ достигнет каждого потребителя с достаточным расходом и давлением для заправки оборудования и приборов. Они также гарантируют, что давление остается ниже максимального давления для контролируемых секций внутри системы. Линии распределения обычно работают при давлении менее одной пятой от расчетного.

По мере прохождения газа через систему регуляторы регулируют поток от более высокого до более низкого давления.Если регулятор обнаруживает, что давление упало ниже заданного значения, он соответственно откроется, чтобы пропустить больше газа. И наоборот, когда давление поднимается выше заданного значения, регулятор закрывается для регулировки. В качестве дополнительной меры безопасности на трубопроводах устанавливаются предохранительные клапаны для выпуска газа в атмосферу, где это необходимо.

Сложные компьютерные программы используются для оценки пропускной способности сети и обеспечения того, чтобы все клиенты получали достаточные запасы газа при минимальном уровне давления или выше, требуемом для их газовых приборов.

Распределительные сети соединены между собой в несколько схем сети со стратегически расположенными запорными клапанами. Эти клапаны сводят к минимуму необходимость прерывания обслуживания заказчиком во время операций по техническому обслуживанию и в аварийных ситуациях.

Подача природного газа в дом

Природный газ проходит из магистрали в дом или офис по так называемой линии обслуживания. Как правило, коммунальное предприятие, занимающееся природным газом, отвечает за техническое обслуживание и эксплуатацию газопровода и объектов, вплоть до счетчика газа в жилых домах.Ответственность за все оборудование и линии газоснабжения после бытового счетчика лежит на заказчике.

Когда газ достигает счетчика потребителя, он проходит через другой регулятор давления, чтобы при необходимости снизить его давление до менее ¼ фунта. По некоторым коммуникационным линиям идет газ, который уже находится под очень низким давлением. Это нормальное давление для природного газа в бытовой трубопроводной системе, которое меньше давления, создаваемого ребенком, надувающим пузыри через соломинку в стакане с молоком.Когда газовая печь или плита включена, давление газа немного выше, чем давление воздуха, поэтому газ выходит из горелки и воспламеняется своим знакомым чистым голубым пламенем.

Обзор модели распределения газа

Система газораспределения состоит из подключенных устройств, которые транспортируют природный газ от источника, такого как регулятор или городская пограничная станция, к потребителю. Основными компонентами газовой системы являются трубы (магистральные и вспомогательные), устройства, которые контролируют и регулируют поток в этих трубах, фитинги, соединяющие трубы, и измерительное оборудование, которое измеряет поток газа в трубах.

Магистрали — это трубы, по которым газ подается от источника, такого как регулятор или городская пограничная станция, в точку, прилегающую к помещению потребителя. По трубопроводам газ транспортируется от магистралей до точек учета. На городской пограничной станции (также называемой городскими воротами) передача газа преобразуется в систему распределения. Эти функции могут иметь связанные регуляторы, регулирующие счетчики, устройства избыточного давления и одоранты. Станции регулирования определяют расположение одного или нескольких регуляторов давления.

Несколько типов устройств регулируют поток газа через набор труб, а также давление, при котором газ подается.Регулятор — это механическое устройство, используемое для контролируемого снижения давления в газораспределительной системе. В этот тип функции включены контрольные и резервные регуляторы. Клапан работает в трубе, чтобы позволить потоку только в одном направлении или регулировать поток с помощью плоского, крышки, заглушки или другого механизма, чтобы открыть или заблокировать трубу. Клапаны, обозначенные как ключевые, имеют решающее значение для моделирования и анализа. Устройства управления потоком включают любой фитинг, который не является регулятором или клапаном, который может управлять потоком газа и приводится в действие машиной.

Стальные трубы, находящиеся в коррозионных почвах, подвержены коррозии. Покрытия из эпоксидной смолы, полиэтилена или других материалов являются обычными методами предотвращения коррозии. Катодная защита — это еще один метод защиты подземных металлических конструкций, таких как стальные трубы, фитинги и клапаны, от коррозии.

Металлические конструкции изнашиваются, поскольку паразитный электрический ток, обычно присутствующий в земле, течет из относительно анодной конструкции в относительно катодную почву. Путем наведения небольшого электрического тока на металлические конструкции, чтобы сделать их катодными, паразитный ток течет от почвы к конструкции и, как следствие, конструкция защищается.

Защищенные части распределительной системы должны быть электрически отделены от незащищенных частей. Это часто достигается с помощью изолированной арматуры, такой как изолированные фланцы или изолированные компрессионные муфты.

Компоненты газораспределительной системы сгруппированы в три общие логические категории:

Эти категории содержат классы объектов, которые имеют общие свойства и / или поведение. Например, устройства могут быть сгруппированы вместе, поскольку они обнаруживают и / или контролируют поток газа по трубам.Некоторые устройства измеряют расход (например, счетчики), а некоторые регулируют поток газа (например, регуляторы). После создания базовой группировки объектов вы можете определить более конкретные сходства между объектами. Во время этого процесса группирования вы можете определять новые классы (называемые подклассами) и объединять некоторые классы (подтипы). Конечным результатом является набор корневых абстрактных классов, промежуточных абстрактных классов, конечных классов и отношений.

Когда вы начинаете определять свойства каждого конечного класса, появляются общие свойства.Например, у счетчиков и регуляторов есть производители и номера моделей. Вместо того, чтобы дублировать каждое свойство в обоих объектах, вы создаете класс более высокого порядка (Gas Device), который является абстрактным классом, чтобы содержать эти свойства. Этот класс содержит свойства, общие для всех объектов, являющихся его подклассами, и никогда не будет отдельным объектом. Этот процесс обобщения свойств приводит к набору промежуточных классов, которые представляют или моделируют систему газоснабжения.

Модели данных, включая физические и логические модели газораспределения, можно загрузить с веб-сайта Schneider Electric-GIS.Они предоставляются в формате Visio.

Система подачи наркозного газа

Indian J Anaesth. 2013 сентябрь-октябрь; 57 (5): 489–499.

Sabyasachi Das

Кафедра анестезиологии, Медицинский колледж Северной Бенгалии, Дарджилинг, Западная Бенгалия, Индия

Субхраджьоти Чаттопадхьяй

Кафедра анестезиологии, Медицинский колледж Северной Бенгалии, Дарджилинг, Департамент Западной Бенгалии, Индия

901 901 Анестезиология, Медицинский колледж Северной Бенгалии, Дарджилинг, Западная Бенгалия, Индия

Кафедра анестезиологии, Медицинский колледж Северной Бенгалии, Дарджилинг, Западная Бенгалия, Индия

Адрес для корреспонденции: Проф.Сабьясачи Дас, отделение анестезиологии, Медицинский колледж Северной Бенгалии, Сушрута Нагар, Дарджилинг — 734 012, Западная Бенгалия, Индия. Электронная почта: [email protected]

Это статья в открытом доступе, распространяемая в соответствии с условиями Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, что разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии, что оригинал работа правильно процитирована.

Эта статья цитируется в других статьях в PMC.

Реферат

Система подачи анестезиологического газа разработана, чтобы обеспечить безопасную, экономичную и удобную систему подачи медицинских газов к месту использования.Доктрина системы подачи наркозного газа основана на четырех основных принципах: идентичность, непрерывность, адекватность и качество. Знания о системе газоснабжения — неотъемлемая часть безопасной анестезиологической практики. Несчастные случаи, связанные с неисправностью или неправильным использованием подачи медицинского газа в операционные, унесли много жизней. Медицинскими газами, используемыми в анестезии и интенсивной терапии, являются кислород, закись азота, медицинский воздух, энтонокс, диоксид углерода и гелиокс. Кислород — один из наиболее широко используемых газов для жизнеобеспечения и респираторной терапии, помимо анестезиологических процедур.В этой статье делается попытка описать производство, хранение и доставку анестезирующих газов. При проектировании анестезиологического оборудования необходимо учитывать местные условия, такие как климат, спрос и энергоснабжение. Операционная политика системы газоснабжения должна предусматривать резервный план для удовлетворения чрезвычайных потребностей больницы в случае потери основного источника подачи.

Ключевые слова: Баллоны, коллекторы, медицинские газы, трубопроводы, испарители с вакуумной изоляцией

ВВЕДЕНИЕ

Производство, хранение и доставка анестезиологического газа представляют собой составную систему.

Схема такой системы должна гарантировать, что доставка газа безопасна, целесообразна и экономична. [1] Медицинские газы, обычно используемые для анестезии и интенсивной терапии, — это кислород, закись азота, медицинский воздух, энтонокс, диоксид углерода и гелиокс. По определению, газ — это вещество, которое остается только в газообразном состоянии под давлением, и любое повышение давления не может сжижать его до тех пор, пока оно превышает его критическую температуру. С другой стороны, вещества, которые сосуществуют как в жидком, так и в газообразном состоянии под давлением, точно определяются как «пары» в истинном смысле слова, поскольку их можно сжижать при соответствующем давлении ниже их критической температуры.[2] Для простоты и газы, и пары будут описаны в этой статье как обезболивающие. Медицинский вакуум, хотя и не является газом, является неотъемлемой частью системы подачи медицинских газов и будет рассмотрен кратко. Медицинские газы, такие как кислород и воздух, могут подаваться в больших объемах, а другие, такие как закись азота, медицинский воздух и энтонокс, могут подаваться из коллекторов баллона. Затем эти газы по трубопроводам поступают в стенные выпускные отверстия. Медицинские газы также можно подавать непосредственно из переносных баллонов.

ЦЕЛИ ОБУЧЕНИЯ

По окончании изучения этой статьи читатели смогут описать следующее:

  • Принципы производства, хранения и доставки анестезирующих газов,

  • Вопросы безопасности при работе с анестезирующими газами:

  • Функция обычно используемой системы подачи анестезиологического газа и

  • Ответы на вопросы, часто задаваемые на экзаменах в аспирантуре.

КИСЛОРОД

Производство

Процесс отделения атмосферного кислорода дистилляцией состоит из двух основных этапов: сжижения воздуха и фракционной перегонки жидкого воздуха на его компоненты. Сжижение воздуха было впервые достигнуто Хэмпсоном и фон Линде (1895 г.) [3]. Воздух сжимается, охлаждается до температуры окружающей среды и проходит через теплообменник к расширительному клапану и устройству смены. Охлаждение Джоуля-Томсона происходит при расширении газа, и охлажденный газ проходит обратно через теплообменник, охлаждая сжатый газ, текущий в камеру расширения.

Метод, обычно используемый для промышленного производства большого объема кислорода, — это фракционная перегонка воздуха. Затем он подается на площадку в виде бледно-голубого жидкого кислорода, охлажденного до -183,1 ° C при абсолютном давлении 1 бар, который поставляется либо в виде криогенной жидкостной системы (CLS), либо в меньших единицах в виде жидкостного баллона. Альтернативой баллонной подаче для использования в малых масштабах являются кислородные концентраторы или химические реакции, такие как кислородные свечи (хлорат натрия и железный порошок), используемые на подводных лодках и в воздушных запасах кислорода в аварийных ситуациях.[4]

Фракционная перегонка воздуха включает охлаждение и сжатие воздуха в жидкость и разделение ее на основные составляющие газы; кислород, азот и аргон. Сначала фильтруется воздух; примеси удаляются, а затем охлаждается до -200 ° C. Углекислый газ замерзает при -79 ° C, поэтому в этот момент его не используют, а кислород сжижается только при -183 ° C. При -200 ° C жидкий воздух (теперь свободный от углекислого газа) проходит в нижнюю часть фракционирующей колонны, которая теплее внизу (-185 ° C), чем вверху (-195 ° C).Сжиженный азот (азот сжижается при -195 ° C) кипит, возвращается в газообразную форму и выходит через верх колонны, оставляя жидкий кислород и аргон. Оба имеют схожие точки кипения и, следовательно, требуют еще одной ректификационной колонны для получения чистого кислорода. [5]

Кислородные концентраторы

Они также известны как адсорберы с переменным давлением. Их можно рассматривать как альтернативу традиционным источникам снабжения там, где нет надежного снабжения жидким кислородом, например, на оффшорных объектах или объектах, где критерии безопасности для жидкостных установок не могут быть соблюдены.Эти устройства могут быть небольшими, предназначенными для подачи кислорода одному пациенту, или могут быть достаточно большими для подачи кислорода в систему медицинских газопроводов.

Компонентами этой системы являются: Дуплексные компрессоры и молекулярные сита, ресиверы, осушители, вакуумные насосы, фильтры, регуляторы давления в трубопроводе, система управления, система контроля производительности по кислороду и резервный коллектор баллона.

Кислородные концентраторы работают по принципу адсорбции (под давлением) других газов из атмосферы на поверхность адсорбирующего материала, известного как цеолит. Поскольку кислород не адсорбируется цеолитом, он может свободно проходить в хранилище для использования. Цеолит представляет собой гидратированные силикаты алюминия щелочноземельных металлов в порошковой или гранулированной форме. Цеолит запечатывают в сосуде, известном как слой сита. Сита сит работают попарно: один адсорбирует, а другой регенерирует. Окружающий воздух фильтруется и сжимается компрессором до 137 кПа, а затем подвергается воздействию колонны цеолитных молекулярных сит, образующих очень большую площадь поверхности, при определенном давлении.Сито избирательно задерживает азот и другие нежелательные компоненты воздуха. Они выбрасываются в атмосферу после нагрева колонки и создания вакуума. Переключение между столбцами осуществляется таймером. Процесс способен производить кислород с концентрацией около 95%. Остальное состоит в основном из аргона с небольшим процентным содержанием азота.

Во время анестезии в закрытом контуре может происходить накопление аргона. Следовательно, чтобы избежать этого, требуются более высокие потоки свежего газа.Поскольку в процессе выделяется много тепла, вентиляция и охлаждение являются обязательными.

Если установка выходит из строя, коллектор аварийного баллона будет подавать в трубопровод при более высоких концентрациях (99,5%), чем рабочая норма завода 95%. Это может повлиять на оборудование нижестоящего уровня, особенно в отделениях интенсивной терапии.

Эта система с низким расходом (2-4 л / мин) и низким давлением может непрерывно обеспечивать кислородом пациентов с хронической обструктивной болезнью легких. Типичный блок работает от сети и может обеспечивать до 5 л / мин кислорода с концентрацией 94%.Его можно протянуть по всему дому через небольшие настенные розетки [].

Жидкий кислород

Растущие потребности больниц привели к внедрению криогенных систем жидкого кислорода как для резервного, так и для сетевого питания. Основным компонентом CLS является испаритель с вакуумной изоляцией (VIE). Система также включает в себя панель управления и систему телеметрии. Больницы должны иметь запас кислорода минимум на 2 недели, но его следует увеличить, если есть проблемы, связанные с родами.

Большое количество жидкого кислорода хранится в VIE, поскольку объемный кислород более экономичен и удобен по сравнению с коллекторами баллонов. Жидкий кислород получают путем фракционной перегонки жидкого воздуха. Один объем жидкого кислорода дает в 842 раза больше его объема кислорода в газообразной форме при температуре 15 ° C и одном атмосферном давлении. [6] VIE — это большая изолирующая колба с двойными стенками, в которой внутренний корпус из нержавеющей стали отделен от внешнего корпуса из углеродистой стали слоем перлита (изоляционного материала) с высоким вакуумом 0.16-0,3 кПа [7] Жидкий кислород (до 1500 л) хранится внутри контейнера при температуре около -160 ° C, что намного ниже критической температуры (-118 ° C) кислорода, и при давлении 5-10 атмосфер. Жидкий кислород находится на дне сосуда, а газ находится наверху под давлением 10,5 бар. Температуру сосуда поддерживает высоковакуумный кожух. Поскольку невозможно поддерживать идеальную изоляцию, внутренний контейнер пытается отбирать тепло из атмосферы, хотя последствия этого компенсируются испарением жидкости во время его использования.Емкость для хранения опирается на весы для измерения массы жидкости. В последнее время вместо него использовался манометр дифференциального давления, который измеряет разницу давлений между дном и верхом сосуда. Это предупреждает дистрибьютора о низком уровне предложения. [8] По мере испарения жидкого кислорода его масса уменьшается, что снижает давление на дне. При меньшем потреблении давление внутри сосуда повышается, и для предотвращения этого предохранительный клапан открывается при 1700 кПа и выдувает газ в атмосферу.И наоборот, давление в сосуде будет падать, если есть высокий спрос. В верхней части VIE находится линия отвода пара, из которой можно отводить жидкий кислород; можно заставить жидкость присоединиться к паропроводу после ограничителя и пройти либо через перегреватель, либо обратно в верхнюю часть VIE. После прохождения пароперегревателя (состоящего из неизолированных змеевиков медных трубок) пары кислорода проходят через ряд регуляторов давления для снижения давления до давления в распределительном трубопроводе 410 кПа.Свежие запасы жидкого кислорода при необходимости перекачиваются из танкера в судно [Рисунки и].

(a) Испаритель с вакуумной изоляцией (схема), (b) Испаритель с вакуумной изоляцией (наглядно)

ПАНЕЛЬ УПРАВЛЕНИЯ

Он контролирует давление и поток газа в трубопровод. Он предназначен для пропускания потока 3000 л / мин из основного источника VIE и 1500 л / мин через коллектор аварийного цилиндра. Он имеет дублирующие регуляторы для безопасности. Они предназначены для контроля давления на уровне 4.1 бар для основного питания и 3,7 бар для аварийного питания баллона.

Панель управления передает состояние тревоги на центральную панель сигнализации, обычно расположенную в отделении неотложной помощи, а вторичные панели расположены в критических зонах по всей больнице.

Телеметрическая система

Обеспечивает непрерывный мониторинг.

Требования к месту установки

Он должен располагаться внутри огороженной территории, быть доступным для автоцистерн. Все опасные здания, легковоспламеняющиеся материалы, общественный доступ, транспортные средства и водостоки должны находиться на расстоянии не менее 5 м, а в некоторых случаях 8 м от ближайшей точки комплекса.Состав непосредственно перед заливным соединением должен быть бетонным и должен быть спроектирован таким образом, чтобы удерживать любую пролившуюся жидкость, поскольку в случае пролития жидкости увеличивается риск возгорания. Гудрон и асфальт нельзя использовать поблизости, так как они образуют взрывоопасную смесь при контакте с жидким кислородом.

ГАЗОВЫЕ БАЛЛОНЫ

Баллоны высокого давления используются для хранения и транспортировки сжатых или жидких медицинских газов. Газовые баллоны, изначально изготовленные из стали, в настоящее время изготавливаются из различных материалов, что позволяет использовать их в самых разных условиях окружающей среды. Доступны алюминиевые цилиндры для использования в сканерах магнитно-резонансной томографии. Молибденовая сталь легкая, устойчивая к коррозии и имеет высокую прочность на разрыв. Существуют баллоны, изготовленные из алюминия или стали с внешней оболочкой из кевлара или углеродного волокна, что позволяет легким баллонам наполнять их до более высокого давления [9]. Для транспортировки пациентов доступны легкие баллоны с встроенной ручкой. Переносные газовые баллоны используются для реанимации недышащих пациентов во время сердечно-легочной реанимации. Клапан по запросу выпускает более высокий поток кислорода в ответ на повышенную потребность.В отличие от непрерывного потока, клапаны по запросу сохраняют кислород, ограничивая передачу на инспираторную фазу дыхания и сводя к минимуму неправильное использование во время выдоха. Цилиндры имеют цветовую маркировку и содержат жидкость в сочетании с паром или газом, в зависимости от критической температуры вещества.

Верхний конец цилиндра называется шейкой и заканчивается конической резьбой, в которую вставлен клапан. Резьба уплотнена материалом, плавящимся при воздействии сильного тепла на цилиндр.Это позволяет газу уйти, что снижает риск взрыва. Год последнего осмотра баллона и дата следующего испытания указываются на пластиковом диске вокруг горловины баллона [Таблицы и] [6].

Таблица 1

Физические свойства и цветовая кодировка медицинских газов в баллонах [10]

Таблица 2

Номенклатура, размеры и вместимость медицинских газовых баллонов [[10]

Блок клапанов

Клапан баллона действует как механизм входа и выхода из газового тракта.Между выпускным отверстием клапана и устройством размещается сжимаемое уплотнение хомута (уплотнение Бодока) для создания газонепроницаемого соединения. Блок клапанов ввинчивается в открытый конец горловины цилиндра. Клапан изготовлен из латуни и иногда хромирован. Поворот продольного шпинделя (который установлен внутри сальника и плотно закреплен в клапанном блоке) открывает клапан. Между блоком и горловиной цилиндра установлен предохранительный штуцер. Он состоит из материала (металл Вуда), который плавится при низкой температуре, позволяя газу улетучиваться при пожаре, тем самым снижая риск взрыва.Типы клапанов для газовых баллонов: выпуклые, маховички и встроенные клапаны. Клапан новой конструкции позволяет включать и выключать вручную без ключа.

Система безопасности индекса штифта

Это предотвращает ошибки идентификации цилиндров. Для каждого медицинского газа на траверсе наркозного аппарата существует особая конфигурация штифта. На клапанном блоке есть отверстия, которые позволяют правильно установить в вилку только соответствующий газовый баллон. Выходное отверстие для газа в клапанном блоке будет уплотняться относительно шайбы вилки, когда штифт и отверстия будут правильно совмещены.Если используется несколько шайб, штифты в вилке могут не выдаваться достаточно далеко, чтобы войти в стыковочные отверстия, и PISS не будет работать должным образом [].

Цилиндры большего размера имеют соединения типа «выпуклый нос», которые позволяют привинчивать регулятор на место. Эти регуляторы не имеют газовых соединений.

Размер

Цилиндры производятся разных размеров (A-J). Размеры A и H не используются для медицинских газов. Баллоны, прикрепленные к наркозному аппарату, обычно имеют размер E.

Этикетка

Содержимое баллона можно определить по этикетке баллона. Этикетка баллона состоит из следующих данных:

  • Название, химический символ, фармацевтическая форма, спецификация продукта.

  • Номер лицензии и доля составляющих газов в газовой смеси.

  • Идентификационный номер вещества и номер партии.

  • Предупреждения об опасности и инструкции по технике безопасности.

  • Кодовый размер цилиндра.

  • Объем цилиндра.

  • Максимальное давление в баллоне.

  • Дата наполнения, срок годности и срок годности.

  • Руководство по эксплуатации.

  • Меры предосторожности при хранении и обращении.

На цилиндрах выгравированы следующие марки:

Испытания

Используемые цилиндры проверяются и тестируются производителями через регулярные промежутки времени, обычно в течение 5 лет.Они проходят внутреннее обследование с помощью эндоскопа. Испытания на сплющивание, изгиб и удар проводятся не менее чем на одном цилиндре из каждых сотен. Они проходят гидравлические испытания или испытания под давлением: цилиндр подвергается воздействию высокого давления около 22 000 кПа, что более чем на 50% превышает их нормальное рабочее давление. Каждый сотый цилиндр после изготовления разрезают на полосы и испытывают на разрыв.

Заполнение

Для газов, которые хранятся в баллонах как сжатые газы (например, воздух, кислород и гелий), степень наполнения определяется путем измерения давления в баллоне.По мере опорожнения баллона давление линейно снижается и точно показывает, сколько газа осталось в баллоне.

Такие газы, как закись азота и двуокись углерода, сжижаются в цилиндрах под давлением. Манометр считывает давление паровой фазы над жидкостью и не показывает количество жидкости в цилиндре. Когда газ истощается, жидкость закипает, заменяя использованный газ, и давление остается постоянным при постоянной температуре. Единственный метод определения количества наполнения — вычесть вес тары цилиндра (вес пустого цилиндра) из его фактического веса.

Баллоны, содержащие сжиженные газы, никогда не заполняются жидкостью полностью, так как повышение температуры может привести к повышению давления и риску разрушения баллона. Таким образом, эти цилиндры лишь частично заполняются жидкостью в зависимости от климата, в котором они используются. Коэффициент наполнения — это отношение массы газа в баллоне к массе воды, которую цилиндр может удерживать при заполнении. Поскольку 1 л воды весит 1 кг, степень заполнения баллона — это масса закиси азота в килограммах, деленная на внутренний объем баллона в литрах. [11] В умеренном климате коэффициент заполнения как закиси азота, так и диоксида углерода составляет 0,75. В тропическом климате баллоны заполняются до степени заполнения 0,67.

Продолжительность потока газа

  • Баллоны E содержат 22 кубических фута кислорода при заполнении (давление 2200 фунтов на кв. Дюйм).

  • Один кубический фут кислорода равен 28,3 л.

  • Фактор резервуара: (22 × 28,3) л / 2200 фунтов на квадратный дюйм = 0,28 л / фунтов на квадратный дюйм.

  • Следовательно, время, в течение которого проработает танк (в минутах).

    = (Фактор резервуара [манометрическое давление — 500]) / л расхода.

    = (0,28 л / фунт / кв. Дюйм [2000 — 500 фунт / кв. Дюйм]) / 8 л / мин.

    = 52,5 мин.

Меры предосторожности

  • Перед использованием необходимо снять пластиковую оболочку клапана. Перед подключением баллона к наркозному аппарату клапан следует слегка приоткрыть и закрыть (треснуть) так, чтобы порт был направлен в сторону от пользователя. Это снижает вероятность взрыва и удаляет частицы пыли, масла и жира из выходного отверстия, которые в противном случае попали бы в наркозный аппарат.

  • Клапан должен открываться медленно, когда он подсоединен к наркозному аппарату или регулятору. Если газ быстро проходит в пространство между клапаном и вилкой, быстрое повторное сжатие будет генерировать большое количество тепла. Это адиабатический процесс (тепло не теряется и не извлекается из окружающей среды). Присутствующие в этом пространстве частицы пыли и жира могут воспламениться от тепла, что приведет к возгоранию или взрыву. Когда он подсоединен к наркозному аппарату или регулятору, клапан следует открывать медленно.

  • Клапан баллона должен быть полностью открыт во время использования (количество оборотов, необходимых для его открытия, полностью зависит от типа клапана).

  • Во время закрытия следует избегать чрезмерной затяжки клапана. Это может привести к повреждению уплотнения между клапаном и горловиной цилиндра. Перед использованием уплотнение Bodok необходимо проверить на предмет повреждений. Запасная пломба должна быть легко доступна.

ОПАСНОСТИ В ЦИЛИНДРЕ

Неправильный резервуар (несмотря на PISS), неправильное содержимое, неправильные клапаны, неправильный цвет, неправильная этикетка, поврежденные клапаны, удушье, пожар, взрывы (быстрый выброс содержимого или взлет резервуара), загрязнение, кража N 2 O (злоупотребление психоактивными веществами), переполнение, термическое повреждение (сообщалось об обморожении при использовании в рекреационных целях N 2 O).

Хранение

Их нельзя хранить вместе с немедицинскими баллонами. Место хранения должно:

  • Храниться под навесом или в закрытом помещении и не подвергаться воздействию экстремальных температур.

  • Предназначен для предотвращения несанкционированного доступа.

  • Имейте доступ для транспортных средств для доставки и ровную поверхность пола.

  • Держите подальше от горючих материалов или источников возгорания.

  • Имейте предупреждающие надписи, запрещающие курение или открытый огонь.

  • Разрешить хранение больших баллонов вертикально, а малых баллонов — горизонтально.

  • Быть чистым, сухим и хорошо вентилируемым.

  • Разрешить вращение цилиндров, чтобы в первую очередь использовались самые старые.

  • Разрешить разделение полных и пустых баллонов, а также баллонов с разными газами.

  • Разрешить разделение различных газов и размеров баллонов.

Коллектор цилиндра

Коллекторы используются для подачи кислорода, закиси азота и энтонокс.Есть незначительные различия в работе для каждого газа, в целом они разработаны и работают по одним и тем же принципам. Конфигурация коллектора среднего баллона содержит два равных ряда газовых баллонов с центральной панелью управления, которая обеспечивает нормальное выходное давление в четыре бара. Большие цилиндры обычно делятся на две группы: первичные (рабочий банк) и вторичные (резервный банк). Две группы поочередно снабжают трубопроводы. Количество цилиндров зависит от ожидаемого спроса.Все цилиндры в каждой группе подключены к коллектору через медную выхлопную трубу с газовым соединением и уплотнением. Каждое соединение имеет обратный клапан, позволяющий заменить отдельный цилиндр в случае утечки или разрыва выхлопной трубы. Цилиндры прикреплены отдельными цепями к задней балке. Все цилиндры подключены через обратные клапаны к общей трубе. Он, в свою очередь, подключен к трубопроводу через регуляторы давления. Общая емкость коллектора должна быть основана на поставке в течение 1 недели с запасом не менее 2 дней на каждую группу и запасом 3-дневных запасных баллонов, хранящихся в помещении коллектора.Любые дополнительные баллоны следует хранить в общем хранилище медицинских газов. Коллекторы закиси азота имеют нагреватели, установленные на линии подачи, чтобы предотвратить замерзание в периоды высокого спроса.

В любой группе все клапаны цилиндров открыты. Это позволяет им опорожняться одновременно. Подача автоматически переключается на вторичную группу, когда первичная группа почти пуста. Переключение осуществляется с помощью чувствительного к давлению устройства, которое определяет, когда баллоны почти пусты.При переключении активируется электрическая сигнальная система, которая предупреждает персонал о необходимости замены цилиндров. Рядом с механизмами имеется система безопасности [7], предотвращающая выброс всего газового содержимого. Подсоединяется выпускная труба, позволяющая выпускать избыточный газ в атмосферу.

При отключении электричества не должно быть прерывания подачи газа через коллектор баллона. Либо оба банка, либо банк по умолчанию продолжат подавать кислород до тех пор, пока не будет восстановлено электричество [].

Правила техники безопасности

Коллектор следует размещать в хорошо вентилируемом помещении, построенном из огнестойкого материала, будь то кирпич или бетон, вдали от главного здания больницы. Коллекторное отделение не следует использовать как склад для общих баллонов. В идеальном случае он должен быть расположен так, чтобы был обеспечен доступ для средств доставки, чтобы предотвратить переноску баллонов на большие расстояния. Помещение должно быть хорошо освещено, иметь температуру от 10 до 40 ° C и иметь достаточное количество предупреждающих знаков снаружи и внутри здания.Все пустые баллоны следует немедленно удалить из коллектора. Только обученный персонал должен иметь право менять баллоны, и при замене баллонов следует заполнять журнал активности.

ТРУБОПРОВОДЫ

Трубопроводный медицинский газ и вакуум (PMGV) — это система, в которой газы доставляются из центральных точек подачи в различные точки подачи в больнице под давлением около 400 кПа.

Кислород, закись азота, энтонокс и медицинский вакуум обычно поставляются по всей трубопроводной системе, которая изготовлена ​​из специального высококачественного фосфорсодержащего деокисленного медного сплава без содержания мышьяка, который предотвращает разложение содержащихся в нем газов, а также обладает бактериостатическими свойствами.Используемые фитинги должны быть только медь-медь, изготовленные из специального серебряного припоя. Это снижает коррозию труб. Размер труб различается в зависимости от спроса, который они несут. Для выхода из коллектора обычно используются трубы диаметром 42 мм. Скрытые трубопроводы меньшего размера диаметром 15 мм в конечном итоге заканчиваются выпускными отверстиями для газа, которые устанавливаются заподлицо на стенах, или подвешиваются на потолочной стреле, либо в виде подвесных шлангов, монтируемых на группы. Эти выходы газа на терминале [] имеют цветовую кодировку, помечены названием газа и имеют самоуплотняющиеся розетки, которые автоматически отключаются, что позволяет проводить сервисные работы на отдельных агрегатах без отключения крупных частей системы.Они должны иметь узел быстроразъемного зонда, который можно снимать для обслуживания, но нельзя случайно подключить к другому выпускному отверстию для газа.

Гибкие шланги с цветовой кодировкой соединяют выходы с наркозным аппаратом. У них есть зонд Шредера на одном конце и газовый резьбовой соединитель на другом конце. В клапане Schraeder для конкретного газа используется уникальная система индексации манжеты с уникальным диаметром, который подходит для соответствующей выемки на выходе терминала только для определенного газа [].На конце наркозного аппарата каждый шланг соединен с помощью уникального соединителя. Он имеет форму гайки и зонда. Гайка имеет одинаковый диаметр и резьбу для всех газовых систем, но ее можно прикрепить к анестезиологическому аппарату только при правильной фиксации датчика. Профиль имеет две цилиндрические формы, которые образуют уникальное сочетание. В Великобритании это называется резьбовым соединением без взаимозаменяемости (NIST). [12] Этот термин неоднозначен, поскольку резьбовой соединитель не зависит от газа.В США используется аналогичная система, называемая системой безопасности с индексированным диаметром (DISS). Однако диаметры составляющих различных соединений меньше и несовместимы с системой NIST [].

Зонды Шредера для разных газов

Невзаимозаменяемые резьбовые соединения для разных газов

Шланги в сборе производятся в виде отдельных узлов. Металлические манжеты (втулки из нержавеющей стали, расположенные снаружи шланга) удерживают шланги и предназначены для выдерживания усилий при снятии, а также сжатия шланга в зубчатых выступах оконечных выходов и датчиков NIST с такой силой, что, если была предпринята попытка развести их, шланг растягивался и ломался до того, как компоненты разделялись.Это предотвращает повторное подсоединение неправильного соединителя к неправильному шлангу. [12]

Изоляция трубопроводной сети присутствует во многих местах за счет запорных клапанов, вводимых в эксплуатацию в стратегических точках, чаще всего на входе в каждый клинический сектор. Они называются блоком обслуживания клапанов зоны (AVSU) []. Доступ к запорным клапанам AVSU можно получить с помощью стандартной техники выталкивания / выталкивания из разбитого стекла или пластика, чтобы изолировать подачу газа на конкретную клиническую территорию в случае технического обслуживания, установки, пожара или любой другой чрезвычайной ситуации. AVSU также обеспечивает самоуплотнение.

Проблемы с трубопроводом

Некоторые из проблем — недостаточное давление (чаще всего сообщается), повреждение во время строительных проектов, пожар, кража резервуаров N 2 O, окружающая среда (землетрясения, молния), истощение централизованного снабжения, человеческая ошибка ( случайное закрытие запорного клапана), обструкции (мусор следующие установки), перегибы, утечка, непроходимость шланга, загрязнение.

Меры предосторожности

Резервный блок цилиндров должен быть доступен на случай отказа основного питания.Аварийная сигнализация низкого давления обнаруживает сбой подачи газа. Тест одиночного шланга выполняется для обнаружения перекрестного соединения. Для выявления неправильного подключения выполняется испытание буксиром. Соблюдаются правила установки, ремонта и модификации ПМГВ. Анестезиологи несут ответственность за подачу газов из терминального выхода в наркозный аппарат. Аптеки, снабжение и инженерные службы разделяют ответственность за газопроводы «за стеной». Существует риск возгорания из-за изношенных или поврежденных шлангов, которые предназначены для переноса газов под давлением из первичных источников, таких как аппараты ИВЛ и анестезиологические аппараты.Из-за сильного износа риск разрыва наиболее высок в кислородных шлангах, используемых с транспортными устройствами. Рекомендуется регулярный осмотр и замена с интервалом в 2-5 лет всех шлангов для медицинских газов.

ОКСИД АЗОТА

N2O получают путем нагревания нитрата аммония до 250 ° C. Если температура регулируется должным образом, будет меньше производиться аммиака и более высоких оксидов азота. Эти примеси удаляются промывкой водой, кислотами, щелочами и растворами перманганата перед сушкой и помещением в цилиндры в виде жидкости.Закись азота поставляется в баллонах, содержащих от 450 до 18 000 л газа.

Закись азота имеет критическую температуру выше комнатной, поэтому она хранится в виде жидкости в цилиндрах под давлением, а пары закиси азота присутствуют в пространстве над жидкостью. Фактическое давление полного цилиндра составляет от 4400 до 5000 кПа. Для испарения жидкости используется энергия из окружающей среды — скрытая теплота испарения. Это приводит к значительному падению температуры внутри регулятора давления в цилиндрах, что приводит к замораживанию любого присутствующего водяного пара и возможной закупорке выхода регулятора.Этого можно избежать с помощью термостатических регуляторов.

ENTONOX

Это смесь кислорода и закиси азота в соотношении 50:50, подаваемая в виде газа. Газовая смесь хранится в баллонах или рядах баллонов и подается с помощью двухступенчатого регулятора давления, второй из которых включает регулирующий клапан. Газовый поток возникает при вдохе пациента. Он производится путем смешивания этих двух отдельных компонентов вместе с использованием эффекта Пойнтинга или эффекта ламинирования.

Эффект Пойнтинга

Когда газообразный кислород под высоким давлением проходит через жидкую закись азота, происходит испарение жидкости, образуя смесь кислорода и закиси азота в соотношении 50:50.[10]

Псевдокритическая температура

Это температура, при которой смесь газов разделяется на составные части. [13]

Entonox разделяется на закись азота и кислород при −5,5 ° C при 117 барах, −7 ° C при 137 бар (давление в баллоне) и −30 ° C при 4 барах (давление в трубопроводе). Если достигается псевдокритическая температура, существует опасность первоначальной подачи 100% кислорода с последующей 100% закисью азота — гипоксическим газом. Чтобы избежать этого, перед использованием баллоны необходимо хранить в горизонтальном положении в течение 24 часов, температура которых значительно превышает критическую.Если содержимое хорошо перемешано путем повторного переворачивания, баллоны можно использовать раньше, чем через 24 часа. Также можно использовать большие цилиндры, оборудованные погружной трубкой, конец которой оканчивается жидкой фазой. Это приводит к тому, что в первую очередь используется жидкая фаза, предотвращая доставку кислорода с концентрацией менее 20%.

МЕДИЦИНСКИЙ ВОЗДУХ

Медицинский воздух в основном используется в респираторной терапии в качестве источника энергии для аппаратов ИВЛ и для смешивания с кислородом. Он также используется как движущий газ для распыляемых лекарств и химиотерапевтических агентов.Хирургический воздух под более высоким давлением также используется для питания различных хирургических инструментов и других устройств, таких как жгуты, пневматические дрели и пилы (в качестве альтернативы для этой цели можно использовать азот). Он подпадает под стандарты Европейской Фармакопеи [8], хотя во многих случаях он получен непосредственно из нашего окружения. Медицинский воздух подается тремя способами: сжатый воздух, синтетический воздух и баллонные коллекторы. [2]

Сжатый медицинский воздух образуется путем всасывания окружающего воздуха в компрессор.Система спроектирована таким образом, что, если один компрессор не работает, остальные насосы могут поддерживать потребность в обслуживании. Компрессоры подают этот сжатый воздух в ресивер, а затем в серию фильтров-осушителей и сепараторов, которые удаляют конденсированную воду, твердые частицы и смазочное масло из системы до того, как сжатый воздух попадет в трубопроводную систему подачи, в противном случае масло и повышенное парциальное давление кислород может быть взрывоопасным. Затем регуляторы снижают давление до 400 кПа.Хирургический воздух, необходимый для работы оборудования, подается по отдельным трубопроводам с давлением 700 кПа. Примеси, не содержащие твердых частиц, такие как окись углерода и двуокись серы, не удаляются системой фильтрации, и в зонах с высоким загрязнением воздуха они могут привести к подаче воздуха недостаточной чистоты.

Несмотря на то, что воздух не стерилен, воздух медицинского класса чистый и при стандартной температуре и давлении не должен содержать более:

Всего 0,5 мг масляного тумана в виде твердых частиц на кубический метр воздуха, 5.5 мг угарного газа / кубический метр воздуха, 900 мг углекислого газа / кубический метр воздуха, без влаги, без бактериального загрязнения.

Синтетический воздух получают смешиванием жидкого азота с жидким кислородом в газообразном состоянии. Его преимущество в том, что не требуется источник питания и нет проблем с загрязнением. Если такие системы установлены для подачи как кислорода, так и медицинского воздуха, азот можно использовать в качестве источника энергии для хирургических инструментов.

HELIOX

За последнее десятилетие смесь 21% кислорода и гелия стала предметом особого интереса, особенно при лечении обострения бронхиальной астмы.[13] Низкая плотность (0,1669) гелия позволяет создавать смеси, которыми легче дышать, чем естественным воздухом, и, следовательно, снижает работу дыхания. Помимо того, что гелий является благородным газом, он является вторым по распространенности элементом во Вселенной. Его получают путем фракционной перегонки природного газа с концентрацией до 1% [1]. Газовая смесь heliox хранится в баллонах с черным корпусом и бело-коричневой четвертью плеча под давлением 13 700 кПа в газообразном состоянии [6].

ДИОКСИД УГЛЕРОДА

Он легко доступен в качестве побочного продукта процесса производства водорода [14] (для аммиака и других процессов гидрирования).Реакция нефти или природного газа с водяным паром и / или кислородом дает смесь водорода и монооксида углерода, которая затем может реагировать с большим количеством пара с образованием водорода и диоксида углерода. Последний затем отделяется от водорода путем абсорбции в щелочной среде, из которой регенерируется почти чистый CO 2 . Затем побочный газ очищается и сушится перед сжижением и заполнением цилиндров. Чаще всего он используется в качестве инсуффляционного газа во время лапароскопии. Однако он использовался в качестве стимулятора дыхания в 1930-х годах во время остановки дыхания и первоначально был включен в наркозные аппараты.Смертность, связанная с неправильным использованием, сначала привела к производству расходомеров, способных подавать только 600 мл / мин, затем к гашению хомутов цилиндров и, наконец, к отказу от их использования.

МЕДИЦИНСКИЙ ВАКУУМ

Считается частью инфраструктуры газоснабжения, хотя технически это не газ. Система состоит из насоса, ресивера и фильтра. Насос способен создавать разрежение -400 мм рт. Ст. И пропускать поток воздуха 40 л / мин.Газ всасывается в систему через одну или две ловушки, чтобы уменьшить его загрязнение, а затем в резервуар с давлением от -550 до -650 мм рт. Вакуум поддерживается с помощью насосов, которые, как и система подачи медицинского воздуха, способны обеспечить полностью функциональную систему в случае ее выхода из строя. [7]

РЕЗЮМЕ

Безопасность пациента является основной задачей при проектировании, установке, вводе в эксплуатацию и обслуживании системы подачи анестезиологического газа. В систему включены многие встроенные зоны безопасности.Кислород — один из широко используемых медицинских газов, предназначенный в первую очередь для жизнеобеспечения, анестезии и респираторной терапии. В первую очередь медицинский воздух используется в качестве источника энергии для вентиляторов и небулайзеров. Медицинский воздух обычно сочетается с воздухом или кислородом для механической вентиляции пациентов в операционной или в отделении интенсивной терапии. Закись азота часто смешивают с воздухом или кислородом для обезболивания и анестезии. 50% -ная смесь кислорода и закиси азота, широко известная как энтонокс, используется в качестве обезболивающего средства в родильных домах.Двуокись углерода требуется регулярно для инсуффляции во время лапароскопических операций. Гелий-кислородная смесь полезна для лечения пациентов с обструкцией дыхательных путей, а также для облегчения респираторного дистресса. Медицинский вакуум обслуживается почти в каждой клинической зоне с помощью центрально расположенных вакуумных насосов. При обращении с анестезирующим газом, его транспортировке и хранении следует соблюдать особую осторожность. Оценка риска должна включать опасения, связанные с использованием кислорода и других газов.

БЛАГОДАРНОСТИ

Авторы искренне благодарят Linde India Ltd. за помощь.и Praxair India Pvt. Ltd. за предоставление фотографий и разрешение на их публикацию в Indian Journal of Anesthesia.

Сноски

Источник поддержки: Нет

Конфликт интересов: Не заявлено

ССЫЛКИ

1. Westwood M, Riley W. Медицинские газы, их хранение и доставка. Anaesth Intensive Care Med. 2012; 13: 533–8. [Google Scholar] 2. Лав-Джонс С., Маги П. Медицинские газы, их хранение и доставка. Anaesth Intensive Care Med.2007; 8: 2–6. [Google Scholar] 3. Спенс А.А., Фи Дж. П., Нанн Дж., Росс Дж., Гарретт М., Генри П. и др., Редакторы. 2-е изд. Оксфорд: 2005. Медицинские газы: их свойства и использование; С. 85–96. [Google Scholar] 6. Аль-Шейх Б., Стейси С. 4-е изд. Лондон: Черчилль Ливингстон, Эльзевир; 2013. Основы анестезиологического оборудования; С. 2–12. [Google Scholar] 7. Лондон: канцелярия; 2006. Департамент здравоохранения. Технический меморандум в области здравоохранения 02-01. Медицинские газопроводные системы, часть A «Проектирование, установка, валидация и проверка»; стр.41–51. [Google Scholar] 8. Хайли Д. Медицинские газы, их хранение и доставка. Anaesth Intensive Care Med. 2009; 10: 523–7. [Google Scholar] 9. Британская кислородная компания Group PLC. Таблица данных цилиндра. [Последний доступ 25 июня 2013 г.]. Доступна с: http://www.bocmedical.co.uk 10. Маги П., Тули М. Подача газа и наркозный аппарат. В: Маги П., Тули М., редакторы. Физика, клинические измерения и оборудование анестезиологической практики для FRCA. 2-е изд. Нью-Йорк: издательство Оксфордского университета; 2011 г.С. 287–300. [Google Scholar] 11. Ловелл Т. Медицинские газы, их хранение и доставка. Anaesth Intensive Care Med. 2004; 5: 10–4. [Google Scholar] 12. Бланд Х. Подача обезболивающих и других медицинских газов. В: Дэйви А., Диба А., редакторы. Анестезиологическое оборудование отделения. 5-е изд. Китай: Эльзевьер Сондерс; 2005. С. 23–45. [Google Scholar] 14. Спенс А.А., Фи Дж. П., Нанн Дж., Росс Дж., Гарретт М., Генри П. и др., Редакторы. 2-е изд. Оксфорд: 2005. Медицинские газы: их свойства и использование; С. 135–6. [Google Scholar]

49 CFR § 192.3 — Определения. | CFR | Закон США

§ 192.3 Определения.

Как используется в этой части:

Заброшенный означает окончательно выведенный из эксплуатации.

Активная коррозия означает продолжающуюся коррозию, которая, если ее не контролировать, может привести к состоянию, наносящему ущерб общественной безопасности.

Администратор означает Администратора, Администрацию по безопасности трубопроводов и опасных материалов или его или ее представителя.

Аварийный сигнал означает звуковое или видимое средство указания контроллеру, что оборудование или процессы находятся за пределами определенных оператором параметров, связанных с безопасностью.

Пункт управления — это операционный центр, укомплектованный персоналом, отвечающим за удаленный мониторинг и управление трубопроводным оборудованием.

Контроллер

означает квалифицированное лицо, которое удаленно контролирует и контролирует связанные с безопасностью операции на трубопроводном оборудовании через систему SCADA из диспетчерской, и который имеет оперативные полномочия и ответственность за удаленные рабочие функции трубопроводного объекта.

Потребительский счетчик означает счетчик, который измеряет передачу газа от оператора к потребителю.

Линия распределения означает трубопровод, отличный от линии сбора или передачи.

Электроразведка означает серию измерений близко расположенных труб к грунту над трубопроводами, которые впоследствии анализируются для определения мест, где из трубопровода выходит коррозионный ток.

Инженерная критическая оценка (ECA) означает документированную аналитическую процедуру, основанную на принципах механики разрушения, соответствующих свойствах материала (механические свойства и свойства сопротивления разрушению), истории эксплуатации, рабочей среде, деградации в процессе эксплуатации, возможных механизмах отказов, начальных и конечных размерах дефектов, и использование будущих процедур эксплуатации и технического обслуживания для определения максимально допустимых размеров дефектов на основе максимально допустимого рабочего давления на участке трубопровода.

Открытый подводный трубопровод означает подводный трубопровод, в котором верхняя часть трубы выступает над подводным естественным дном (согласно признанным и общепринятым практикам) в водах глубиной менее 15 футов (4,6 метра) при измерении от средней малой воды.

Газ означает природный газ, горючий газ или газ, который является токсичным или едким.

Линия сбора означает трубопровод, по которому газ транспортируется от действующего производственного объекта к линии электропередачи или магистрали.

Мексиканский залив и его входы означают воды от средней отметки высокого уровня воды на побережье Мексиканского залива и его входы, открытые в море (за исключением рек, приливных болот, озер и каналов) в сторону моря, включая территориальное море и Внешний континентальный шельф до глубины 15 футов (4,6 метра) при измерении от среднего уровня воды.

Опасность для судоходства означает для целей данной части трубопровод, у которого верхняя часть трубы находится менее чем на 12 дюймов (305 миллиметров) ниже подводного естественного дна (согласно признанным и общепринятым практикам) в водах менее 15 ноги (4.6 метров) глубиной, если измерять от средней межени.

Система распределения высокого давления означает систему распределения, в которой давление газа в магистрали выше, чем давление, предоставляемое заказчику.

Участок линии означает непрерывный участок линии передачи между соседними компрессорными станциями, между компрессорной станцией и хранилищами, между компрессорной станцией и запорным клапаном или между соседними запорными клапанами.

Перечисленная спецификация означает спецификацию, перечисленную в разделе I приложения B этой части.

Система распределения низкого давления означает систему распределения, в которой давление газа в магистрали практически такое же, как давление, подаваемое заказчику.

Main означает линию распределения, которая служит общим источником поставки для более чем одной линии обслуживания.

Максимальное фактическое рабочее давление означает максимальное давление, которое возникает при нормальной работе в течение 1 года.

Максимально допустимое рабочее давление (MAOP) означает максимальное давление, при котором трубопровод или сегмент трубопровода могут эксплуатироваться в соответствии с этой частью.

Область умеренных последствий означает:

(1) Береговая зона, которая находится в пределах круга потенциального удара, как определено в § 192.903, содержащее либо:

(i) пять или более зданий, предназначенных для проживания людей; или же

(ii) Любая часть мощеной поверхности, включая обочины, обозначенной межштатной автомагистрали, другой автомагистрали или скоростной автомагистрали, а также любой другой основной магистрали с 4 или более полосами движения, как это определено в Концепции функциональной классификации автомагистралей Федерального управления шоссейных дорог. , Критерии и процедуры, Раздел 3.1 (см .: https://www.fhwa.dot.gov/planning/processes/statewide/related/highway_functional_classifications/fcauab.pdf), и это не соответствует определению области высоких последствий, как определено в § 192.903.

(2) Зона умеренного воздействия проходит в осевом направлении по длине трубопровода от самого дальнего края первого круга потенциального удара, содержащего 5 или более зданий, предназначенных для проживания людей; или любой части мощеной поверхности, включая обочины, любой обозначенной межштатной автомагистрали, автострады или скоростной автомагистрали, а также любой другой основной магистрали с 4 или более полосами движения до самого внешнего края последнего непрерывного круга потенциального удара, который содержит либо 5 или более зданий, предназначенных для проживания людей, или любой части мощеной поверхности, включая обочины, любой обозначенной межгосударственной магистрали, автомагистрали или скоростной автомагистрали, а также любой другой основной магистрали с 4 или более полосами движения.

Муниципалитет означает город, округ или любое другое политическое подразделение штата.

«Морской берег» означает за линией обычной низкой воды вдоль той части побережья Соединенных Штатов, которая находится в непосредственном контакте с открытым морем и за линией, обозначающей морскую границу внутренних вод.

Оператор — лицо, занимающееся транспортировкой газа.

Внешний континентальный шельф означает все затопленные земли, лежащие к морю и за пределами области земель под судоходными водами, как это определено в Разделе 2 Закона о затопленных землях (43 U.S.C. 1301), недра и морское дно которой принадлежат Соединенным Штатам и находятся под их юрисдикцией и контролем.

«Лицо» означает любое физическое лицо, фирму, совместное предприятие, товарищество, корпорацию, ассоциацию, штат, муниципалитет, кооперативную ассоциацию или акционерное общество, включая любого их доверительного управляющего, получателя, правопреемника или личного представителя.

Нефтяной газ означает пропан, пропилен, бутан (нормальный бутан или изобутаны) и бутилен (включая изомеры) или смеси, состоящие преимущественно из этих газов, с давлением пара, не превышающим 208 фунтов на квадратный дюйм (1434 кПа) при давлении 100 ° F ( 38 ° С).

Труба означает любую трубу или трубопровод, используемый для транспортировки газа, включая держатели трубного типа.

Трубопровод означает все части тех физических объектов, через которые газ движется при транспортировке, включая трубы, клапаны и другие принадлежности, прикрепленные к трубопроводу, компрессорные установки, узлы учета, регулирующие станции, станции доставки, держатели и сборные узлы.

Окружающая среда трубопровода включает удельное сопротивление почвы (высокое или низкое), влажность почвы (влажную или сухую), загрязнители почвы, которые могут способствовать коррозионной активности, и другие известные условия, которые могут повлиять на вероятность активной коррозии.

Трубопроводное сооружение означает новые и существующие трубопроводы, полосу отчуждения и любое оборудование, сооружения или здания, используемые для транспортировки газа или обработки газа в ходе транспортировки.

Сервисная линия означает распределительную линию, по которой газ транспортируется от общего источника поставки к отдельному потребителю, к двум соседним или смежным жилым или небольшим коммерческим потребителям, или к нескольким жилым или небольшим коммерческим потребителям, обслуживаемым через коллектор счетчика или коллектор.Линия обслуживания заканчивается на выходе счетчика потребителя или на соединении с трубопроводом потребителя, в зависимости от того, что дальше по потоку, или на соединении с трубопроводом потребителя, если счетчика нет.

Сервисный регулятор означает устройство на линии обслуживания, которое регулирует давление газа, подаваемого от более высокого давления до давления, предоставляемого потребителю. Регулирующий орган может обслуживать одного или нескольких клиентов через коллектор счетчика или коллектор.

SMYS означает, что указанный минимальный предел текучести составляет:

(1) Для стальных труб, изготовленных в соответствии с перечисленными техническими условиями, предел текучести указан как минимум в этих технических условиях; или же

(2) Для стальных труб, изготовленных в соответствии с неизвестными или не включенными в перечень спецификациями, предел текучести определяется в соответствии с § 192.107 (б).

Штат означает каждый из нескольких штатов, округ Колумбия и Содружество Пуэрто-Рико.

Система диспетчерского управления и сбора данных

(SCADA) означает компьютерную систему или системы, используемые контроллером в диспетчерской, которые собирают и отображают информацию об объекте трубопровода и могут иметь возможность отправлять команды обратно на объект трубопровода.

Линия передачи означает трубопровод, отличный от линии сбора, который: (1) транспортирует газ от линии сбора или хранилища к распределительному центру, хранилищу или крупному потребителю, который не находится ниже по течению от распределительного центра; (2) действует при кольцевом напряжении 20 или более процентов от SMYS; или (3) транспортирует газ в пределах месторождения.

Примечание:

Крупный заказчик может получать те же объемы газа, что и распределительный центр, и включает заводы, электростанции и институциональных пользователей газа.

Транспортировка газа означает сбор, транспортировку или распределение газа по трубопроводу или хранение газа в пределах или влияющих на межгосударственную или внешнюю торговлю.

Подземное хранилище природного газа (UNGSF) означает объект газопровода, который хранит природный газ под землей в связи с транспортировкой природного газа, включая:

(1)

(i) истощенный залежь углеводородов;

(ii) водоносный пласт; или же

(iii) Соляная пещера, добытая на растворе.

(2) Помимо резервуара или каверны, UNGSF включает в себя нагнетательные, отводящие, мониторинговые и наблюдательные скважины; стволы скважин и скважинные компоненты; устья и связанные с ними устьевые трубопроводы; узлы створчатых клапанов, которые изолируют устье скважины от соединенных трубопроводов за узлами клапанов-крыльев; и любое другое оборудование, сооружения, полосы отчуждения или здания, используемые для подземного хранения природного газа.

Слабое звено означает устройство или метод, используемый при вытягивании полиэтиленовой трубы, обычно с помощью таких методов, как горизонтально-направленное бурение, чтобы гарантировать, что трубопровод не повредит из-за превышения максимально допустимого растягивающего напряжения.

Сварщик — лицо, выполняющее ручную или полуавтоматическую сварку.

Сварщик — лицо, которое управляет аппаратом или автоматическим сварочным оборудованием.

Примечание редакции:

Для цитирования Федерального реестра, затрагивающего § 192.3, см. Список затронутых разделов CFR, который появляется в разделе «Помощь при поиске» печатного тома и на сайте www.govinfo.gov.

Перевод города с природного газа на водород

«Мы планируем провести ряд различных экспериментов для изучения поведения водорода, таких как скорость рассеивания, потенциальные источники воспламенения и анализ больших выбросов», — пояснил Энди Каммингс, главный консультант DNV GL — Oil & Gas, который является проектом, управляющим продолжающимся строительством испытательного оборудования для h31 в Спадеадаме.«Эти результаты помогут в оценке аспектов безопасности и эксплуатации, а также будут использоваться в общей количественной оценке рисков, проводимой консультативной группой DNV GL».

Работа основана на экспериментальных исследованиях, которые были проведены для природного газа в рамках перехода с городского газа, и позволит снизить любые изменения в рисках для безопасности.

Новая концепция поставки водородного газа в большой регион Великобритании

По словам Сэдлера, после получения доказательств безопасности «нет ничего, кроме политической воли», чтобы остановить перевод газораспределительных сетей на 100% H 2 .

Доказав техническую осуществимость преобразования газовой сети большого города на 100% H 2 , теперь в проекте h31 подробно описывается, как можно аналогичным образом преобразовать газоснабжение во всем регионе.

NGN опубликует проект h31 North of England (NoE) в ноябре этого года (2018). Это представляет собой «концептуальный проект» для преобразования всего региона в H 2 в период с 2028 по 2035 год. Регион потребляет около 85 тераватт-часов (ТВтч) газа в год.Он имеет 3,7 млн ​​точек газовых счетчиков и 12,5% населения Великобритании в таких областях, как Брэдфорд, Хаддерсфилд, Халл, Лидс, Ливерпуль, Манчестер, Тиссайд, Тайнсайд, Уэйкфилд и Йорк.

Проектный проект включает производственную площадку H 2 мощностью 12,15 гигаватт; Межсезонного хранения 8 ТВтч; вся сопутствующая береговая инфраструктура; и требования соответствующей схемы CCS, увеличивающиеся до 20 млн тонн в год к 2035 году.

Надежный вариант политики для правительства

Проект h31 NoE может представлять собой надежный первый вариант политики для правительства Великобритании после завершения последнего Сэдлер предположил, что к 2023 году программы h31 NIC и Hydrogen for Heat (Hy4Heat) предоставят важные доказательства безопасности.Hy4Heat — это правительственный демонстрационный проект стоимостью 25 млн фунтов стерлингов «после счетчика». Его цель — установить, технически возможно и безопасно заменить метан на H 2 в коммерческих и жилых зданиях, а также в газовых приборах.

Обнадеживает сторонников H 2 , «План чистого роста» правительства Великобритании от октября 2017 года показывает перевод сетей природного газа на 100% H 2 как один из крупномасштабных надежных вариантов декарбонизации.

В чем разница между типами газопроводов?

На природный газ приходится почти четверть энергии, потребляемой в Соединенных Штатах, и 33 штата производят его в промышленных количествах.У компании более 68 миллионов жилых и пяти миллионов бизнес-клиентов в США, которые получают природный газ по трубопроводам протяженностью 2,6 миллиона миль. Газопроводы классифицируются по-разному, в зависимости от их пропускной способности, назначения и юрисдикции. Например, эти трубопроводы можно классифицировать как линии сбора, передачи и распределения, которые определяют не только то, как они используются, но и то, как они регулируются. Любой, кто связан с газопроводами, должен понимать иногда тонкие различия между этими классификациями трубопроводов.

Линии сбора

Линии сбора транспортируют газ от производственного объекта, такого как устье скважины, к линии передачи, также известной как магистраль. Диаметр этих труб колеблется от двух до восьми дюймов, что относительно мало. Линии сбора могут быть такими узкими, потому что они обычно используют полевые компрессоры для создания давления, которое перемещает газ по трубопроводу. В этих устройствах используется турбина или двигатель внутреннего сгорания, который обычно приводится в действие небольшой частью транспортируемого газа.

Некоторые системы сбора включают оборудование для обработки, которое выполняет дополнительные функции, такие как удаление примесей. Такие вещества, как вода, диоксид углерода и сера, могут вызывать коррозию труб, в то время как инертные газы, такие как гелий, снижают энергетическую ценность природного газа. Эти примеси часто используются в таких областях, как химическое сырье.

Линии передачи

Природный газ перемещается из системы сбора в систему передачи, которая транспортирует газ на большие расстояния. Диаметр этих труб обычно составляет от 6 до 48 дюймов, а давление составляет от 200 до 1500 фунтов на квадратный дюйм (фунт / кв. Дюйм), в зависимости от метода производства.Такое высокое давление необходимо для транспортировки газа из регионов добычи в местные распределительные компании (НРС), которые могут находиться на расстоянии в тысячи миль.

Трансмиссионные трубопроводы обычно рассчитаны на работу с гораздо большим давлением, чем когда-либо потребуется в качестве меры безопасности. Например, трубопроводы в населенных пунктах обычно не работают более чем на половину от расчетного предельного давления. Более того, многие из этих конвейеров являются замкнутыми, что означает, что между одним и тем же источником и пунктом назначения проходит несколько трубопроводов.Эта избыточность увеличивает максимальную пропускную способность магистрального трубопровода, которая может потребоваться в периоды пикового спроса.

Распределительные линии

Газ в магистральном трубопроводе обычно проходит через шлюзовую станцию, когда попадает в местное газовое предприятие. Затворная станция снижает давление в линии до уровня распределения, который составляет от 0,25 до 200 фунтов на квадратный дюйм. Эта установка также вводит одорант в природный газ, который обычно не имеет запаха. Одорант придает газу кисловатый запах, который потребители могут обнаружить в небольших количествах в качестве меры безопасности.Затворная станция также измеряет расход газа, чтобы определить количество, полученное газовым коммунальным предприятием.

Затем газ перемещается от станции затвора к распределительной линии, диаметр которой обычно составляет от 2 до 24 дюймов. В распределительных линиях обычно есть секции, которые работают при разном давлении, которое регулируется регуляторами. Размер трубы и давление обычно уменьшаются по мере приближения распределительной линии к заказчику.

Операторы в центре управления газовой компанией непрерывно контролируют расход и давление газа в различных точках, чтобы гарантировать, что газ достигает потребителей с достаточным расходом и давлением для работы оборудования.Они также должны гарантировать, что давление остается ниже установленных пределов в целях безопасности. Близость распределительных линий к потребителям обычно ограничивает их давление до 20 процентов от проектного максимума.

Регуляторы регулируют поток газа через распределительную систему. Они откроются для увеличения потока газа, когда давление в секции упадет ниже указанной уставки, и закроются, когда давление поднимется выше другой уставки. Распределительные трубопроводы также имеют предохранительные клапаны, которые могут выпускать газ в атмосферу в качестве дополнительной меры безопасности, чтобы предотвратить разрыв труб.

Современные газораспределительные системы используют программное обеспечение для оценки своей мощности и обеспечения того, чтобы потребители получали газ с давлением выше минимального, необходимого для модернизации оборудования. Эти линии также соединены между собой в виде сетки с рядом запорных клапанов, которые сводят к минимуму перебои в обслуживании во время технического обслуживания и аварийных ситуаций.

Строительство

Безопасность является важным фактором при строительстве газопроводов из-за давления, которое они должны выдерживать, и последствий разрыва трубопровода.Линии распределения соответствуют самым высоким стандартам строительства из-за их близости к людям. Трубы необходимо проверять на соответствие государственным и отраслевым стандартам безопасности. Сборные и транспортировочные трубопроводы специально спроектированы для их предполагаемой роли в газопроводе, хотя оба они, как правило, изготавливаются из проката из высокоуглеродистой стали. Длина каждого сегмента трубы обычно составляет от 40 до 80 футов. Диаметр и толщина сильно зависят от таких факторов, как преобладающие почвенные условия, география и плотность населения.

Распределительные трубопроводы изначально были из чугуна, который с возрастом становится хрупким. Сталь по-прежнему является обычным материалом для старых трубопроводов, хотя новые трубопроводы все чаще изготавливаются из высокопрочного пластика или композитных материалов. Старые распределительные трубы могут быть изготовлены из пластика Aldyl-A, который особенно подвержен хрупкости. Национальный совет по безопасности на транспорте рекомендовал заменить распределительные трубопроводы из этого типа пластика.

Трубопроводы подвержены постоянным напряжениям, которые могут вызвать их разрушение. Движение грунта из-за циклов замерзания / оттаивания является основной причиной этих напряжений, которые обычно называют морозным пучением. В некоторых штатах требуется инспекция трубопроводов в зимний период, позволяющая отремонтировать их до того, как они разорвутся.

Установка

Исторически сложилось так, что трубопроводы прокладывались с открытыми траншеями, что до сих пор является наиболее распространенным методом сбора и передачи труб.Распределительные линии с большей вероятностью будут проложены бестраншейными методами, такими как бурение и горизонтально-направленное бурение (ГНБ), поскольку они вызывают меньшее нарушение окружающей среды. Растачивание особенно распространено для распределительных трубопроводов в городских условиях из-за его полезности при пересечении дорог.

Бестраншейные методы представляют больший риск повреждения существующих коммуникаций, поскольку они предполагают бурение и бурение, а не открытое копание. Металлические линии относительно легко обнаружить с помощью оборудования для обнаружения металлов, но канализационные трубы из глины и пластика требуют обнаружения менее надежными ультразвуковыми технологиями.Кроме того, поврежденные канализационные трубы могут оставаться незамеченными, пока домовладелец не заметит забитый канализационный коллектор. Наибольший риск возникновения поперечного отверстия заключается в том, что сантехники часто используют приводной шнек для очистки засоренной канализационной линии, которая может нарушить газопровод.

Федеральные правила обычно требуют, чтобы все линии электропередачи и некоторые линии сбора были проложены под землей на глубине не менее 30 дюймов в сельской местности и не менее 36 дюймов в густонаселенных районах. Дороги и железнодорожные переезды также требуют, чтобы эти линии были заглублены на глубину не менее 36 дюймов.Минимальная глубина для водных переходов может варьироваться от 18 до 48 дюймов, в зависимости от состава почвы или породы. Линии распределения обычно должны быть заглублены на глубину не менее 24 дюймов, хотя минимальная глубина снижается до 18 дюймов вдоль дорог и 12 дюймов на частной собственности. Эти минимальные глубины применяются только при установке и не требуют поддержания в течение долгого времени.

Underground Services, Inc. — одна из старейших компаний в Соединенных Штатах, предлагающих полный комплекс услуг по подземному инженерному строительству (SUE).Свяжитесь с нами сегодня по телефону (610) 738-8762 или запросите расценки онлайн, чтобы узнать, как мы можем помочь вам с вашим строительным проектом.

% PDF-1.3 % 459 0 объект > эндобдж xref 459 162 0000000017 00000 н. 0000003577 00000 н. 0000007478 00000 н. 0000007695 00000 н. 0000010257 00000 п. 0000010453 00000 п. 0000011403 00000 п. 0000011934 00000 п. 0000026427 00000 н. 0000026497 00000 п. 0000026589 00000 п. 0000026696 00000 п. 0000026803 00000 п. 0000026910 00000 п. 0000027017 00000 п. 0000027124 00000 п. 0000027231 00000 п. 0000027338 00000 п. 0000027445 00000 п. 0000027554 00000 п. 0000027663 00000 п. 0000027772 00000 п. 0000027881 00000 п. 0000027990 00000 н. 0000028099 00000 н. 0000028208 00000 п. 0000028317 00000 п. 0000028426 00000 п. 0000028535 00000 п. 0000028644 00000 п. 0000028753 00000 п. 0000028862 00000 п. 0000028971 00000 п. 0000029080 00000 п. 0000029189 00000 п. 0000029298 00000 н. 0000029407 00000 п. 0000029516 00000 п. 0000029625 00000 п. 0000029734 00000 п. 0000029843 00000 п. 0000029952 00000 н. 0000030061 00000 п. 0000030170 00000 п. 0000030279 00000 п. 0000030388 00000 п. 0000030497 00000 п. 0000030606 00000 п. 0000030715 00000 п. 0000030824 00000 п. 0000030933 00000 п. 0000031042 00000 п. 0000031151 00000 п. 0000031260 00000 п. 0000031369 00000 п. 0000031478 00000 п. 0000031587 00000 п. 0000031696 00000 п. 0000031805 00000 п. 0000031914 00000 п. 0000032023 00000 п. 0000032132 00000 п. 0000032241 00000 п. 0000032350 00000 п. 0000032459 00000 п. 0000032568 00000 н. 0000032677 00000 п. 0000032786 00000 п. 0000032895 00000 п. 0000033004 00000 п. 0000033113 00000 п. 0000033222 00000 н. 0000033331 00000 п. 0000033440 00000 п. 0000033549 00000 п. 0000033658 00000 п. 0000033767 00000 п. 0000033876 00000 п. 0000033985 00000 п. 0000034094 00000 п. 0000034203 00000 п. 0000034312 00000 п. 0000034421 00000 п. 0000034530 00000 п. 0000034639 00000 п. 0000034748 00000 п. 0000034857 00000 п. 0000034966 00000 п. 0000035075 00000 п. 0000035184 00000 п. 0000035293 00000 п. 0000035402 00000 п. 0000035511 00000 п. 0000035620 00000 п. 0000035729 00000 п. 0000035838 00000 п. 0000035947 00000 п. 0000036056 00000 п. 0000036165 00000 п. 0000036274 00000 п. 0000036383 00000 п. 0000036492 00000 п. 0000036601 00000 п. 0000036710 00000 п. 0000036819 00000 п. 0000036928 00000 п. 0000037037 00000 п. 0000037146 00000 п. 0000037255 00000 п. 0000037366 00000 п. 0000037477 00000 п. 0000037588 00000 п. 0000037699 00000 п. 0000037810 00000 п. 0000037921 00000 п. 0000038032 00000 п. 0000038143 00000 п. 0000038254 00000 п. 0000038365 00000 п. 0000038476 00000 п. 0000038587 00000 п. 0000038698 00000 п. 0000038809 00000 п. 0000038920 00000 п. 0000039031 00000 н. 0000039142 00000 п. 0000039253 00000 п. 0000039364 00000 н.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *