Давление тнвд: Как проверить давление ТНВД своими руками?

Содержание

как работает, как ломается, как восстанавливают

Категория: Полезная информация.

Топливный насос высокого давления (ТНВД) — самый сложноустроенный и дорогостоящий элемент топливной системы дизельных двигателей.

Назначение этого узла — подавать топливо под большим давлением в форсунки (или топливную рампу, затем в форсунки), откуда оно затем будет впрыскиваться в цилиндры. Поэтому при возникающих неисправностях с ТНВД владельцу грозят серьёзные проблемы со стабильной работой мотора или тот просто откажется заводиться.

 Принцип работы ТНВД 

Основная задача ТНВД — нагнетать под давлением порядка 500-1400 бар (зависит от конструкции и типа насоса) топливо и подавать его к форсункам, которые открываются в нужный момент и быстро выпускают (распыляют) топливо в цилиндр.

Поддержание высокого давления в системе — другое важнейшее назначение ТНВД, ведь без этого форсунка не сработает и опоздает с распылением горючего до мельчайших частиц, а ведь мгновенное смешивание распыляемого ДТ и воздуха является условием образования однородной топливовоздушной смеси. Другими словами — гарантирует стабильную и культурную работу дизельного двигателя.

Изначально ТНВД выполнял практически все функции по подаче топлива в цилиндры: создавал давление, нагнетал топливо и распределял его по форсункам. Так действовали насосы рядного и распределительного типа.

Затем появилась система впрыска Common Rail и магистральные ТНВД. В таких современных системах впрыска дизельных ДВС насос высокого давления не распределяет топливо по форсункам, а нагнетает его в топливную магистраль (рампу): металлическую трубку, запаянную с обеих сторон, своеобразный резервуар для хранения горючего. От рампы топливо по трубкам (одна форсунка — один топливопровод к рампе) подводится к электромагнитным / пьезоэлектрическим форсункам.

В системе Common Rail, таким образом, топливо подаётся ко всем форсункам одновременно, из общей магистрали под давлением порядка 1 600 – 1 800 бар.

Конструкция топливной рампы CR такова, что топливо, которое ТНВД в неё нагнетает, не запирается в рампе: излишки отводятся через сливной канал. Так обеспечивается циркуляция ДТ в системе, но как только электрический клапан форсунки открывается, топливо распыляется в цилиндр. И по-прежнему высокое давление играет важную роль в мгновенном приготовлении топливовоздушной смеси и последующем полном её сгорании.

 Плунжерная пара — главный узел в конструкции ТНВД 

Наиболее распространённый вид ТНВД для систем Common Rail — плунжерный. Основный рабочий элемент такого ТНВД — плунжерная пара: поршень (плунжер) и цилиндр (втулка, стакан).

Подпружиненый плунжер двигается благодаря кулачковому валу внутри втулки, набирая и выталкивая из полости над ним топливо. Высокое давление в системе обеспечивает прецезионное сопряжение: минимальный, точно выверенный зазор в 1-3 мм между плунжером и стаканом.

Часто в один корпус ТНВД устанавливают три плунжера. В полости над плунжером размещаются односторонние клапаны — на впуск и на выпуск топлива. Можно провести аналогию плунжерной пары ТНВД с сердцем, которое перекачивает кровь по организму похожим образом.

Важно. Плунжер во время работы смазывается топливом, которое через него проходит.

Конструкция разных видов плунжерных пар отличается. Встречаются ТНВД с плунжерными парами, где плунжер извлекается из корпуса и меняется в сборе. 

 Основные виды ТНВД 

Существует три типа ТНВД.

Рядные и распределительные относятся к ТНВД предыдущих поколений автомобилей, имеют относительно простую конструкцию, не отличаются повышенной чувствительностью к качеству топлива. Среди недостатков — сравнительно шумная работа и высокие потери на трение, особенно у рядных ТНВД.

В системах впрыска Common Rail используются магистральные насосы. Они способны создавать высокое давление и обеспечивать наиболее эффективный впрыск, но весьма привередливы к качеству топлива и дороги в обслуживании и ремонте.

Рассмотрим особенности разных видов ТНВД подробнее.

Рядные ТНВД применялись на легковых автомобилях, выпущенных до 2000 года. Это неприхотливые выносливые насосы, которые смазываются моторным маслом. Количество плунжеров равно количеству цилиндров, топливо подаётся по принципу каждой камере сгорания — свой плунжер. К недостаткам относятся большие потери на внутреннее трение и недостаточно высокое давление для эффективного распыления топлива.

Распределительные ТНВД устанавливаются на дизельные двигатели с количеством цилиндров от трёх до шести. В отличие от рядных насосов, в конструкции распределительных есть только один или два плунжера, и они обеспечивают одинаковое давление при подаче топлива для всех цилиндров. Это более лёгкие компактные насосы. Работают экономичнее, культурнее и мощнее, чем рядные ТНВД. Недостаток — выше требовательность к качеству топлива.

Магистральный насос — самый современный тип ТНВД для систем впрыска Common Rail. Такой насос содержит до трёх плунжеров, а в современных типах — часто только один. Существуют магистральные насосы и роторного типа. Магистральные ТНВД созданы с высокой точностью. Они ещё легче, компактнее, имеют минимальные потери на трение, создают высокое давление и. Но плунжеры таких ТНВД смазываются топливом, поэтому насосы крайне привередливы к качеству ДТ.

 Признаки неисправности ТНВД 

Владельца должны насторожить такие признаки неисправностей в работе дизельного двигателя, как:

  • неуверенный запуск;
  • падение мощности;
  • увеличение расхода топлива;
  • дымный выхлоп.

В этих случаях очень рекомендуется провести комплексную компьютерную диагностику двигателя и проконтролировать параметры наддува, подачи топлива, давления в топливной системе. А также параметры работы датчиков (в частности, расходомера, датчиков положения распредвала / коленвала), системы EGR и вихревых заслонок впускного коллектора.

Такое пристальное изучение всех параметров работы мотора связано с тем, что дизельная топливная аппаратура — это не только форсунки и ТНВД, но и ряд вспомогательных и контролирующих систем.

Бывает, проблема, которую ищут в неполадках с ТНВД, кроется в другом. Например, имеет место:

  • поломка подкачивающего насоса;
  • грязный топливозаборник в баке;
  • выход из строя насоса, перекачивающего топливо из одной части бака в другую;
  • изношенный регулятор низкого давления;
  • форсунка, льющая топливо в «обратку».

 Внутренние поломки ТНВД и их причины 

Из-за чего топливный насос высокого давления действительно может выйти из строя раньше времени — так это из-за некачественного топлива. Точнее из-за примесей в составе и попадания воды.

Примеси в составе топлива — смолы, парафины, механические взвеси, сомнительные присадки — ухудшают смазывающие свойства ДТ, что вызывает отложение на подвижных частях насоса.

Вода в случае попадания на подвижные элементы ТНВД (вместе с конденсатом с пустых стенок топливного бака или в составе некачественного ДТ), вызовет коррозию деталей. Плунжер и односторонние клапаны начнут подклинивать, нормальная циркуляция топлива нарушится, износ втулок и сальников ускорится в разы. В результате медленно, но верно, ТНВД выйдет из строя.

Если в топливной системе образовалась воздушная пробка, плунжер будет какое-то время работать без смазывания топливом, «на сухую». Механические детали от трения будут истираться друг об друга, а повышенная температура способна быстро деформировать элемент.  Работа ТНВД без смазки способна убить узел в считанные минуты.

К другим, не столько фатальным, поломкам ТНВД относят:

  • износ втулок вала в передней крышке корпуса;
  • износ сальника вала;
  • повреждение уплотнительных колец крышек корпуса / фланца;
  • выход из строя регулятора давления (механической или электрической его части).

 Как диагностируют и ремонтируют ТНВД 

Решение сэкономить на своевременном обращении к специалистам по ремонту и обслуживанию дизельной топливной системы, «поездить пока так», обратиться к знакомым гаражникам — всё это в случае поломки ТНВД выйдет боком и сильно ударит по бюджету.

Топливный насос, точнее, его плунжерная пара — действительно дорогостоящий элемент, и не всегда его можно восстановить. Что уж говорить о самостоятельной переборке системы. Тем более что конструкция отдельных ТНВД просто неразборная.

Важно. Мастера, работающие с дизельной топливной аппаратурой, говорят, что на самом деле среди систем Common Rail «больных» ТНВД мало, чаще проблема кроется в клапане ZME, регуляторе (DRV, PCV…) высокого давления и других сопутствующих элементах. Даже если формально насос в своей работе выходит за параметры диагностического стенда, но работает нормально — нужно дважды подумать, прежде чем вскрывать его и ремонтировать.

Ремонту ТНВД обязательно должна предшествовать компьютерная диагностика, а также стендовая проверка работы форсунок. Если подтверждается, что в неполадках с работой двигателя виноват насос высокого давления, его снимают и отправляют на диагностический стенд, чтобы проверить работу узла в разных режимах «работы двигателя».

Обычно на этом этапе становится понятно, в чём проблема, каков масштаб бедствия и какие варианты исправления ситуации можно предложить владельцу.

Например, если ТНВД «приговорила» коррозия, можно попробовать его разработать (до очередного подклинивания плунжера), но лучше заменить в сборе, купив новую плунжерную пару. 

Замена клапанов на новые тоже не представляет труда в случае такой необходимости. Меняют и уплотнительные кольца, и ремкомплекты.

Важно понимать, что возможность ремонта и замены отдельных элементов связана с особенностями конструкции ТНВД.

В современных насосах не предусмотрены процедуры шлифовки или расточки деталей, максимум — можно заменить плунжерную пару. А в самых современных насосах системы CR и это невозможно: случись что, придётся менять весь корпус ТНВД. То есть чем моложе автомобиль, тем выше вероятность в случае поломки заменить весь узел целиком.

После проведённого ремонта и замены изношенных деталей мастер отправляет ТНВД на диагностический стенд снова. Если параметры работы выйдут за предел нормативных, насос снова разбирают, ремонтируют, проверяют.

Полностью исправный ТНВД герметично запаковывают, чтобы исключить попадание воды, и возвращают владельцу. Осталось только установить на двигатель.

Итого

Когда кого-то отговаривают от владения дизельным автомобилем, в основном аргументы «почему не стоит» сводятся как раз к дорогостоящей дизельной аппаратуре. Если речь о подержанном авто с большими пробегами, выход из строя ТНВД повлечёт за собой расходы, к которым готов не всякий автовладелец.

Чтобы не столкнуться с подобной ситуацией, не рискуйте с «паленым» топливом, не используйте присадки и добавки для чего бы то ни было, которые добавляются в бак, особенно если на автомобиле Common Rail. Держите бак по возможности полным, а при первых же признаках неисправностей в подаче топлива обращайтесь к квалифицированным специалистам.

Все эти простые меры позволят поддержать работоспособность ТНВД на нормальном уровне годами.

О том, как устроены дизельные топливные форсунки, почему они ломаются и как их ремонтируют, узнаете из этой статьи.

ТНВД найдёте в нашем каталоге

Посмотреть запчасти в наличии

Метки: Топливная аппаратура, Неисправности топливной системы, Форсунки, ТНВД

Что такое ТНВД топливный насос высокого давления

Одним из основных узлов топливной системы является топливный насос высокого давления или ТНВД (сокращение от первых букв в названии). Нас интересует топливный насос высокого давления дизельного двигателя, так как есть ещё и бензиновый ТНВД, применяемый в инжекторных системах. Признан самым сложным узлом во всей системе топливной аппаратуры и в тоже время самым ответственным за работу в целом.

Назначение топливного насоса высокого давления

ТНВД предназначен для повышения до рабочего давления топлива и передачи его для последующего впрыска в камеру сгорания посредством форсунок. Старые варианты ТНВД сами распределяли такт впрыска в определённый момент цикла. В новых системах с аккумуляторным принципом действия «Common Rail» ТНВД создаёт давление в топливе и передаёт его в рейку (аккумулятор топлива). Так как сам насос не может создавать необходимое давление, не выходящее за пределы дозволенного, в ТНВД устанавливаются регуляторы давления, которые сбрасывают излишки топлива в обратку, тем самым снижая давление топлива.

Виды ТНВД

Топливный насос высокого давления за свою история был множество раз изменён, поэтому появилось несколько видов ТНВД, отличающихся друг от друга своим принципом действия.

  1. Рядный — отличается тем, что имеет один вал, приводимый в действие от газораспределительной системы двигателя. Вдоль вала установлены плунжера, которые нагнетают топливо в форсунки. Каждый плунжер отвечает за свой цилиндр.
  2. Распределительный — менее громоздкий, чем рядный, так как в нём за работу плунжеров не отвечает один вал. Различают несколько типов распределительных насосов: с кулачками торцевого, внутреннего или наружного размещения; роторные или плунжерные.
  3. Магистральный — топливный насос, которые не участвует в процессе распределения топлива по цилиндрам в зависимости от такта работы двигателя. Используется в топливной системе Common Rail.
  4. ПЛД секция — отдельно стоящий топливный насос высокого давления под каждый цилиндр, приводится в движение кулачковым распределительным валом двигателя.

Устройство топливного насоса высокого давления

Конструкция топливного насоса напрямую зависит от его вида, типа и поколения. Если говорить о каком-то общем представлении устройства ТНВД, тогда можно основываться на следующей структуре. Любое ТНВД имеет корпус, в котором находится вал, вращающийся от внешнего источника (двигателя). При вращении вала его неровной поверхностью (кулачками) приводится в действие плунжер или плунжера. Топливо входит в корпус ТНВД и распределяется к плунжеру/плунжерам, для дальнейшего создания высокого давление, которое выходит из корпуса ТНВД через штуцер/штуцера. Для регулировки давления в узле присутствуют датчики, клапана и прочие детали.

Ремонт топливных насосов высокого давления

Несмотря на всю сложность данного узла, ТНВД ремонтнопригодны. Главный принцип ремонта топливного насоса высокого давления заключается в замене изношенных деталей на новые, с последующей регулировкой нагнетаемого давления.

Регулировка топливного насоса высокого давления

Это самая сложная операция во всём процессе ремонта ТНВД, так как для осуществления регулировки необходимо иметь специализированное оборудование, которое также должно находится в исправном состоянии.

Установка топливных насосов высокого давления

После восстановления ТНВД одной из немаловажных операций является его установка, так как в старых ТНВД установка должна осуществляться по меткам с доведением регулировки по градусам, новые насосы устанавливаются проще. При установке ТНВД необходимо соблюдать чистоту, если хоть одна песчинка или прочая грязь попадёт внутрь насоса, узел может прийти в негодность.

Давление впрыска топливной аппаратуры bosch. Топливные насосы без электронного управления BOSCH VE

О книге: Пособие. Издание 2005 года.
Формат книги: файл pdf в архиве zip
Страниц: 46
Язык: Русский
Размер: 7.3 мб.
Скачивание: бесплатно, без ограничений и паролей

Топливные системы дизельных двигателей принято делить на непосредственного действия и аккумуляторные. В топливных системах непосредственного действия топливо подается от плунжера топливного насоса высокого давления (ТНВД) через топливопровод к форсунке. В аккумуляторных топливных системах плунжер ТНВД подает топливо в аккумулятор, а из аккумулятора в распылитель . Топливные системы дизелей можно также определить как разделенные и неразделенные.

Топливные насосы высокого давления делят на многоплунжерные, в которых на каждый цилиндр приходится один плунжер, и распределительного типа, в которых один или два плунжера обслуживают все цилиндры, для чего увеличивается цикличность работы плунжеров и вводится распределитель топлива.

По способу распределения топлива по цилиндрам распределительные насосы делятся на плунжерные, чаще одноплунжерные, и роторные. В плунжерных распределительных насосах топливо по цилиндрам распределяет плунжер-распределитель, в роторных — распределительный золотник.

В плунжерных распределительных насосах плунжер не только совершает поступательное движение, нагнетая топливо, но и вращается, распределяя топливо по цилиндрам. В роторных распределительных насосах топливо нагнетают плунжеры встроенные в ротор, а вращающийся ротор распределяет топливо по цилиндрам.

По методу дозирования, управления цикловой подачей топлива, распределительные ТНВД делятся на насосы с регулированием цикловой подачи отсечкой, дросселированием на всасывании, изменением хода плунжера и клапанным регулированием. Можно также разделить распределительные насосы по схеме привода плунжера: с внешним кулачковым профилем, с торцовым кулачковым профилем и с внутренним кулачковым профилем. Первые две схемы используют в плунжерных насосах, последнюю схему — в роторных.

В соответствии с описанной классификацией рассматриваемые распределительные насосы НД и VE относятся к плунжерным ТНВД с дозированием отсечкой подачи. Насосы НД имеют привод плунжера с внешним кулачковым профилем, в насосах VE используется торцовый кулачковый привод плунжера.

Фирма Bosch выпускает плунжерные распределительные топливные высокого давления для дизельных двигателей с начала 1960 годов. Первый серийный насос Bosch EP/VM имел дозирование дросселированием на всасывании, в последующих моделях дозирование осуществлялось отсечкой. ТНВД Bosch EP/VM, как и все последующие модели плунжерных распределительных насосов EP/VA, EP/VH, EP/VE, имеют торцовый кулачковый привод плунжера.

С 1976 года фирма Bosch приступила к массовому производству модели Bosch VE (EP/VE). В настоящее время разработаны и производятся ТНВД Bosch VE с электронным управлением. Насосами VE, выпускаемыми как непосредственно фирмой Bosch, так и по лицензии японскими фирмами Zexel (Diesel Kiki) и Nippon Denso, оснащаются в настоящее время большинство дизельных двигателей легковых автомобилей и микроавтобусов.

В СССР первым плунжерным распределительным насосом, прошедшим многолетнюю проверку в эксплуатации, был насос ОНМ-4, выпускаемый Ногинским заводом топливной аппаратуры. В 1967 году промышленность СССР приступила к серийному выпуску плунжерных распределительных насосов НД. Насос НД-21/4, спроектированный Центральным научно-исследовательским и конструкторским институтом топливной аппаратуры автотракторных и стационарных двигателей с учетом преимуществ конструкций насосов ОНМ-4 и 1П4, является базовым насосом семейства НД.

Серийный выпуск роторных распределительных насосов был начат в США в начале 1950 годов Верноном Рузе, по имени которого был и назван насос «Roosa Master». Насос имел привод плунжеров с внутренним кулачковым профилем и дозирование дросселированием на всасывании.

В настоящее время семейство этих ТНВД выпускается фирмой Stanadyne Diesel System, ранее имевшей название Hartford Mashine Screw Company. Вначале выпускались насосы Roosa Master моделей CB и DB, затем были созданы семейства насосов DB2 и DM4. Фирмой разрабатываются и совершенствуются модели ТНВД с электронным управлением PCF, PCL.

В топливной системе дизельного автомобиля немаловажную роль играет качество Bosch — компания, имеющая мировую известность. Под этой маркой выпускаются высококачественные запчасти для различных моделей авто. Конечно, стоимость товаров этой фирмы выше, чем у китайских конкурентов. Но на ТНВД экономить нельзя.

Задача агрегата — создание давления, необходимого для продуктивной работы мотора. В случае если при запуске двигателя вы слышите шумы, а расход топлива существенно возрастает, обратитесь в сервисный центр и пройдите диагностику.

Если в систему могла попасть вода, а также при использовании топлива низкого качества, нужна регулировка ТНВД Bosch. Подобная процедура потребуется, если давление насоса недостаточно, а также в случае, если форсунки изношены или сильно засорены и работают неподобающе. Если плунжерная пара неисправна, ее необходимо будет заменить. Стоит обратить внимание и на то, что часто из-за поломки одной детали страдают и близлежащие. Поэтому при наличии даже мелких неисправностей лучше провести соответственную диагностику в хорошем автосервисе.

Регулировку ТНВД Bosch стоит осуществить и в том случае, если вы обнаружили, что топливо подтекает. Если эта проблема будет надолго оставлена без внимания, возможно, потребуется длительный и дорогостоящий ремонт. Если герметичность нарушена, это приводит к снижению давления. А данная проблема влияет на производительность насоса и даже может привести к возгоранию мотора.

Если потребовался ремонт ТНВД Bosch, после него обязательно нужно произвести настройку. Ее выполняют с использованием специального стенда, который с высокой точностью производит замеры углов предварительного хода плунжерной пары, определяет начало подачи топлива и другие немаловажные характеристики.

Подобные работы можно проводить только с использованием специально предназначенного оборудования. И, конечно, не стоит доверять такую работу дилетантам.

ТНВД Bosch — устройство, которое требует профессионального обращения. Его лучше проверять на стенде. Если же вы все-таки решили отрегулировать прибор своими руками, сначала промойте его специальным средством. Это нужно для того, чтобы снять грязевые отложения и сделать внутреннюю поверхность ровной.

Затем нужно проверить по меткам опережение впрыска. Для этого выкрутите клапан и проверьте его. Деталь должна находиться в закрытом положении. С помощью молотка слегка постучите по верхней части клапана. Чтобы закрыть перепускное отверстие, обсадите внутреннюю часть.


Следующий этап — регулировка цикловой подачи ТНВД Bosch. Нужно выкрутить или же наоборот — вкрутить и зажать контргайку (по необходимости). Затем произвести корректировку холостого хода. Это делается так же, как и в случае с цикловой подачей. Нормой считается интервал от 770 до 780 оборотов в минуту. Завершающий этап — регулировка гидрокорректора. Тяга уменьшается при повороте штифта в направлении против часовой стрелки.

Как видите, можно выполнить эту работу самостоятельно. Но идеальный вариант — доверить ее специалистам.

ТНВД bosch устройство выглядит следующим образом. Топливный насос подает в цилиндры дозированное количество топлива под высоким давлением в зависимости от нагрузки и скорости автомобиля. Поэтому при выборе двигателя нужно уделять внимание ТНВД.

ТНВД важнейшая часть автомобиля.Основные блоки ТНВД это блок высокого давления с распределительной головкой и дозирующей муфтой, автоматический регулятор частоты вращения с системой рычагов и пружин. Также ТНВД bosch устройство включает в себя роторно-лопастный насос низкого давления с регулирующим перепускным клапаном, электромагнитный клапан для перекрытия впускного окна, автомат изменения угла опережения впрыскивания топлива. Вал привода топливного насоса располагается внутри корпуса ТНВД. На нем устанавливается ротор топливного насоса и шестерня привода вала регулятора с грузами. За валом в корпусе насоса размещено кольцо с роликами и штоком привода автомата опережения впрыскивания топлива. Привод вала ТНВД работает от коленвала дизеля, шестеренчатой передачей. Работа ТНВД происходит так, что поступательное движение плунжера одновременно с движением поршней в цилиндрах дизеля. Шайба обеспечивает поступательное движение, а вал топливного насоса – вращательное.

ТНВД bosch устройство отключения соленоидного управления прерывает подачу топлива к насосу при выключенном зажигании.

Самый важный элемент ТНВД – это лопастный топливоподкачивающий насос, который всасывает топливо от фильтра трубопровода. Колесо насоса располагается в круглом отверстии корпуса. Между ползунами всегда остается некое расстояние, которое уменьшается в сторону нагнетания насоса. Таким образом жидкость, находящаяся в этом объеме, принудительно выдавливается. Топливо подается под давлением в корпус топливного насоса высокого давления.

Распределительный плунжер ТНВД выполняет функции наполнения и разбрызгивания. Плунжер состоит из отверстий и выемок и работает следующим образом. Шлиц распределительного плунжера находится напротив наполнительного отверстия. Топливо поступает под давлением в свободное место в поршне. Затем плунжер проворачивается и наполнительное отверстие снова закрывается. Теперь кулачковый диск движется против самой важной опоры, которая несет обкаты на том же интервале, что и выступы на дисковом кулачке, чтобы уменьшить трение. Далее кулачковый диск движется по роликовому кольцу и происходит разбрызгивание. Следующее отверстие совпадает с каналом выпускного отверстия к форсунке. Топливо вытекает только в направлении цилиндра со сжатием и воспламенением.

Система топливоподачи дизеля с одноплунжерным распределительным топливным насосом с торцевым кулачковым приводом плунжера действует следующим образом (рис. 1).

Рис. 1. Принципиальная схема системы топливоподачи дизельного двигателя с одноплунжерным ТНВД:

1 – топливопровод низкого давления; 2 – тяга; 3 – педаль подачи топлива; 4 – ТНВД; 5 – электромагнитный клапан; 6 – топливопровод высокого давления; 7 – топливопровод сливной магистрали; 8 – форсунка; 9 – свеча накаливания; 10 – топливный фильтр; 11 – топливный бак; 12 – топливоподкачивающий насос (применяется при магистралях большой протяженности; 13 – аккумуляторная батарея; 14 – замок «зажигания»; 15 – блок управления временем включения свечей накаливания

Топливо из бака 11 прокачивается по топливо­проводу низкого давления в топливный фильтр тонкой очистки топлива 10, откуда засасыва­ется топливным насосом низкого давления и затем на­правляется во внутреннюю полость корпуса ТНВД 4, где создается давление порядка 0,2 … 0,7 МПа. Далее топливо поступает в насосную секцию высокого давления и с помощью плунжера — распреде­лителя в соответствии с порядком работы цилиндров подается по топливопроводам вы­сокого давления 6 в форсунки 8, в ре­зультате чего осуще­ствляется вспрыскивание топлива в камеру сгорания дизеля. Избыточное топливо из корпуса ТНВД, форсунки и топливного фильтра (в некоторых конструкциях) сливается по топливо­проводам 7 обратно в топливный бак. Охлаждение и смазка ТНВД осуществляются циркулирующим в системе топливом. Фильтр тонкой очистки топлива имеет важное значение для нормальной и безаварийной работы ТНВД и форсунки. По­скольку плунжер, втулка, нагнетательный клапан и элементы форсунки являются деталями прецизионными, топливный фильтр должен задерживать мельчайшие абразивные частицы размером 3…5 мкм. Важной функцией фильтра является также задержание и выведение в осадок воды, содержащейся в топ­ливе. Попадание влаги во внутреннее пространство насоса может привести к выходу по­след­него из строя по причине образования коррозии.

Форсунка. Форсунка (рис. 2) состоит из корпуса 2, распылителя 5 с иглой, пружины 11 и регулировочной шайбы 9. Игла форсунки сво­бодно перемещается в пределах на­правляющего канала распылителя и в то же самое время обеспечивает гер­метизацию в условиях высокого дав­ления впрыска. В нижней части иглы имеется коническое уплотнение. Пру­жиной форсунки игла прижимается к соответствующей по форме уплотня­ющей поверхности корпуса распыли­теля, когда форсунка находится в за­крытом положении.

Конические поверхности корпуса распылителя и иглы обеспечивают кон­такт с высоким удельным давлением и эффективной герметизацией.

Форсунка открывается, когда сила от давления на конические поверхности иглы (давление топлива) превышает си­лу пружины форсунки. Ввиду того, что в результате поднятия иглы происходит резкий рост силы, действующей на нее с учетом увеличения поверхности, на ко­торую воздействует топливо под высо­ким давлением, это сопровождается увеличением подачи топлива вследствие ускорения открытия иглы. Она останется открытой до тех пор, пока величина дав­ления в системе не снизится до величи­ны ниже давления открытия.

Рис. 2. Форсунка:

1 – канал входа топлива; 2 – корпус форсунки; 3 – корпус крепления распылителя; 4 – промежуточный элемент; 5 – распылитель форсунки; 6 – гайка топливопровода высокого давления; 7 – фильтр; 8 – штуцер возврата топлива; 9 – регулировочная шайба; 10 – канал подвода топлива к распылителю; 11 – нажимная пружина; 12 – нажимной палец

Величина давления начала открытия (приблизительно 110…140 кгс/см 2 для штифтовых форсунок и 150…250 кгс/см 2 для многоструйных форсунок закрытого типа) регулируется путем установки шайб под пружины форсунки.

Давление начала закрытия опреде­ляется геометрией форсунки (отноше­нием диаметра иглы к диаметру седла).

Топливные фильтры. Топливные фильтры предназначены для очистки топлива от твердых частиц. Они также предохраняют топливо от компо­нентов, вызывающих износ агрегатов си­стемы впрыска, поэтому должны быть достаточно емкими, чтобы собирать большое количество отсеиваемых частиц и обеспечивать длительные интервалы между техническими обслуживаниями. Если фильтр забивается, подача топлива снижается, и мощность двигателя падает.

Прецизионные детали системы впры­ска очень чувствительны к мельчайшему загрязнению топлива. К их защите от из­носа предъявляются высокие требова­ния, чтобы обеспечить надежность рабо­ты, минимальный расход топлива и пред­писанный уровень эмиссии ОГ.

При особо высоких требованиях к за­щите от износа и/или при увеличенном интервале обслуживания системы пода­чи топлива снабжаются фильтрами гру­бой и тонкой очистки.

Фильтр грубой очистки топлива предназначается, главным образом, для фильтрации крупных частиц и ча­ще всего представляет собой сетку с ша­гом в 300 мкм.

Фильтр тонкой очистки топлива расположен на топливной магистрали пе­ред топливоподкачивающим насосом или ТНВД. Фильтрация происходит за счет протекания топлива через сменные фильтрующие элементы 3 (рис. 3), вы­полненные из прессованных материалов или многослойных синтетических мик­роволокон. Возможны также конструк­ции, состоящие из двух фильтров, соеди­ненных либо параллельно для увеличе­ния емкости, либо последовательно, что позволяет проводить ступенчатую очист­ку топлива или соединять в единый агре­гат фильтры грубой и тонкой очистки. Все больше используются конструкции фильтров, в которых меняется только фильтрующий элемент.


Рис. 3. Фильтр тонкой очистки топлива:

1 – подвод топлива; 2 – отвод очищенного топлива; 3 – фильтрующий элемент; 4 – сливная пробка; 5 – крышка; 6 – корпус; 7 – распорная трубка; 8 – водосборник

Топливо может содержать влагу в виде ка­пель воды или в виде эмульсии воды с то­пливом (например, конденсат, возникаю­щий при перепадах температуры в топ­ливном баке). Естественно, вода не долж­на попадать в систему впрыска топлива.

Из-за различного поверхностного на­тяжения воды и топлива на фильтрующих элементах образуются капельки воды. Они накапливаются в водосборни­ке 8. Для удаления свободной влаги может применяться отдельный влагоотделитель-сепаратор, в котором капли воды отделяются от топлива под действи­ем центробежной силы. Контролируют наличие воды специальные датчики.

Для предотвращения закупоривание пор фильтрующих элементов кристаллами парафина, образующимися в топливе при зимней эксплуатации, в топливных фильтрах применяется предварительный подогрев топлива. В большинст­ве случаев предварительный подогрев то­плива осуществляется с помощью элект­ронагревательных элементов, охлаждаю­щей жидкости или топлива, поступаю­щего из системы обратного слива.

Свечи накаливания. В дизельных двигателях топливо воспламеняется от высокой температуры сжатого воздуха. При запуске двигателя, особенно при низкой температуре окружающего воздуха, температура в камере сгорания недостаточна для надежного самовоспламенения топлива. Для обеспечения надежного запуска дизельного двигателя в его конструкции предусмотрена система предварительного разогрева с использованием свечей накаливания. Свечи накаливания разогревают воздух в зоне впрыска топлива до температуры 850…1000°С за 3…4 с, что позволяет значительно улучшить условия запуска и после запуска в течении нескольких минут подогревать поступающий воздух при прогреве охлаждающей жидкости до 75°С.

Свечи подразделяются на штифтовые с нагреваемой спиралью и керамические .

В штифтовой свече штифт накаливания герметично запрес­совывается в корпус 5 (рис. 4), обеспечивая хорошее газо­вое уплотнение. Штифт состоит из термокоррозионностойкого стержня 4 накали­вания, внутри которого в уплотненном на­полнителе 9 из порошка оксида магния находится спиральная нить накаливания. Эта нить состоит из двух последовательно соединенных резисторов: размещенной на конце трубки накаливания нагрева­тельной спирали и регулирующей спи­рали. Нагревательная спираль имеет практически независимое от тем­пературы сопротивление, а регулирующая обладает положительным темпе­ратурным коэффициентом. При работе свечи накаливания она нагревается до температуры 850°С и работает в течение от 4 с до 2 мин. в зависимости от типа свечи и температуры двигателя. Подавае­мое топливо при этом нагревается до оптимальной температуры горения.

Продолжительность периода подогре­ва регулируется блоком управления свечи накаливания, который контролирует температуру двигателя через темпера­турный датчик охлаждающей жидкости и изменяет время подогрева.

Установленная на панели контрольная лампочка сообщает водителю, что про­исходит подогрев. Лампочка гаснет, после окончания подогрева, что свидетельствует о возможности запуска двигателя. После запуска двигателя свеча накаливания в зависимости от температуры двигателя может работать еще некоторое время. Это помогает улуч­шить сгорание топлива, пока двигатель прогревается и уменьшает выбросы токсичных веществ с от­работавшими газами. Обычно, подогрев включается клю­чом зажигания, поворотом во второе по­ложение. Однако некоторые модели автомобилей обо­рудованы системой предпускового подогрева, которая включается только тогда, когда открыта водительская дверь.


Рис. 4. Штифтовая свеча накала:

1 – штекер подачи электрического напряжения; 2 – изолирующая шайба; 3 – двойное уплотнение; 4 – стержень; 5 – корпус; 6 – уплотнение защитной оболочки; 7 – нагревательная спираль; 8 – трубка накаливания; 9 – наполнитель

Основными элементами керамической свечи накаливания являются контакт, корпус свечи и нагревательный стержень, выполненный из керамики (рис. 5). Нагревательный стержень состоит из изолирующего защитного керамического слоя и внутреннего керамического нагревательного элемента, заменяющего собой нагревательную и регулировочную спираль обычных металлических свечей накаливания.


Рис. 5. Керамическая свеча накаливания:

1 – соединительный контакт; 2 – корпус свечи; 3 – керамический нагревательный элемент; 4 – защитный керамический слой

Керамические свечи накаливания в течение 2 сек. достигают температуры примерно 1000°C, что обеспечивает такой же быстрый пуск двигателя, как у бензинового ДВС, без присущей дизельным двигателям «раскачки».

Напряжения при разогреве имеет три фазы. Первая фаза имеет напряжение 9,8…11,5 В, при температуре 1000° в течении 2 сек. – быстрый разогрев. В последующие моменты регулировки напряжение постепенно снижается и держится ниже напряжения бортовой сети: фаза 2 …7 В, фаза 3 … 5 В. Для разгрузки бортовой сети штифты свечей накаливания управляются широтно-импульсной модуляцией со смещением фаз.

Кроме указанных фаз для регенерации сажевого фильтра может применяться промежуточное накаливание. В этом случае свечи накаливания получают с блока управления двигателя сигнал управления на промежуточное накаливание. Благодаря промежуточному накаливанию улучшаются условия сгорания в процессе регенерации. По причине незначительного старения керамики процесс промежуточного накаливания при регенерации сажевого фильтра не оказывает особого влияния на керамические свечи накаливания.

Основными преимуществами керамических свечей накаливания, относительно металлических свечей, являются лучшая работа в условиях холодного пуска за счёт высокой температуры предварительного и последующего накаливания, меньшая токсичность ОГ благодаря более высокой температуре накаливания и больший срок службы. По сравнению с металлическими свечами накаливания керамические свечи при одинаковой потребности в напряжении обеспечивают гораздо более высокие температуры накала.

В настоящее время отдельные производители в свечи накаливания вставляют датчики давления для корректировки процесса сгорания.

Топливный насос . Топливный насос подает в цилиндры дизеля строго дози­рован­ное количество топлива под высоким давлением в опре­де­ленный мо­мент времени в зависимости от нагрузки и ско­ростного режима, поэтому характеристики двигателей суще­ственно зависят от работы ТНВД.

Схема распределительного насоса VE представлена на рис. 6, а его общий вид на рис. 7.

Основные функциональные блоки топливного насоса VE пред­ставляют собой: роторно-лопастной топливный насос низкого давления с ре­гулирующим перепускным клапаном; блок высокого давления с распределительной голов­кой и дозирующей муфтой; автоматический регулятор частоты вращения с систе­мой ры­чагов и пружин; электромагнитный запирающий клапан, отключающий подачу топлива; автоматическое устройство (автомат) изменения угла опе­режения впрыскивания топлива.


Рис. 6. Схема топливного насоса — Bosch VE:

1 – вал привода насоса; 2 – перепускной клапан регулирования внутреннего давления; 3 – рычаг управле­ния подачей топлива; 4 – грузы регулятора; 5 – жиклер слива топлива; 6 – винт регулировки полной на­грузки; 7 – передаточный рычаг регулятора; 8 – электромагнитный клапан остановки двигателя; 9 – плун­жер; 10 – центральная пробка; 11 – нагнетательный клапан; 12 – дозирующая муфта; 13 – кулачковый диск; 14 – автомат опережения впрыска топлива; 15 – ролик; 16 – муфта; 17 – топливоподкачивающий насос низкого давления


Рис. 7. Общий вид распределительного ТНВД VE:

а – ТНВД; б – блок высокого давления с распределительной голов­кой и дозирующей муфтой. Позиции соответствуют позициям на рис. 6.

Распределительный ТНВД VE может также быть оснащен различ­ными дополнительными устройствами, например, кор­рек­торами топ­ливоподачи или ускорителем холодного пуска, кото­рые позволяют индивидуально адаптировать ТНВД к осо­бенно­стям данного дизеля.

Вал привода 1 топливного насоса расположен внутри кор­пуса ТНВД, на валу установлен ротор 17 топливного насоса низко­го давления и шестерня привода вала регулятора с грузами 4. За ва­лом 1 неподвижно в корпусе насоса уста­новлено кольцо с ро­ли­ками и штоком привода автомата опережения впрыски­вания топлива 14. Привод вала ТНВД осу­ществляется от колен­чатого вала дизеля, шесте­ренчатой или ременной передачей. В че­тырехтактных двигателях час­тота вращения вала ТНВД состав­ляет половину от частоты вращения коленчатого вала, и работа распределительного ТНВД осуществляется таким образом, что поступательное движение плунжера синхронизировано с движе­нием поршней в цилиндрах ди­зеля, а вращательное обеспечива­ет распределе­ние топлива по ци­линдрам. Поступательное дви­жение обеспе­чивается кулачковой шай­бой, а враща­тельное – валом топливного насоса.

Автоматический регулятор частоты вращениявключает в себя центробежные грузы 4, которые через муфту регулятора и систему рычагов воз­действуют на дози­рующую муфту 12, изменяя таким образом величину топливоподачи в зависимости от скоростного и на­грузочного режимов дизеля. Кор­пус ТНВД закрыт сверху крышкой, в которой установлена ось ры­чага управления, связанного с педалью акселератора.

Автомат опережения впрыскивания топлива является гидравлическим устройством, работа ко­торого опре­деляется давлением топлива во внутренней по­лости ТНВД, созда­ваемым топливным насосом низкого давле­ния с регули­рующим перепу­скным клапаном 2.

Топливный насос низкого давления расположен в корпусе ТНВД на приводном валу и служит для забора топлива из бака и подачи его во внутреннюю полость корпуса насоса. Схема устройства то­пливного насоса низкого давлений с клапаном низкого давления по­казана на рис. 8.

Рис. 8. Топливный насос низкого давления и регулирующий клапан:

1 – кольцевая полость; 2 – ротор; 3 – лопасти; 4 – вал; 5 – перепускной регулирующий клапан; 6 – корпус клапана; 7 – резьбовая пробка; 8 – пружина; 9 – поршень

Насос состоит из ротора 2 с четырьмя лопастями 3 и кольца 1 в корпусе ТНВД, расположенного эксцентрично по внешней сто­роне ротора. При вращении последнего лопасти под действием центробежной силы прижимаются к внутренней по­верхности кольца, создавая, таким образом, камеры между ними, из которых топ­ливо под давлением по каналу посту­пает во внутреннюю полость корпуса ТНВД. Одновременно часть топлива по­ступает на вход пере­пускного регулирую­щего клапана 5 и, в случае его открытия, перепускается на вход насоса. Корпус 6 пере­пускного регули­рующего клапана завернут по резьбе в корпусе ТНВД, внутри кор­пуса имеется поршень 9, нагруженный тарированной на определен­ное дав­ление пружиной 8, второй конец которой упирается в пробку 7. Если давление топлива оказывается выше установленного значения, поршень 9 клапана открывает канал для перепуска части топлива на всасывающую сторону насоса. Давление на­чала открытия перепускного клапана регулируется измене­нием положе­ния пробки 7, т.е. величиной предварительной затяжки пружины 8.

Важную роль в обеспечении нормальной работы дизеля играет сливной жиклер, установленный в штуцере в крышке ТНВД (пози­ция 5 на рис. 6.). Жиклер диаметром порядка 0,6 мм, через ко­торый топливо идет на слив, обеспечивает поддержание требуемого давления топлива во внутренней по­лости корпуса ТНВД. Размер жиклера скоор­динирован с работой перепускного клапана.

Перепускной клапан в сочетании со слив­ным жиклером, обеспечивают заданную зависи­мость разности давлений топлива в корпусе ТНВД и на вы­ходе насоса низкого давления от частоты вращения вала ТНВД. Количество топлива, по­даваемого насосом низкого давления в несколько раз больше по­даваемого в цилиндры дизеля. Давление топлива во внутренней полости корпуса ТНВД влияет на положение поршня автомата опережения впрыскивания, изменяя угол опе­режения впрыскивания пропорционально частоте вращения ко­ленча­того вала двигателя.

Основным элементом, создающим высокое давление топ­лива в ТНВД и распределяющим топливо по цилиндрам дизе­ля, является плунжер, который совершает воз­вратно-поступа­тельное и вращательное движение.

Принцип действия насоса поясняет рис.9.


Рис. 9. Схема движения топлива в ТНВД:

1 – неподвижное кольцо; 2 – ролик; 3 – кулачковый диск; 4 – плунжер; 5 – втулка подачи топлива; 6 – камера; 7 – канал подачи топлива к форсунке; 8 – распределительный паз

Вы­ступы-кулачки кулачкового диска 3 находятся в постоянном контакте с роликами 2, установленными на осях в неподвиж­ном кольце 1. При вращении кулачковой шайбы каждый кула­чок, набегая на ролик, толкает плунжер вправо, а возвращение его в прежнее по­ложение осуществля­ется двумя пружинами блока ТНВД.

Количество кулачков на кулачко­вой шайбе, как и число штуцеров линии высокого давления с на­гне­татель­ными клапанами, соответствует числу цилиндров двига­теля, обычно четыре или шесть. Возвратные пружины плун­жера кроме того препятствуют разрыву кинематической связи кулачок — ролик толкателя при больших ускорениях. Обеспе­чивая воз­вратно-поступательное движение плунжера, кулач­ковая шайба формой выступов-кулачков определяет также ход плунжера и скорость его перемещения и, следовательно, ха­рактеристику, давление и продол­жительность впрыскивания. Все эти параметры, в свою очередь, определяются формой камеры сгорания и особенностями рабочего процесса данного дизеля и должны быть, таким образом, скоорди­нированы. По этой причине для ка­ждого типа дизеля рассчитыва­ется лента профиля куличков, ко­торая «накладывается» на фрон­тальную поверхность кулачковой шайбы, установленной в ТНВД. По­этому кулачковая шайба дан­ного насоса является деталью невзаимозаменяемой, индивидуально соответствующей данному типу ди­зеля.

Процессы топливоподачи. Плунжер ТНВД создает высокое давление топлива и рас­преде­ляет его по цилиндрам при осуществлении следующих функциональ­ных этапов процесса топливоподачи: впуск топ­лива, активный ход плунжера и впрыскивание топлива (на­гнетание), отсечка подачи, процесс закрытия нагнетатель­ного клапана и разгрузка линии высокого давления.

Процессы топливоподачи в распределительной головке показаны на рис. 10. При положении плунжера в крайнем левом положении (мертвой точке) (рис. 10, а), в камере высокого давления 3 находится топливо, поступившее ранее через впускной канал.

При движении плунжера вправо (рис. 10, б), топливо начинает сжиматься, при этом впускное отверстие 7 рассоединено с прорезью для впуска топлива 8, и топливо под рабочим давлением поступает через центральный канал плунжера в соответствующий выпускной канал определенного цилиндра. Под давлением открывается нагнетательный клапан, и топливо по трубопроводу высокого давления поступает к форсунке.

Подача топлива заканчивается, как только поперечно расположенное в плунжере отверстие отсечки подачи 6, выйдет за пределы дозирующей муфты (рис. 10, в) Топливо при этом выходит во внутреннюю полость насоса и нагнетание прекращается.

При дальнейшем повороте и движении плунжера влево (рис. 10, г) происходит разобщение распределительной прорези 2 с каналом 4, впускное отверстие совмещается с соответствующей прорезью 8 в плунжере и за счет создавшегося разряжения топливо поступает в камеру высокого давления 3 и центральный канал. Процесс впуска и последующего впрыска топлива происходит в течение поворота плунжера на 90 ° в четырехцилиндровом дизеле, 72 ° в пятицилиндровом и на 60 ° в шестицилиндровом.

Рис. 10. Фазы топливоподачи:

1 – плунжер; 2 – распределительная канавка; 3 – камера; 4 – выпускное отверстие; 5 – втулка подачи топлива; 6 – управляющее отверстие

Автоматический регулятор частоты вращения . Регулятор частоты вращения рассматриваемого ТНВД включает в себя механический регулятор с центробежными грузами и систему управляющих рычагов.

Схемы работы регулятора с системой рычагов и рабочими поло­жениями дозирующей муфты на различных нагрузочных и скоро­стных режимах показаны на рис. 11 а, б, в, г.

Грузы регулятора 1 (обычно четыре груза) установлены в держателе, который получает вращение от приводной шестерен­ки. Радиальное перемещение грузов трансформируется в осевое перемещение муфты регулятора 12, что изменяет положение на­жимного 6 и силового 4 рычагов регулятора, которые, поворачи­ваясь относительно оси М 2 , перемещают дозирующую муфту 9, определяя тем самым активный ход плунжера 11.


Рис. 11. Схема работы всережимного регулятора:

а – пуск двигателя; б – холостой ход; в – режим уменьшения нагрузки; г – режим увеличения нагрузки; 1 – грузы; 2 – ось скользящей муфты; 3 – регулировочный винт максимального режима; 4 – силовой рычаг; 5 – рычаг регулировки подачи топлива; 6 – нажимной рычаг; 7 – упор силового рычага; 8 – пластинчатая пружина пусковой подачи; 9 – дозирующая муфта; 10 – отсечное отверстие плунжера; 11 – плунжер; 12 – скользящая муфта регулятора; 13 – рычаг натяжения пружины; 14 – рычаг управления; 15 – регулировочный винт холостого хода минимального режима; 16 – ось рычага управления; 17 – рабочая пружина регулятора; 18 – фиксатор пружины; 19 – пружина минимального режима холостого хода; 20 – регулировочный винт холостого хода максимального режима

В верхней части силового рычага установлена пружина минимального режима холостого хода 19, а между силовым и нажимным рычагами пластинчатая – пружина пусковой подачи 8. Рычаг управления 14 воздействует на рабочую пружину регулятора 17, второй конец которой закреплен в силовом рычаге на фиксаторе 18. Таким об­разом, положение системы рычагов и, следовательно, дозирую­щей муфты определяется взаимодействием двух сил – силы предварительной затяжки рабочей пружины регулятора, опреде­ляемой положением рычага управления, и центробежной силы грузов, приведенной к муфте.

Работа регулятора при пуске дизеля. Перед пуском двигателя, когда коленчатый вал еще не вращается и топливный на­сос не работает, грузы регулятора находятся в состоянии покоя на минимальном радиусе, а нажимной рычаг 6 (его другое назва­ние – рычаг пуска) под действием пружины пусковой подачи 8 смещен влево на рис. 6.14, а, имея возможность качания относи­тельно оси М 2 . Соответственно нижний шарнирный конец рычага обеспечивает крайне правое положение дозирующей муфты 9 относитель­но плунжера 11, что соответствует пусковой подаче за счет увели­ченного активного хода плунжера h 1 . Как только двигатель запус­тится, грузы регулятора расходятся и муфта 12 перемещается вправо на величину хода «S», преодолевая сопротивление дос­таточно слабой пусковой пружины 8. Рычаг 6 при этом повора­чивается на оси М 2 по часовой стрелке, перемещая дозирующую муфту в сторону уменьшения подачи (влево на рис. 11, б).

Работа регулятора на минимальной частоте вращения холостого хода. При отсутствии нагрузки и положении рычага управления на упоре в регулировочный винт 15 двигатель должен ус­тойчиво работать на минимальной частоте вращения холостого хода в соответствии со схемой рис. 11, б. Регулирование этого режима обеспечивается пружиной холостого хода 19, усилие ко­торой находится в равновесии с центробежной силой грузов, и в результате этого равновесия поддерживается подача топлива, соответствующая активному ходу плунжера h 2 . Как только скоростной режим двигателя выходит за преде­лы минимальной частоты вращения холостого хода, реализуется ход «с» силового рычага при сжатии пружины 19 под действием увеличивающейся центробежной силы грузов.

Работа регулятора на нагрузочных режимах. В экс­плуатации дизеля со всережимным регулятором скоростной ре­жим устанавливается водителем путем воздействия через пе­даль акселератора на рычаг управления 14. На рабочих режимах пружина пусковой подачи 8 и пружина 19 холостого хода не ра­ботают, и работа регулятора определяется предварительной деформацией рабочей пружины 17. При повороте рычага управ­ления до упора в регулировочный винт холостого хода максимального режима 20 (рис. 11, в. г) в сторону увеличения скорост­ного режима и соответствующем растяжении рабочей пружины ее усилие передается на силовой рычаг 4 и затем через рычаг 6 на муфту регулятора 12, заставляя грузы 1 сходиться. Система рычагов при этом поворачивается относительно оси М 2 против часовой стрелки на рис. 11, перемещая дозирующую муфту 9 в сторону увеличения подачи до режимов внешней скоростной ха­рактеристики. Частота вращения коленчатого вала дизеля и со­ответственно грузов регулятора при этом увеличивается, цен­тробежная сила грузов и сопротивление последней усилию рабо­чей пружины также увеличиваются, и в какой-то момент наступа­ет равновесие сил и равновесие положения всех элементов ре­гулятора. При отсутствии изменения нагрузки двигатель работа­ет на установившемся режиме при постоянной частоте вращения (не принимая во внимание естественную для ДВС нестабиль­ность вращения).

Если на этом режиме имеет место изменение нагрузки, то в работу вступает автоматический регулятор в соответствии со схемами, показанными на рис. 11, в, г. При уменьшении нагруз­ки частота вращения увеличивается, грузы регулятора расходят­ся и, преодолевая сопротивление рабочей пружины, перемеща­ют муфту регулятора вправо (рис. 11, в). Система рычагов при этом поворачивается относительно оси М 2 по часовой стрелке, перемещая дозирующую муфту влево, в сторону уменьшения подачи.

На рис. 11, г показана работа регулятора при положении рычага управления на упоре регулировочного винта холостого хода максимального режима 20 и при увеличении нагрузки. В этом случае частота вращения вала дизеля уменьшается, грузы регулятора сходятся, центробежная сила грузов уменьшается, и под действием усилия рабочей пружины, муфта регулятора пе­ремещается влево, а система рычагов 4 и 6 перемещает дози­рующую муфту вправо, в сторону увеличения подачи.

Корректор по давлению наддува дизеля. Автоматический противодымный корректор или корректор по давлению наддува дизеля служит для приведения в со­ответствие расхода топлива, подаваемого в цилиндры дизеля, ве­личине расхода воздуха, подаваемого компрессором, исключая таким образом дымление двигателя. Необходимость установки указанного автоматического устройства определяется изменением плотности воздуха в цилиндрах дизеля с турбонаддувом в зависи­мости от режима работы турбокомпрессора. Особенно необходи­ма работа корректора на режимах разгона дизеля, когда величина топливоподачи возрастает значительно быстрее, чем расход воз­духа, при этом коэффициент избытка воздуха уменьшается, и ра­бота дизеля сопровождается дымлением.

Конструктивное исполнение корректора по давлению над­дува, установленного на верхней крышке корпуса насоса, пока­зано на рис. 12.


Рис. 12. Схема работы корректора с турбонаддувом:

а – положение мембраны при увеличенном давлении наддува; б – положение мембраны при недостаточном давлении наддува; 1 – рычаг-упор корректора; 2 – шток; 3 – мембрана; 4 – подвод разряжения от впускного коллектора; 5 – пружина; 6 – жиклер слива топлива: 7 – стержень; 8 – регулировочный винт максимальной подачи; 9 – увеличенный ход подачи; 10 – дозирующая муфта; 11 – плунжер; 12 – пусковой рычаг; 13 – силовой рычаг

Внутренняя полость корректора разделена мембраной 3 на две камеры — верхнюю, соединенную с впускным коллектором и находящуюся под давлением наддува, и нижнюю, содержащую пружину 5, которая действует на мембрану, оказы­вая сопротивление ее перемещению вниз. Нижняя камера корректора находится под атмосферным давлением. Мембрана 3 соединена со штоком 2, имеющим управляющий конус, в кото­рый упирается подвижный стержень 7, передающий движение штока и, следовательно, мембраны рычагу-упору корректора 1. Шток взаимодействует с силовым рычагом 13 регулятора. Рабо­та корректора происходит следующим образом. Если величина давления наддува недостаточна для преодоления усилия затяж­ки пружины 5, то мембрана 3 и шток 2 находятся в исходном по­ложении, как это показано на рис. 6.15, б. При увеличении давле­ния воздуха (рис. 12, а), подаваемого компрессором, мембрана, преодоле­вая сопротивление пружины, перемещается вниз, соответствен­но перемещая шток 2 с управляющим конусом, в результате чего стержень 7 изменяет свое положение и рычаг 1 поворачивается относительно оси по часовой стрелке под действием рабочей пружины регулятора. Силовой рычаг 13, следуя перемещению рычага-упора 1, также поворачивается вместе с пусковым рыча­гом 12 относительно их общей оси, перемещая до­зирующую муфту в направлении увеличения подачи. Таким об­разом, величина топливоподачи оказывается в соответствии с количеством воздуха, подаваемого в цилиндры дизеля, посколь­ку это количество пропорционально давлению наддува. Если скоростной и нагрузочный режимы уменьшаются, то снижается и давление наддува, пружина корректора перемещает мембрану со штоком вертикально вверх, и механизм регулятора работает в направлении, обратном описанному выше, уменьшая подачу топлива в функции давления наддува (рис. 12, б).

Если работа турбокомпрессора нарушается, то корректор по давлению наддува, ока­зывается в исходном положении на верхнем упоре (рис. 12, б), обеспечивая работу дизеля без дымления. Величина макси­мальной подачи топлива для данного двигателя регулируется винтом 8, установленным на крышке ТНВД.

Автомат опережения впрыскивания. Более раннее зажигание при увеличении частоты вращения коленчатого вала способствует увеличению мощности дизельного двигателя. При увеличении частоты вращения коленчатого вала впрыск начинается раньше, что обеспечивается автоматом (муфтой) опережения впрыскивания (рис. 13).


Рис. 13. Автомат опережения впрыскивания:

а – исходное положение; b – рабочее положение; 1 – корпус ТНВД; 2 – кольцо с роликами; 3 – ролик; 4 – палец; 5 – канал; 6 – крышка; 7 – поршень; 8 – опора; 9 – пружина; α – угол поворота стержня

Автомат опережения впрыскивания расположен в нижней части корпуса 1 насоса перпендикулярно оси вала ТНВД. Пор­шень 7 автомата закрыт с обеих сторон крышками 6, с одной стороны в поршне просверлен канал 5 для прохода топлива под давлением из внутренней полости корпуса насоса, с другой сто­роны установлена пружина сжатия 9. Поршень автомата посред­ством шарнира 8 и стержня (цапфы) 4 связан с кольцом 2 несу­щего ролика 3.

Работа автомата опережения впрыскивания топлива про­исходит следующим образом. В исходном положении поршень автомата находится под действием пружины 9 (рис.13, а). Давле­ние топлива во внутренней полости корпуса насоса возрастает пропорционально скоростному режиму двигателя и определяется регулировкой перепускного клапана низкого давления (поз. 2 на рис. 6.) и работой жиклера на выходе из насоса (поз. 5 на рис. 6.9). Это давление по каналу 5 (рис. 13) передается в рабочий цилиндр автомата с одной стороны поршня, который под дейст­вием силы давления топлива в определенный момент начинает перемещаться влево, преодолевая сопротивление пружины 9. Осевое перемещение поршня посредством шарнира 8 и стержня 4 передается кольцу с роликами, которое поворачивается и меняет свое положение относительно кулачковой шай­бы таким образом, что кулачки набегают на ролики 3 раньше, обеспечивая фазовое смещение на величину до 12° по углу поворота кулачковой шайбы (до 24° по углу поворота колен­чатого вала (рис. 13, b).

Корректирование угла опережения впрыскивания при хо­лодном пуске дизеля осуществляется вручную водителем из ка­бины посредством троса или автоматически посредством уст­ройства, устанавливающего угол опережения впрыскивания в зависимости от температуры охлаждающей жидкости.

Привод устройства монтируется на корпусе ТНВД, как это показано на рис. 14. Рычаг устройства крепится на валу 12, на другом конце которого эксцентрично расположена поворотная цапфа 3, взаимодействующая при повороте с кольцом 6, несу­щим ролики 7, т.е. с автоматом опережения впрыскивания топли­ва.

Рис. 14. Устройство для установки угла опережения впрыскивания в зависимости от температуры двигателя:

1 – рычаг; 2 – окно; 3 – поворотная цапфа; 4 – продольная прорезь; 5 – корпус насоса; 6 – кольцо с роликами; 7 – ролик; 8 – поршень; 9 – поворотный стержень; 10 – шарнир; 11 – пружина автомата опережения впрыскивания; 12 – ось устрой­ства; 13 – пружина шпилечная

Исходное положение рычага определяется упором 3 и пружиной 4 (рис. 15). К верхней части рычага устройства крепится трос 2 управления с места водителя или шток автомата привода 6.


Рис. 15. Схема автоматического привода устройства для установки угла опережения впрыскивания в зависимости от температуры двигателя:

1 – тяга; 2 – трос; 3 – упор; 4 – пружина; 5 – рычаг; 6 – корпус автомата

Работа устройства, ручного или автоматического, происходит следующим образом. При ручном приводе водитель поворачивает рычаг 1 (рис.14) перед пуском дизеля посредством троса из кузова автомобиля. При этом поворачиваются вал 12 и цапфа 3, под воздействием которой через прорезь 4 кольцо 6 с роликами 7 изменяет свое положение, поворачиваясь против ча­совой стрелки за счет сжатия пружины 11 и соответствующих пе­ремещений деталей 8, 9 и 10, устанавливая необходи­мый угол опережения впрыскивания топлива.

При автоматическом приводе автомат, внутри которого находится легко расширяющийся специальный состав, на холодном двигателе обеспечивает нужное опережение впрыскивания, за счет уменьшения объема состава. По мере увеличения температуры охлаждающей жидкости расширительный элемент в корпусе 6 (рис. 15) автомата прекращает свое воздействие на кольцо с роликами, за счет увеличения объема состава, находящегося внутри корпуса автомата.

Вакуумные насосы. В отличие от бензиновых двигателей, где имеется дроссельная заслонка и существует возможность создания достаточного разряжения для использования его в различных целях, например в вакуумном усилителе тормозной системы, в дизельном двигателе ввиду отсутствия дроссельной заслонки такой возможности нет. Поэтому в дизельных двигателях для создания достаточного разряжения применяется вакуумный насос. Один из вариантов насоса показан на рис. 16.


Рис. 16. Вакуумный насос дизельного двигателя:

а – горизонтальное положение лопасти; б – вертикальное положение лопасти; 1 – сторона всасывания; 2 – лопасть; 3 – вакуумный трубопровод; 4 – вакуум; 5 – ротор; 6 – сжимаемый воздух; 7 – отвод воздуха; 8 – сторона сжатия; 9 – канал для подвода масла

Вакуумный насос содержит эксцентрично установленный ротор 5 с перемещающейся в нем пластмассовой лопастью 2, которая разделяет рабочую полость насоса на две части.

При вращении ротора и перемещении в нем лопасти объем одной части рабочей полости увеличивается, а объем другой ее части уменьшается.

На стороне всасывания производится забор воздуха из вакуумной системы, который затем вытесняется через специальный канал 7. Вытесняемый воздух может использоваться для охлаждения деталей двигателя. Через специальный канал 9 от головки цилиндров к насосу подается масло, которое используется не только для смазки, но и для уплотнения лопасти в рабочей полости.

Привод вакуумного насоса осуществляется от коленчатого или распределительного вала и в последнем случае вакуумный насос может совмещаться с топливоподкачивающим насосом системы питания.

Диагностика и ремонт топливной системы на двигателях GDI

Ремонт топливной системы на двигателях GDI

Информация о материале
Автор: Владимир Бекренёв
Просмотров: 93399

Устройство топливной системы на моторах GDI. Из топливного бака через фильтрующую сетку топливо поступает в первый топливный насос. Здесь же топливо фильтруется приемной сеткой насоса, а затем очищается топливным фильтром тонкой очистки. Первый насос накачивает давление 3,5-4,5 кг.

Давление топливного насоса регулируется механическим регулятором давления, в который установлен в корпусе топливного фильтра. Топливо под таким давлением подается по магистральной трубке на вход ТНВД. На входе ТНВД установлен микронный фильтрик (основной заслон бензиновому микро-мусору). ТНВД накачивает рабочее давление 4,5-6,5 МРа, которое затем подается к топливным инжекторам. Давление, создаваемое ТНВД, регулируется механическим регулятором давления. В регуляторе имеется возможность механической плавной корректировки давления. На входе каждого инжектора установлен микрофильтр. Управление инжекторами происходит от блока управления двигателя при помощи усилителя инжекторов. Усилитель формирует высоковольтный импульс для открытия, удержания и закрытия инжектора. Инжектор, напомню, работает под большим давлением. Инжекторы впрыскивают дозированный заряд топлива под большим давлением на поршень. Далее заряд, отражаясь от поршня, смешивается с воздухом, и направляется к свече зажигания.

Поломки, возникающие в ходе эксплуатации, в топливной системе.

Практически каждый подержанный автомобиль с GDI имеет различные проблемы в топливной системе, которые напрямую связаны с грязным топливом. Происходит банальное засорение фильтров и последующая потеря давления в топливной системе. Моторы GDI работают на давлении 45-65 кг. Самые первые моторы не были научены работать на промежуточном давлении и попросту глохли при понижении высокого давления ниже 35 кг. И каждый запуск таких моторов осуществлялся на низком давлении. Для этого в систему был встроен электроклапан, который при включении зажигания стравливал давление в бак. Следующее поколение моторов уже были научены работать на разном (промежуточном) давлении. Но при пониженном давлении неизбежно фиксировалась системой ошибка 56 (Р0190) и блок управления ограничивал мощность мотора.

Примеры зафиксированных ошибок на экране монитора сканера.
 
При работе мотора на пониженном давлении время впрыска корректируется блоком управления в сторону повышения. При этом из глушителя появлялся черный сажевый выхлоп. Но автомобиль в таком положении все же может доехать до ремонта самостоятельно.
Диагностирование топливной системы.

На начальном этапе диагностики проверяют давление топлива на сканере. Делаются тесты давления в графике при дросселировании и при включении нагрузки. Также можно сделать тест отключения цилиндра и при этом еще добавить включение передачи АКПП или загрузить CVT. При таких нагрузках давление не должно падать ниже критических 40кг.

На фотографиях несколько примеров показаний правильного давления и просадки давления.

  

  
Далее на фото фрагменты даты сканера – давление топлива занижено.
  

  

Просадку высокого давления топлива проверяют на сканере.


Информативным является контроль давления в графическом виде с нагрузками и с перегазовками.

На первом и втором скриншоте при акселерации высокое давление проваливается, затем восстанавливается. Это говорит о загрязненном фильтрике на входе ТНВД. Либо о завоздушивании системы.
  
Как упоминалось выше в насосе на входе и на выходе установлен фильтрик, также в каждом инжекторе. При ремонтах и по показаниям фильтрики необходимо менять. Ниже на фото фильтрик, каталожный номер для заказа и инструмент съёма из насоса.
  

Пример графики правильного высокого давления после замены фильтриков.
  
Высокое давление можно измерить и на датчике давления мультиметром. И сравнить с таблицей показания http://www.mek1.ru/teh/gdi/173-tablica.html . Но не на всех моторах есть доступ к датчику. Фото датчика и место установки на топливной рейке.
  

  
Датчики надежны и долговечны. Но все же имеют изъян. Контакты датчика не защищены от попадания воды. При мойке мотора под давлением есть большая вероятность попадания воды в корпус датчика и последующий выход его из строя.

Потеря давления первого топливного насоса в топливном баке.

При диагностировании с зафиксированной ошибкой 56, Р0190 которые означают ненормальное давление топлива в системе — все проверки необходимо начинать с проверки давления первого насоса в бензобаке. Давление можно проверить как непосредственно на корпусе фильтра, так и на входе ТНВД, но правильней измерять его непосредственно на ТНВД при помощи специальных переходников. Примеры переходников и замер давления топлива на разных моторах.

  

  

  

  

  
При «сваливании» низкого давления на оборотах проверяют чистоту впускной сетки первого насоса и наличие бензина в баке. Давление может теряться также из-за грязного топливного фильтра. Частота замены фильтра-25 т. км. Замену фильтра производят с особой аккуратностью. При сборке все резиновые кольца смазывают солидолом, провода питания правильно укладывают, а все пластмассовые соединения фиксируют до щелчка.

 

  
Необходимость замены топливного фильтра определяется по записям владельца, о предыдущей замене или по наличию на выходе из топливного фильтра грязного топлива, или по цвету фильтрующего элемента фильтра, или по весу. После замены расходников (если давление не восстанавливается) проверяется механический регулятор давления первого насоса. Следующим этапом меняется топливный насос. Насос должен обеспечивать давление в системе без падений при максимальных нагрузках не менее 3,4 кг. Следующей проверкой по восстановлению давления будет замена сетки на входе ТНВД. Номер детали для заказа MD619962. На сегодняшний день сетки легко покупаются как расходные материалы и по лояльной цене. Определённая трудность возникает при демонтаже и установке сетки. Но при использовании строительного самореза, подходящего диаметра 5мм, процедура снятия легко осуществима. Главное не разорвать сетку. Части от фильтра могут попасть в регулятор давления, и тогда ремонт ТНВД неизбежен.
Примеры каталожного номера фильтрика, оправка для запрессовки, саморез для снятия и пример снятия фильтрика. Для правильной установки фильтра необходима оправка или фирменный инструмент ММС.

  

  

 
На некоторых моторах после сборки из топливной магистрали необходимо выгнать воздух (прокачать систему). Воздух стравливается в линии высокого давления. Можно использовать порт для контроля высокого давления или трубку подачи топлива к инжекторам.
При поисках потерь давления первого насоса важно проверять все детали системы от бака до насоса поэтапно и последовательно, чтобы не нагружать клиента ненужными финансовыми тратами. Мы думали это насос, а оказалось регулятор или резинка в фильтре… Также и клиент должен быть в курсе последовательности проверок и затрат на производимые работы.

Потеря давления ТНВД

Насосы высокого давления концерна ММС – пожалуй, самые надежные. Один плунжер, малый ход работы плунжера, пластинчатые клапана в линии нагнетания давления, разделяющая топливо и масло гофра, минимум резины, механический регулятор давления, возможность замены фильтриков, плюс возможность ручной корректировки давления и наконец, пониженное давление в работе – все это наголову превосходит ТНВД других производителей.

  
Топливные насосы GDI, пожалуй, единственные насосы которые поддаются полноценному ремонту. Ресурс отремонтированных насосов велик. Ремонт заключается в притирке (устранении выработки) пластинчатых клапанов, устранении износа в регуляторе давления, замене фильтров, замене тарированных пружин с шариками в разделяющих клапанах или их мойка. Замене уплотнительных колец. При показаниях меняется плунжерная пара. И проведение общей чистки тела насоса в ультразвуковой ванне. Процедура ремонта широко освящена в сети. Такой ремонт необходимо осуществлять людям имеющим представление о работе насоса и механике насоса. При неправильной сборке можно легко загубить мотор (при протечках топлива в масло) или даже сжечь свой автомобиль. После ремонта ТНВД проверяется на стенде. Проверяют создаваемое давление и прокачивают насос. Примеры фото — дефектов насосов. Грязь в фильтрике, ржавчина в регуляторе, бензиновые осадки на входе ТНВД, масляный кокс на гофре.

  

  
Еще одна неисправность — срезан привод насоса и разрушен распредвал.

  

  
Ржавчина в ТНВД, выработка в пластинах, замятая гофра, ржавчина на плунжере

  

  

  

  
При ремонте ТНВД необходимо уделять особое внимание на регулятор давления топлива. От правильной работы которого зависит стабильность накачанного давления. Регулятор давления- это прецизионная пара. При ремонте пара притерается абразивным составом. Еще примеры. Забитая сетка регулятора давления ТНВД двигателя 4G15GDI, отремонтированный регулятор давления двигателя 4G93(4)GDI в разборе.

  

  


Топливная рейка и топливные инжекторы.

Инжекторы на моторах GDI имеют массивный корпус. Обмотка инжектора низкоомная, и при таком исполнении не перегревается. Пластик обмотки надежный и не разрушается со временем. Такие параметры корпуса дают несомненный плюс при съёме инжекторов с двигателя. Мала вероятность их сломать при демонтаже. Инжекторы установлены в головку блока цилиндров через уплотнительные кольца, а в топливную рампу через массивные резиновые кольца. Сопло инжектора выведено непосредственно в цилиндр двигателя. Минусом установки на моторах бесспорно можно назвать только недоступность быстрого съема инжекторов. Для снятия необходимо демонтировать впускной коллектор. Примеры мест установки инжекторов на различных моторах.

  

  
Впрыскиваемый заряд топлива, направлен на поршень, и отражаясь от него, направляется к свече. Управление работой инжектора осуществляется при помощи высоковольтного усилителя. Для моторов с различными объемами и характеристиками выпускают разные по производительности налива инжекторы. Различаются они цветом обмотки пластика. Черные, коричневые, серые, розовые, оранжевые, синие, зеленые. При установке инжектора с меньшей производительностью на мотор большего объема — мотор существенно теряет в мощности, холодный запуск становится очень трудным. В обратном варианте увеличивается расход топлива, и со временем из-за перелива перестает работать свеча. Примеры инжекторов с различных моторов.

  

  

  

  


Загрязнение инжекторов.

Каждый инжектор имеет на входе сменный микрофильтр. Такая организация фильтрации топлива обеспечивает максимальную защиту микро-мусору. Но все же в топливе имеются всевозможные примеси, которые прилипают к игле инжектора. Загрязняется и сопло. Конусный распыл инжектора со временем нарушается. Сетки на входе также загрязняются. Производительность форсунки уменьшается. Изготовитель предусмотрел возможность контроля загрязнения инжекторов. В дате сканера — есть параметр накопленной топливной коррекции Learn Air Fuel, который показывает, как работает топливная система – её производительность. При достижении предельных расчетных значений инжектор следует заменить. Эти пределы отличаются для разных моторов, и опубликованы в таблице.

  
Плюс к этому блок управления при переобеднении или при переобогащении смеси фиксирует ошибки по качеству слишком бедная или слишком богатая.Примеры показаний на мониторе сканера. Нормальные значения, запредельные и минусовые. Пример ошибки по бедной смеси.

  

 

  

Когда топливная коррекция достигает критичных 12% — инжекторы, согласно таблице, следует заменить. Но можно попытаться их реанимировать. Промывкой инжекторов в ультразвуке или проточной промывкой топливной системы.Примеры загрязнений сопел инжекторов и загрязнение водой инжекторов и топливной рейки.

  

  

  
В условиях высоких цен на форсунки диагносты научились эффективно промывать топливную систему. Тем самым откладывая процесс замены дорогостоящих деталей. Загрязненная топливная система провоцирует неровную работу мотора в различных режимах. Возможны пропуски работы цилиндров, детонация, дробление при акселерации, толчки при разгоне и ограничение мощности, и падение максимальной скорости. Оценить работу инжекторов можно при диагностике мотора. Критерием в оценке является газоанализ и параметры накопленной топливной коррекции. При оценке кислорода в выхлопе в обычный режим работы мотора можно достоверно определить состояние топливной системы. Промывку инжекторов можно осуществлять двумя способами. Один безразборный — проточный метод, второй с демонтажём инжекторов и очисткой в ультразвуковой ванне специальными составами. После промывки в ультразвуке всегда следует менять фильтрики в инжекторах. Ниже примеры очистки в ультразвуке и проверка на стенде на производительность в режиме пролива.

  

  


Инжекторы после ультразвуковой очистки.

  

  

После очистки в ультразвуке инжекторы сначала  устанавливают в рейку. Затем нужно приклеить солидолом к инжектору опорную и отражающую шайбы. Потом аккуратно установить в головку блока и зафиксировать.

 

  
Безразборная промывка топливной системы также эффективна. Не нужно разбирать мотор — достаточно подключится к топливной системе. Её следует проводить по определенному алгоритму. Пять семь минут работы мотора с эффективной акселерацией, затем 15-20 минут остывания. 4-5 таких циклов. Жидкость следует применять ту, которая способна растворить отложения в вашем бензине. Минус безразборной промывки заключается в невозможности заменить фильтрики на инжекторах. И если фильтры загрязнены ржавчиной эффекта от такой промывки не будет. После промывки можно проконтролировать сопла на предмет очистки эндоскопом.

Потеря герметичности инжекторов.

Другая поломка инжектора – нарушение его герметичности. Это связано с попаданием воды и различного топливного мусора под запорную иглу. В такой ситуации резко увеличивается расход топлива. Появляется черный сажевый выхлоп. Цилиндр, на котором протекает инжектор, постепенно перестает работать. Затрудняется горячий запуск мотора. В дате сканера режим накопленной топливной коррекции смещается в минус. Газоанализ выхлопа регистрирует повышенный уровень СО и СН. В моем опыте промывка капающих инжекторов, редко приносила положительные результаты. Если имеются раковины на игле или седле инжектора, то промывка тут бесполезна. А если под иглой ворсинки от фильтра, то такой инжектор можно попытаться отмыть в ультразвуке.


Несколько слов о ремонте ТНВД.

Для ремонта ТНВД, необходимо изготовить инструмент. Понадобится головка с проточками для откручивания гайки, которая крепит гофру. Головка для разбора регулятора давления, магнит, и крючок для разборки регулятора давления. Еще понадобится плоскость для шлифовки, ультразвуковая ванна, сжатый воздух давлением не менее 7-8кг, стоматологический зонд несколько видов наждачной бумаги для притирки шайб, жидкий ключ, солидол, притирочная паста разной фракции и профильный сильный магнит для полировки пластин. Еще необходимы сменные резиновые кольца для сборки насоса.

 

  
Для ремонта насос демонтируют с двигателя. Разбирают верхнюю крышку. Профильную гайку отвинчивают при помощи перфоратора. Насос необходимо закрепить в слесарные тиски. Гофру обмотать несколькими слоями изоленты, для предотвращения возможности её замять. Гофру извлекают при помощи двух минусовых отверток. Пластины вынимают магнитом. Регулятор давления извлекается при помощи сжатого воздуха. Верхняя гайка с регулировочным винтом откручивается специальной головкой. Затем все детали насоса моются в ультразвуке. Далее шайбы и регулятор притираются. Плунжер проверяется на пропуск. Ограничитель хода плунжера также нужно притереть к пластине. Затем все детали собираются в единое целое. После сборки насос необходимо проверить, прокачать и после установить на мотор. Более подробно о тонкостях ремонта ТНВД в последующих статьях. Продолжение следует…

Добавлять комментарии могут только зарегистрированные пользователи.У вас нет прав оставлять комментарии.

Чрезмерное давление в топливной магистрали и проблемы с ТНВД у Шкода Октавия 2010

Описание проблемы этот клиент начал с длительного рассказа о том, что делалось с автомобилем Шкода Октавия до меня. Изначально у него появился сильный неприятный металлический визг из ТНВД. Компьютерная диагностика в другом сервисе показала, что имелось повышенное давление топлива (140 атм) в магистрали высокого давления вместо заданных блоком управления 60..70 атм. Замена ТНВД и его толкателя не принесли никаких успехов: звук остался, как и повышенное давление. Клиенту посоветовали заняться проверкой и ремонтом электрической части, с чем он и обратился в сервис недалеко от своего места жительства. Там ему разобрали жгут проводов подкапотного пространства от блока ЭБУ до непосредственно ТНВД, точнее регулятора давления. Не найдя ничего интересного, ему предложили, чтобы «не порвало рампу давлением подцепить управляющий сигнал регулятора давления на массу». Машина стала хуже ехать, давление в реле упало до 8-9 бар, а визг ТНВД пропал. Выслушав этот рассказ, я пригласил его к себе для исследования проблемы.

Когда клиент приехал, он довольно чётко объяснил, что прежде всего его интересовала исправность блока ЭБУ, верно ли он управляет регулятором давления топлива. В свою очередь я ему объяснил, что буду возвращать электрику автомобиля к заводскому состоянию, чтобы можно было сделать какие-то адекватные выводы об исправности регулятора ТНВД, проводки или ЭБУ.

Чтобы добраться до косы управления и понять, что там накручено и куда, пришлось разбирать подкапотное пространство:


Рядом с блоком реле и предохранителей можно заметить нештатное реле и идущие к нему провода. Именно оно выполняло функцию включения массы в цепь управления регулятором давления.

Один конец провода просто воткнули под штатное реле, чтобы запитать.

Продолжаем вскрытие проводки, разобрав впуск, сняв аккумулятор и площадку под ним.

Результаты вмешательства: просто подцепились на плюс там, где первое пришло в голову, нарушив штатную изоляцию.

Отрезав всё лишнее, восстановив штатную проводку и её изоляцию собрал всё обратно, чтобы наконец приступить к диагностике.

Подключил сканер, чтобы прочитать ошибки:
Р0030 — Цепь управления подогреваемым кислородным датчиком (ряд 1, датчик 1) / Постоянное значение
Р2295 — Низкое значение сигнала в цепи управления регулятором 2 давления впрыскивания топлива форсункой / Постоянное значение
Р0016 — Положение коленчатого вала — корреляция с положением распределительного вала — блок 1 датчик А / Постоянное значение

Про первую ошибку и третью владелец знал ранее, а вторая появилась после неквалифицированного вмешательства в проводку. Забегая вперёд скажу, что она потом в процессе диагностики не появлялась.

Завёл автомобиль, визг ТНВД ожидаемо появился снова. По сканеру проверил реальное и заданное давление в реле на холостом ходу: 70 атм заданное и 130..140 атм реальное.

Текущей задачей было выяснить, правильно ли управляет ЭБУ клапаном. Подключаю осциллограф к одному из пинов регулятора ТНВД:

Напряжение около 12 вольт, видимо, попал в питающий пин, так как после заводки не появилось никаких импульсов.

Информативность данного замера в том, что у нас отпадают вопросы по качеству питания регулятора давления топлива, нет обрывов провода и просадок напряжения.

Подключаемся ко второму пину и заводим автомобиль:

Мои теоретические знания мне подсказывали, что управление данным регулятором давления осуществляется подобием ШИМ-сигнала, а следовательно форма увиденной осциллограммы наводит на мысли, что с управлением регулятором всё в порядке. Изначально эталона осциллограммы не было, а чуть позже я нашёл его:

Отзвонившись владельцу, высказав свои доводы и в каком-то смысле успокоив, что блок исправен, я продолжил проверки.

Мне не давала покоя ошибка по рассинхронизации датчика коленвала и распредвала (P0016).

Чтобы понять суть моих размышлений, необходимо рассмотреть принцип создания высокого давления в системах непосредственного впрыска при помощи ТНВД. Картинка и текст взяты с официального мануала по двигателям 1.4 TSI концерна VAG:

Таким образом, пришёл к выводу, что имеется прямая зависимость между работой ТНВД и правильными фазами ГРМ. Решил провести проверку.

ДПРВ расположен сверху, подключиться к нему нет никаких проблем. ДПКВ находится очень далеко, и сверху не достать, поэтому решил подключиться к катушке зажигания и от неё уже отстроится в анализе снятой осциллограммы.

Получил такую картину:

Верхняя осциллограмма — это импульс, подаваемый на катушку зажигания; нижняя осциллограмма — это импульс, снимаемый с ДПРВ.

Эталон осциллограммы нашёл в интернете:

Невооруженным глазом заметно, что на нашей осциллограмме положение распредвала слишком раннее относительно импульса катушки зажигания.

Увы, я не могу показать в динамике, как менялся звук ТНВД после запуска двигателя, однако чётко видел и слышал, что в самом начале работы осциллограмма принимала вид, близкий к эталону на пару секунд, а ТНВД при этом не пищал и не скрипел, а спустя какие-то моменты он начинал сваливаться в раннее положение и ТНВД начинал скрипеть.

По итогу диагностики владельцу рекомендована проверка фаз ГРМ, несмотря на то, что он менял цепь около 30 тыс. км. назад, механическая проверка фазорегулятора, а так же проверка клапана фазорегулятора, устанавливаемого сверху двигателя:

По поводу излишнего давления в реле успокоил владельца, что в ТНВД есть клапан, стравливающий излишнее давление топлива как раз при достижении 130..140 атмосфер, и поэтому как минимум до сервиса, где будут производить механические работы, он сможет спокойно доехать.

Курахтанов Игорь
©Легион-Автодата

Кострома, Малый переулок, 10
+7 (963) 930-18-21
режим работы 9-21
autodiagnostic44.ru

Топливный насос высокого давления (ТНВД)

 

Мы уже говорили о насосах высокого давления в дизельном автомобиле. Топливный насос высокого давления (ТНВД) дизельного двигателя является одним из наиболее сложных узлов топливной системы дизельных двигателей. Он предназначены для подачи в цилиндры дизельного двигателя под определенным давлением и в определенный момент, точно отмеренных порций топлива, соответствующих данной нагрузке приложенной к коленчатому валу. Вот о том каким бывает топливный насос высокого давления (ТНВД), мы и поговорим в этой статье.

 

Содержание

 

Дизельные распределительные топливные насосы высокого давления применяются на 3-, 4-, 5- и 6-цилиндровых дизельных двига­телях легковых автомобилей, тягачей, а также легких и средних коммерческих автомобилей. В зависимости от частоты вращения и системы сгорания топлива такие двигатели имеют мощность до 50 кВт на один цилиндр. Насосы распределительного типа для двигателей с непосредственным впрыском обеспечивают давление в форсунке до 1950 бар при частоте вращения коленчатого вала до 4500 мин-1.

ТНВД распределительного типа подраз­деляются на насосы с механическим и элек­тронным управлением, в вариантах с испол­нительным устройством в виде поворотного электромагнитного клапана и с электромаг­нитным клапаном с обратной связью.

В последнее время как на легковых, так и на коммерческих автомобилях на смену рас­пределительным топливным насосам прихо­дят системы впрыска топлива Common Rail.

 

Аксиально-поршневые распределительные насосы

 

Аксиально-поршневой топливоподкачивающий насос

 

Этот насос лопаточного типа служит для подачи топлива из бака и вместе с нагнета­тельным регулирующим клапаном создает давление, которое возрастает прямо про­порционально частоте вращения коленчатого вала двигателя.

 

Аксиально-поршневой насос высокого давления

 

Аксиально-поршневой распределительный на­сос (насос типа VE) включает только один на­сосный элемент для всех цилиндров. Плунжер-распределитель насоса во время своего рабочего хода вытесняет топливо и, одновре­менно поворачиваясь, распределяет топливо по отдельным выпускным каналам (см. рис. «Аксиально-поршневой распределительный топливный насос высокого давления с управлением при помощи электромагнитного клапана» ).

 

 

Во время одного оборота ведущего вала насоса плунжер совершает количество рабочих ходов, равное числу цилиндров дви­гателя. Приводной вал вращает кулачковую шайбу и плунжер, с которым она соединена. Выступы на кулачковой шайбе обеспечивают осевое перемещение плунжера и его враще­ние — распределение и подачу топлива.

Насос продолжает подачу топлива во время рабочего хода до тех пор, пока пере­пускное отверстие плунжера остается закры­тым, Подача топлива прекращается, когда перепускное отверстие открывается регули­рующей втулкой (см. рис. «Электронная система управления аксиально-поршневым распре­делительным топливным насосом высокого давления» ).

 

Электронная система управления распре­делительным топливным насосом с пово­ротным электромагнитным исполнительным механизмом

 

В отличие от насоса типа VE, имеющего механи­ческую систему управления, распределитель­ный топливный насос с поворотным электро­магнитным исполнительным механизмом имеет электронный регулятор и устройство опережения впрыска с электронным управле­нием (см. рис. «Электронная система управления аксиально-поршневым распре­делительным топливным насосом высокого давления» и «Электронная система управ­ления дизельным двигателем» (EDC)).

 

 

Электронный регулятор

 

Эксцентрично установленная шаровая цапфа связывает регулирующую втулку насоса типа VE и электромагнитный исполнительный ме­ханизм. Угловая установка исполнительного механизма определяет положение регули­рующей втулки и с ее помощью активный ра­бочий ход плунжера-распределителя насоса. К исполнительному механизму подсоединя­ется измерительный датчик положения (по­тенциометр или индуктивный измерительный преобразователь).

ЭБУ получает сигналы от различных датчи­ков: положения педали подачи топлива, ча­стоты вращения коленчатого вала двигателя, температуры воздуха, охлаждающей жидкости и топлива, давления всасываемого воздуха, ат­мосферного давления и т. п. Он использует эти входные величины, хранящиеся в его памяти, для определения правильного количества впрыскиваемого топлива. Таким образом, блок управления изменяет ток возбуждения испол­нительного привода до тех пор, пока не совпа­дут требуемые по исходным данным реальные величины для принятого положения рейки.

 

Электронно-управляемое устройство угла опережения впрыска

 

Гидравлическое устройство опережения впрыска с электромагнитным клапаном по­ворачивает роликовое кольцо в зависимости от нагрузки и частоты вращения коленча­того вала двигателя таким образом, что по отношению к положению поршня цилиндра подача топлива может начинаться с опере­жением или запаздыванием.

При этом сигнал от датчика, с помощью ко­торого определяется момент открытия распы­лителя, сравнивается с запрограммированной установкой. Электромагнитный клапан устрой­ства опережения впрыска изменяет давление, прилагаемое к плунжеру, и с его помощью установку регулирования устройства опере­жения угла впрыскивания. Тактовая частота, используемая для срабатывания электромаг­нита, модифицируется, пока не совпадут дей­ствительная и исходная величины.

 

Электронная система управления распреде­лительными топливными насосами с дози­рующим электромагнитным клапаном

 

При использовании таких насосов (рис. «Аксиально-поршневой распределительный топливный насос высокого давления с управлением при помощи электромагнитного клапана«) количество подаваемого топлива дозируется электромагнитным клапаном высокого давле­ния, который перекрывает камеру насосного элемента. Это дает еще большую гибкость дози­рования топлива и возможность регулирования момента начала впрыска топлива. Кроме того, за счет уменьшения нерабочих объемов повы­шается потенциал рабочего давления насоса.

Основными узлами насоса являются элек­тромагнитный клапан высокого давления, электронный блок управления и инкремент­ный датчик угла поворота для управления электромагнитным клапаном.

Закрытие электромагнитного клапана опреде­ляет начало подачи топлива, которая продолжа­ется до момента открытия клапана. Количество впрыскиваемого топлива зависит от времени, в течение которого клапан остается закрытым. Управление при помощи электромагнитного кла­пана позволяет быстро открывать и закрывать камеру насосного элемента независимо от ча­стоты вращения коленчатого вала. Такой метод обеспечивает быстрое регулирование подачи топлива независимо от частоты вращения колен­чатого вала двигателя, улучшение герметизации полостей высокого давления и в конечном итоге увеличение эффективности насоса.

Насос снабжен собственным блоком управ­ления для точной установки момента начала подачи топлива и его дозирования. В памяти ЭБУ хранится программа работы конкретного насоса и информация о данных его калибровки.

Электронный блок управления работой двига­теля определяет начало впрыска топлива и его подачу на основе рабочих характеристик двига­теля и отправляет эту информацию по каналу связи в блок управления насоса. С использова­нием такой системы можно управлять как момен­том начала впрыска, так и началом нагнетания.

Блок управления насоса также получает сигнал о количестве впрыскиваемого топлива через шину данных. Этот сигнал затем об­рабатывается в блок управления двигателя в соответствии с сигналами, поступающими от педали подачи топлива, и другими параме­трами, определяющими потребное количество топлива. В блок управления насоса сигналы о количестве впрыскиваемого топлива и ско­ростном режиме работы насоса на момент на­чала подачи топлива принимаются в качестве входных переменных для диаграммы рабочих характеристик насоса, на основании которых соответствующий период срабатывания сохра­няется в виде угла поворота кулачковой шайбы.

И наконец, момент срабатывания электро­магнитного клапана высокого давления и про­должительность его закрытия определяются по данным угла поворота датчика, интегриро­ванного в топливный насос распределитель­ного типа (VE). Этот датчик используется для регулирования по углу поворота/времени. Дат­чик состоит из магниторезистивного сенсора и кольцевого элемента, обладающего маг­нитным сопротивлением и имеющего метки, расставленные через 3°, для каждого цилин­дра двигателя. Датчик с высокой точностью определяет угол поворота приводного вала, при котором электромагнитный клапан от­крывается и закрывается. Это позволяет блок управления насоса преобразовывать данные по моменту начала подачи топлива в данные по соответствующему этому моменту углу по­ворота кулачкового вала и наоборот.

Мягкое протекание процесса подачи топлива в начале впрыскивания, которое зависит от кон­структивных особенностей насоса распредели­тельного типа, еще больше реализуется при использовании форсунки с двумя пружинами. При работе прогретого двигателя с турбонадду­вом такое протекание топливоподачи позволяет снизить уровень шума работающего двигателя.

 

Предварительный впрыск

 

Обеспечивает дальнейшее снижение шума от сгорания топлива без ухудшения работо­способности всей системы, которая должна обеспечивать максимальную эффективную мощность при минимально возможном экс­плуатационном расходе топлива. Для получе­ния предварительного впрыска дополнитель­ных конструктивных изменений не требуется. В течение нескольких миллисекунд ЭБУ за­ставляет срабатывать электромагнитный кла­пан дважды. Электромагнитный клапан с высокой точностью и быстродействием регу­лирует количество впрыскиваемого топлива. Типичные значения количества впрыскивае­мого топлива составляют 1,5 мм3.

 

Радиально-поршневые распределительные насосы

 

Радиально-поршневой насос высокого давления

 

Радиально-поршневой распределительный насос (насос типа VR, см. рис. «Радиально-поршневой распределительный насос высокого давления с электромагнитным управлением» ) приводится в действие непосредственно от приводного вала. Насос включает кулачковую шайбу, башмаки роликов и ролики, подающий плун­жер, ведущий диск и насосную секцию (го­ловку) вала-распределителя.

 

 

Приводной вал приводит во вращение ве­дущий диск при помощи радиально располо­женных направляющих пазов. Направляю­щие пазы одновременно служат в качестве установочных пазов для башмаков роликов. Башмаки роликов и удерживаемые ими ро­лики обегают внутренний профиль кулачко­вой шайбы. Число кулачков соответствует числу цилиндров двигателя.

Ведущий диск приводит во враще­ние вал-распределитель. Головка вала-распределителя удерживает подающие плунжеры, расположенные радиально по отношению к оси приводного вала (отсюда наименование «радиально-поршневой рас­пределительный насос»).

Плунжеры прилегают к башмакам роликов. Когда башмаки роликов смещаются наружу под действием центробежных сил, плунжеры, следуя профилю кулачковой шайбы, совер­шают возвратно-поступательное движение. Когда плунжеры выталкиваются кулачками, объем в центральной камере между плунжерами уменьшается. При закрытом электро­магнитном клапане высокого давления это приводит к сжатию топлива. В определенные моменты времени топливо направляется по каналам в вале-распределителе к соответ­ствующим выпускным клапанам.

Так как кулачковый механизм имеет непо­средственный привод, отклонения от заданных законов подачи топлива минимальны. Топливо распределяется, по меньшей мере, двумя радиально установленными плунжерами. Ха­рактерные для этого типа насоса небольшие нагрузки позволяют использовать кулачки с профилем кривизны. Повышение количества, подаваемого насосом топлива, может быть до­стигнуто за счет увеличения числа плунжеров.

На радиально-поршневых распредели­тельных насосах давления в камере насо­сного элемента достигает 1100 бар, а давле­ния в распределителе — 1950 бар.

 

Электронная система управления ТНВД

 

Электромагнитный клапан высокого давления

 

Электромагнитный клапан высокого дав­ления открывается и закрывается в соот­ветствии с сигналами блока управления насосом. Продолжительность закрытого по­ложения клапана определяет период подачи топлива насосом высокого давления. Это означает, что дозирование топлива, подавае­мого в каждый отдельный цилиндр, может осуществляться с очень высокой точностью.

Управление электромагнитным клапаном высокого давления осуществляется посред­ством регулирования тока. По величине тока блок управления насосом определяет контакт иглы клапана с седлом. Это позволяет с вы­сокой точностью вычислять моменты начала подачи топлива и начала впрыска топлива.

 

Устройство опережения впрыска топлива

 

Гидравлическое устройство опережения впрыска поворачивает кулачковую шайбу таким образом, что начало подачи топлива может быть сдвинуто относительно поло­жения поршня двигателя в сторону опере­жения или запаздывания. Таким образом, взаимодействие между электромагнитным клапаном высокого давления и устройством опережения впрыска изменяет момент на­чала впрыска топлива и процесс впрыска в соответствии с условиями работы двигателя.

Это гидравлическое устройство опере­жения впрыска может развивать более вы­сокие усилия смещения по сравнению с устройством опережения впрыска аксиально-­поршневого распределительного насоса.

Язычок кулачковой шайбы входит в паз плунжера регулятора таким образом, что осе­вое перемещение плунжера вызывает пово­рот кулачковой шайбы. По центру плунжера регулятора установлена управляющая втулка, которая открывает или закрывает отверстия в управляющем плунжере. Соосно с плунже­ром регулятора установлен подпружинен­ный управляющий плунжер, определяющий требуемое положение управляющей втулки. Управляемый блоком управления насоса элек­тромагнитный клапан модулирует давление, воздействующее на управляющий плунжер.

Электромагнитный клапан устройства опере­жения впрыска действует как регулируемый дроссель. Он может непрерывно регулировать управляющее давление. При этом управляющий плунжер может принимать любое положение в пределах от максимального опережения начала подачи топлива до максимального запаздывания.

 

Вариант топливного насоса с электронной системой управления

 

К последнему поколению насосов распреде­лительного типа относятся малогабаритные системы автономного действия, в кото­рые входит электронный блок управления, управляющий также работой двигателя. Так как при этом отпадает необходимость в ис­пользовании для управления работой двига­теля отдельного блока управления, система впрыска топлива не требует большого числа соединительных разъемов и сложной элек­тропроводки, что упрощает процесс монтажа.

Двигатель вместе с системой впрыска мо­жет быть установлен и испытан как единая система, независимо от того, на каком типе автомобиля он размещен.

 

Система впрыска дизельного топлива

 

Топливный насос высокого давления является частью системы впрыска топлива (см. рис. «Система впрыска дизельного топлива с радиально-радиально-поршневым топливным насосом высокого давления с электромагнитным управлением» ). Система впрыска дизельного топлива включает систему подачи топлива (ступень низкого давления), компоненты высокого давления, компоненты впрыска топлива и систему управления. Система подачи топлива осуществляет аккумулирование и фильтрацию топлива. При необходимости может быть установлен дополнительный топливный насос. Ступень высокого давления включает топливный насос и топливо-проводы высокого давления. Ступень высокого давления создает в системе высокое давление и распределяет топливо по цилиндрам двигателя.

 

 

В системах впрыска топлива с распреде­лительными насосами компонентами, непо­средственно осуществляющими впрыск то­плива, являются впрыскивающие форсунки и их корпусы, которые отличаются большим разнообразием типов. На каждом цилиндре устанавливается по одному корпусу фор­сунки. Корпусы форсунок крепятся в головке блока цилиндров. Функция форсунок заклю­чается в точном дозировании топлива и фор­мировании струи топлива требуемой формы, а также уплотнении камеры сгорания. Каждая форсунка состоит из корпуса распылителя с несколькими отверстиями (диаметром до 0,12 мм) и иглы. Игла перемещается в направ­ляющем отверстии в корпусе распылителя форсунки, обеспечивая правильное поло­жение отверстий (оси которых находятся под различными углами к корпусу распылителя форсунки) и камеры сгорания двигателя.

Механическая или электронная система управления распределительным топливным насосом высокого давления устанавливается на самом насосе. Некоторые системы вклю­чают отдельный блок управления двигате­лем. Версии насосов с электронной системой управления включают различные датчики и генераторы управляющих сигналов.

 

РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ:

Технология COMMON RAIL DELPHI

Английский концерн DELPHI разработал свою версию дизельных систем с прямым впрыском одновременно с другими конкурентами и получил признание, как у европейских, так и у некоторых азиатских производителей. Системы очень экономичны и технологичны, недороги в производстве. Хотя отличаются повышенными требованиями к качеству топлива и ремонтной мастерской, поскольку компоненты чувствительны к малейшей грязи, даже невидимой человеческим глазом. По этой причине первые поколения ТНВД систем имели тенденцию к саморазрушению, но стали более надежны в последующем. 

Насосы Высокого Давления COMMON RAIL типа DELPHI
Тип DFP1

Система DELPHI DFP1 относится к первому поколению дизельных систем DELPHI, оборудованных аппаратурой типа COMMON RAIL. Конструкция насоса высокого давления с кулачковым механизмом, который приводит в работу радиально расположенные качающие элементы, повторяет архитектуру предыдущих поколений насосов для атмосферных двигателей роторного типа DPC и EPIC. Насос приводится в действие с помощью ремня или цепи. Приводящий вал и кулачковый механизм роторного типа выполнены как одно целое, что стало причиной основной проблемы этого типа насосов — утечки через уплотнения. В целях плавности подачи топлива под давлением две зоны сжатия топлива разведены друг от друга под углом в 45 градусов. Распредвал с четырьмя кулачками конструктивно идентичен традиционному насосу от DELPHI. Но в отличие от него теперь насос не определяет время впрыска и уровень потока, поэтому фаза сжатия удлинена в целях уменьшения шумности и вибрации.

Насос состоит из Передающего насоса, чьей задачей является подача топлива в ТНВД из топливного бака через топливный фильтр под давлением 6 бар. Передающий насос также вращается под действием распредвала и состоит из вкладыша-эксцетрика, пластины с двумя продолговатыми отверстиями — одно для впуска топлива и второе для подачи топлива, четырех подпружиненных лопастей, которые расположены под углом в 90 градусов к друг другу. Принцип работы Передающего насоса в том, что вращаясь против часовой стрелки лопасти захватывают топливо из открытого отверстия со стороны бака в полость между кольцом и валом. По мере вращения вала отверстие закрывается и полость полностью наполняется топливом, которое далее передается к открывающемуся отверстию в область высокого давления. И так далее по циклу. Топливо попадает из фильтра в Передающий насос под действием негативного давления и в самом насосе давление изменяется в сторону роста по мере скорости вращения вала ТНВД. Однако оно не может увеличиться более 6 бар, поскольку специальный механический клапан-регулятор (PLV — Pressure Limiter Valve) сливает лишнее топливо обратно на вход Передающего насоса.

Количество подаваемого в область высокого давления топлива регулируется клапаном контроля давления или IMV клапаном (Inlet Metering Valve). Клапан имеет две задачи: 1) Контроль давления, которое создаёт ТНВД, через регулирование объема подаваемого топлива. 2) Контроль температуры сливаемого в топливный бак топлива. Клапан расположен на стороне контура низкого давления. Топлива подает в него через два отверстия на конце клапана, которые закрыты сетчатым фильтром. Идея сетчатого фильтра в защите как самого клапана, так и системы высокого давления от остатков неотфильтрованной грязи. Клапан открывается в соответствии с запросом ЭБУ (DCU) на определенный уровень давления. Чем больше уровень скважности, подаваемой блоком управления на клапан, тем меньше уровень высокого давления в рампе и наоборот. В выключенном состоянии клапан постоянно открыт под воздействием конической пружины, которая жестче, чем внутренняя пружина в задней части клапана. Под воздействием частотного сигнала с ЭБУ с уровнем тока до 1,1 Ампера клапан перекрывает проход в ТНВД, контролируя давление. Клапан располагается на задней части корпуса ТНВД.

Также на задней части ТНВД расположен температурный датчик (на некоторых моделях может отсутствовать, например Peugeot), который следит за температурой топлива в диапазоне от -30 до +85 градусов.

Отличительная особенность системы DELPHI — наличие трубки Вентури на линии обратного слива, который создает негативное давление в системе для устранения резких перепадов высокого давления топлива. Как правило, трубка Вентури находится на корпусе ТНВД, но может быть выведена отдельно вместе с температурным датчиком, как, например, на автомобиле Peugeot. Принцип работы в том, что внутри клапана имеется сужение канала, которое стабилизирует поток топлива.

Некоторые вариации этого типа ТНВД имеют дополнительную форсунку на корпусе, которая абсолютно независима от форсунок в головке блока цилиндров и применяется при необходимости подачи топлива и повышения температуры для регенерации сажевого фильтра.

Область насоса, которая сжимает топливо под высоким давлением, состоит из впускного и выпускного клапанов, поршней и роликов, которые подпруженены двумя пружинками. Под воздействием давления Передающего насоса впускной клапан открывается и топливо попадает внутрь между двумя плунжерами. Вращающиеся ролики нажимаются кулачками и поршни сдавливают топливо. В этот момент под действием гидравлического давления впускной клапан закрывается (как только давление внутри насоса станет выше, чем давление подачи топлива), а выпускной открывается, передавая поток топлива в рампу. Шариковый клапан открывается как только давление внутри насоса становится больше, чем давление в рампе, выпуская топливо.

Насосы смазываются и охлаждаются за счет дизельного топлива. Для нормальный работы насос должен пропускать через себя 50 литров топлива в час. За полтора оборота ТНВД должен создать давление 200 бар. В зависимости от производителя ТНВД может иметь 2,3 и 4 плунжера, и развивать максимальное давление до 1400 или до 1600 бар.

Тип DFP3


В отличие от DFP1 новое поколение системы DELPHI DFP3 имеет вал с эксцентриком, которые соединены с тягами. Вращаясь под воздействием приводного вала, эксцентрик воздействует на тяги, которые сдавливают топливо. Насос может иметь модификацию с двумя плунжерами, которые разведены под углом в 180 градусов или с тремя плунжерами, находящимися под углом в 120 градусов. Основные отличия системы DFP3 от предыдущего поколения в использовании эксцентрика, измененной формы передающего вала, количестве плунжеров, использовании роликовых подшипников вместо подшипников скольжения, большей производительности одного оборота, большей скоростью вращения вала, меньшими размерами, вариантами без Передающего насоса, большей мощностью и меньшим шумом. Передающий насос находится не внутри, а на внешней части корпуса насоса. При его наличии используется клапан контроля топлива, передающегося в область сжатия.

Принцип работы Передающего клапана такой же как и у насоса предыдущего поколения, внешне они схожи, но они не взаимозаменяемы, поскольку имеют разные калибровки и выпускаются разными производителями. Максимальный ток управления соленоида клапана — 1,3 Ампера. Задача температурного датчика такая же как и для DFP1. Механический клапан контроля давления PLV (Pressure Limiter Valve) регулирует давление на уровне 1850 — 2500 бар. В случае проблемы с IMV клапаном или появлением неисправности с подачей топлива через форсунки, клапан запускает топливо по кругу на вход насоса. На некоторых системах при наличии регулятора давления на рампе этот клапан в ТНВД отсутствует (например DFP3.4. — Mercedes). Клапан типа Вентури может быть расположен как внутри, так и снаружи ТНВД на стороне слива в магистраль обратки, и служит для устранения колебаний давления в рампе посредством негативного давления в линии обратки. Этот клапан отсутствует на системах с форсунками Прямого Действия. Форсунка для регенерации сажевого фильтра идентична предыдущему поколению.

Насос приводится в действие с помощью ремня, цепи или привода с крестовой муфтой, который вращает вал с эксцентриками, которые нажимают на плунжер и пружину, сжимая топливо, которое подаётся в область высокого давления через механический перепускной клапан. Впускной клапан открывается под воздействием разряжения, которое создается при движении плунжера вниз под действием возвратной пружины. Во время движения плунжера вверх топливо сжимается, закрывая впускной клапан и открывая выпускной для подачи сжатого топлива в рампу.

Различается несколько разновидностей системы DFP3 (3.1, 3.2, 3.3, 3.4), которые отличаются по форме, количеству плунжеров, приводу и подают давление от 1600 до 2000 бар.

Тип DFP4


Система DELHPI DFP4 разработана на основе DFP3 и предназначена для использования на двигателях коммерческих машин. Насос имеет два плунжера, разведенных под углом в 180 градусов. Отличие конструкции от предыдущей версии в наличии DLC покрытия на впускном клапане, использование керамического шарика в выпускном клапане, наличие эксцентрика с прорезями, охлаждение топливом передних и задних подшпников скольжения.

В архитектуре, где имеется клапан HPV (High Pressure Valve), который регулирует давление на рампе, механический клапан-ограничитель давления может отсутствовать на ТНВД за ненадобностью (например, двигатели для JCB). Также на системе DFP4 имеется трубка Вентури, которая может быть как внутри, так и снаружи насоса. Системы с сажевым фильтром имеют форсунку для подачи топлива под давлением в 6 бар в систему сажевого фильтра для регенерации. Насосы типа DFP4.2 вращаются против часовой стрелки, а насосы типа DFP4.4 по часовой стрелки. ТНВД этого типа могут развивать максимальное давление до уровня 2000 бар.

 Тип DFP6

Насосы типа DELPHI DFP6 относятся к третьему поколению топливный систем DELPHI для COMMON RAIL. ТНВД этого типа унаследовали архитектуру предыдущего поколения с кулачками и роликами. Однако они меньше по размеру, легче по весу, менее шумные, более эффективные по производительности, создают более высокое давление. Основые технические отличия в наличии одного плунжера и двухтактной системы сжатия во время одного оборота вала, а также наличие комбинированного ролика и поршня. Также эти насосы не имеют температурного датчика, посольку он перенесен в область низкого давления. Кроме этого, насосы типа DFP6 не имеют Передающего насоса. Подача топлива к ТНВД осуществляется за счет погружного электрического насоса в баке, который доставляет топливо к ТНВД под давлением 6 (-\+1) бар. IMV клапан на насосе контролирует количество топлива, котрое подаётся для сжатия и одновременно регулирует температуру топлива. DCU управляет клапаном с помощью скважности частотой 200-800 Гц и тока 1,3 Ампер. На автомобилях Peugeot, Citroen и Ford DW10F температурный датчик расположен между фильтром и ТНВД.

Еще одно отличие системы DFP6 в отсутствии механического клапана ограничителя давления в насосе. Эта функция выполняется или клапаном контроля давления (HPV) или механическим клапаном-ограничителем (PLV) на рампе. Трубка Вентури расположена на насосах для Volkswagen с отводом для форсунки сажевого фильтра.

На современных автомобилях ТНВД этого поколения могут приводиться в работу ремнем или шестерней. Вал вращает двойной эксцентрик по которому движется ролик, повторяя его форму. Ролик надавливает на плунжер, который возвращается обратно с помощью пружины. Плунжер сдавливает топливо по такому же принципу, как и в насосах предыдущего поколения. ТНВД DFP6.1 создают давление от 1800 до 2000бар, насосы DFP6.1E создают только давление в 2000 бар. 

Форсунки системы DELPHI (DFI)
Форсунки DFI1.1 — DFI1.4


Топливные форсунки типа DELPHI DFI 1.1 — 1.4 имеют следующие элементы: 
— Распылитель форсунки и иглу; 
— Корпус форсунки с впускным отверстием и отверстием для слива в обратку; 
— Катушку клапана, интегрированную внутрь корпуса; 
— Фильтр на впуске топлива; 
— Адаптивная планка с контролирующей ёмкостью и калиброванными отверстиями для управления иглой; 
— Клапан в корпусе форсунки; 
— Уплотнительная шайба; 


Максимальное давление, которое используется в системе с форсунками DFI 1.1-1.4 до 1800 бар и сила, которая поднимает иглу форсунки очень велика. Это означает, что невозможно управлять иглой форсунки напрямую электромагнитным клапаном, поскольку это требует очень высокой силы тока. Время насыщения такой силы тока сравнительно велико, а игла должна управляться в гораздо более короткие промежутки времени. Кроме того, такая сила тока требует повышенной мощности DCU и может перегреть форсунку. Таким образом, игла внутри форсунки управляется с помощью клапана, который контролирует давление в емкости, расположенной прямо над иглой. В начале впрыска, когда игла должна подняться и открыть отверстия в нижней части распылителя, клапан открывается и содержимое ёмкости сливается в обратку. Для закрытия иглы клапан создаёт давление внутри емкости и опускает иглу вниз. Задача клапана в форсунке потреблять наименьшее количество энергии для своей работы. Поэтому у него небольшой вес и клапан двигается с минимальным усилием. В закрытом положении клапан должен находиться в гидравлическом равновесии. Этот баланс достигается с помощью идентичной геометрии ёмкости так, чтобы давление на клапан во всех местах было одинаковым. Таким образом для удержания клапана на месте можно использовать очень мягкую пружину, которую легко прижать, подав нагрузку на клапан, и так поднять иглу. Проблемы, связанные с грязным топливом, привели к изменению конструкции форсунки в целях контроля температуры и использовании углеродного покрытия (DLC — Diamond Like Carbon) на внутренних поверхностях клапана. Адаптивная втулка находится в месте крепления клапана. Она соединяет контрольную камеру с тремя жиклерами: подача на впрыск, обратка с контрольной камеры и входное отверстие для наполнения камеры топливом.

Распределение давления в форсунке можно разделить на несколько этапов: 

— Перед тем, как наполнить адаптивную втулку, топливо под большим давлением подаётся внутрь форсунки, наполняет сначала канал к контрольной камере, далее канал к топливной галереи форсунки, потом подаётся к каналу камеры клапана; 
— Под большим давлением топливо наполняет контрольную камеру, адаптивную втулку и спиральные канавки в игле. 

По достижении этого этапа топливо внутри форсунки становится сбалансированным, а сама форсунка закрыта. Давление топлива в выемках с двух сторон в корпусе клапана внутри форсунки находится на одном уровне в состоянии покоя. Когда блок DCU активирует катушку, клапан открывается. Если усилие клапана становится сильнее усилия пружины. Открытие клапана позволяет топливу слиться в обратку, понижая давление в камере клапана, потом в канале к топливной галерее и потом в канале к контрольной камере. Но сама игла находится на месте, потому что в самой контрольной камере давление не падает. Движение иглы начинается тогда, когда падение давления распространяется на контрольную камеру и на обоих концах клапана появляется дисбаланс давления. Поскольку на конце иглы давление становится выше, чем в контрольной камере, игла двигается вверх, открывая путь топливу через топливную галерею в камеру сгорания. При этом, проходя через жиклер в конце галереи давление падает по сравнению с давлением в рампе. На максимальном давлении в рампе, потеря давления после топливной галереи будет около 100 бар. Когда DCU снимает ток с катушки клапана, его сила становится слабее усилия пружины и она толкает клапан обратно, закрывая клапан. Давление внутри форсунки растет, но игла не закрывает форсунку, поскольку, чтобы ее закрыть, необходимо создать разницу давления на разных концах иглы. Эта разница создаётся путем потери давления в канале к топливной галерее по отношению к контрольной камере, где давление такое же, как в рампе. Как только в контрольной камере давление становится больше, чем на конце иглы, игла двигается вниз и закрывается.


Магистраль для слива топлива обратно в бак крепится к форсунке либо через резиновый ниппель с металлической трубкой, или через специальный пластиковый адаптер. Форсунки этого типа могут производить от двух до пяти индивидуальных открытий в течение одного цикла впрыска: Отдельный пилотный, Близкий пилотный, Предварительный, Основной, Близкий последующий впрыск, Пост впрыск, Дополнительный пост впрыск. Кроме того, инжекторы данного типа имеют такую особенность, как слив топлива в обратную магистраль в аварийном случае (кроме моделей с клапаном HPV). Это необходимо в случае резкого снятия ноги с педали газа или в случае возникновения кода ошибки, который требует резкого понижения давления в рампе. Для этого катушка форсунки получает импульс с DCU, которого достаточно для того, чтобы поднять клапан и соединить топливо в рампе с обратной магистралью, но которого недостаточно для того, чтобы поднять иглу и открыть доступ топлива в двигатель. Такой контроль возможен только в том случае, если точно известно время между началом движения клапана и началом открытия иглы. Это время зависит от физических свойств каждого конкретного инжектора и от степени его износа. Поэтому программе в блоке управления необходимо точно знать физическое состояние каждой форсунки. Это достигается путем калибровки форсунок на заводе и присвоении каждой форсунки индивидуального кода. Компания DELPHI использует два типа калибровки форсунок : 
-C2I (Correction Individual Injector). Использование шестнадцатиричного кода (16 символов). 


-C3I (Improved Induvidual Injector Correction). Более точная калибровка форсунок на производстве и использование буквенно-цифровой кода (20 знаков). 
Код вводится в память DCU при замене форсунки на новую или код со старых форсунок вводится в новый блок при замене DCU с помощью сканера. Опираясь на калибровочные данные, которые закодированы в коде, блок управления проводит коррекцию по каждой форсунке. 

Форсунки DFI1.5/1.5.2


Форсунки типа DELPHI DFI 1.5- были разработаны для выполнения следующих задач: 
— Поддержка стандарта Евро 5; 
— Повышение эффективности впрыска; 
— Поддержка до 7 открытий во время впрыска; 
— Лучшая защищенность от грязи;
— Повышенная стабильность потока во время впрыска;
Форсунки DFI 1.5 состоят из распылителя с иглой, корпуса форсунки с входящим отверстием с фильтром и выходом в обратку, электрического коннектора в верхней части форсунки, адаптивной пластины (CVA) с калиброванными отверстиями для управления иглой и комбинированного клапана, а также из крепежной шайбы. В зависимости от поколения, форсунка может работать под давлением в 2000 бар. Поскольку при таком давлении невозможно контролировать иглу напрямую электромагнитным активатором, поскольку прилагаемая сила была бы слишком мощной, что разогревало бы блок управления и саму форсунку, а время реакции было бы слишком медленным. Поэтому открытие иглы контролируется через контрольную камеру, где топливо сливается в обратку для открытия иглы и давление в камере восстанавливается если надо закрыть иглу. 


Основные отличия от первого поколения: Специальное лаковое покрытие иглы и ее седла, угол которого изменен до 60 градусов, уменьшенный угол между отверстиями в распылителе, увеличенный диаметр впускного канала, комбинированная адаптивная пластина с клапаном, увеличенная сила возврата пружины, новый тип коннекторов (унифицирован с DFI3), увеличенный диаметр от 17 до 19мм. Также на этом типе форсунок используется два типа коннекторов. Такой же, как и на старом поколении (Peugeot, Citroen, Ford), а также новый V образный с ассиметричными пинами. Система подключения обратки аналогична DFI 1.1, а для калибровки используется метод C3I.

Тип DELPHI DFI 1.5.2 разработан для поддержки стандарта Евро 6 и давления до 2200 бар. В нем используется более эффективная катушка, еще более мощная пружина для возврата клапана, улучшена конструкция блока CVA, сохранение давления внутри форсунки на уровне 3000 Ньютонов при закрутке колпачка. Для слива в обратку используется пластиковый адаптер. Калибруется форсунка методом C3I c 20-ти значным кодом.

Форсунки DFI1.20


Форсунки типа DELPHI DFI 1.20 были разработаны для поддержки экологического класса Евро 6 и работы под максимальным давлением в 2200 бар. Элементы конструкции форсунки идентичны предыдущим поколениям. Отличия в использовании нового электрического коннектора типа АК, нового коннектора для обратки с позитивным давлением в 6 бар, новой катушка улучшенного типа, более узкой иглы распылителя и измененной внутренней формы канала иглы, допусках на микронном уровне и усиленной пружине до 33 Нм и измененной конструкции CVA модуля. Поскольку в новой форсунке слив в обратку подаётся под давлением в 6 бар, наконечник сливного отверстия выполнен из металла и имеет резиновое кольцо. Принцип работы этой форсунки аналогичен предыдущим поколениям. В целях более точной калибровки форсунки, для этого применялся алгоритм кодирования C3I, а для автомобилей Volkswagen с двигателями 1600сс и 2000сс с конца 2014 года стала применяться новая более точная технология калибровки Improved C3I для того, чтобы блок управления понимал, как ведет себя форсунки под ультравысоким давлением 2000-2200 бар. При этом также используется 20-ти значный код и понять каким способом откалибрована форсунка визуально невозможно. Это можно определить только по каталожному номеру детали. В момент проведения процедуры калибрования сканер DELPHI DS150/DS350 или AUTOCOM могут определить тип калибровки по введенному номеру.

Форсунки DFI2.3


Форсунки типа DELPHI DFI 2.3 разработаны как версия 1.3, но с большим потоком топлива для работы на коммерческих двигателях и на агрегатах большого размера. Форсунка состоит из распылителя с иглой, основного корпуса с отверстиями для подачи топлива с сетчатым фильтром и для слива в обратку, интегрированной внутрь катушки, электрического коннектора, адаптивной втулкой с контрольной камерой и калиброванными отверстиями для управоления иглой, клапана и прокладки. В зависимости от поколения форсунка работает под максимальным давлением в 1600 бар. Поскольку это сравнительно высокое давление, невозможно управлять с помощью солениода иглой напрямую по причине необходимости очень высокого тока и невозможности достич синхронизации нескольких открытий очень быстро. Поэтому используется гидравлический метод управления такой же, как и предыдущих поколений форсунок с контрольной камерой. Форсунки широко применяются на двигателях грузовиков и строительной техники, например, JCB, c экологическим классом выше Евро 3. Сливной канал форсунки имеет специальный LP коннектор. Калибруются форсунки как методом C2I, так и методом C3I.

Форсунки DFI2.5 HPC


Форсунки типа DELPHI DFI 2.5/2.5 HPC стали дальнейшим продолжением развития технологии дизельных двигателей COMMON RAIL для коммерческой техники. Форсунка поколения 2.5 поддерживает работу при экологическом классе до Евро 5 при максимальном давлении в 2000 бар. Кроме это форсунка имеет улучшенные характеристики впрыска — IRCF (Injection Rate Coefficient Factor) с возможность проводить до 7 открытий во время одного цикла впрыска со специальной защитой от проникновения внутрь корпуса частиц грязи. В остальном форсунка имеет те же элементы, как и предыдущее поколение. В этом типе форсунок использовано специальное новое покрытие для иглы и ее седла, улучшающее динамику впрыска, угол седла иглы изменен до 60 градусов, а диаметр иглы увеличен. Угол между отверстиями распылителя уменьшен, а входные отверстия увеличены для пропуска большего объёма топлива. Нагрузка на возвратную пружину — 28 N. Диаметр самой форсунки увеличен с 17мм до 19мм.

Форсунка может комплектоваться двумя типами коннекторов. Например, на технике JCB и DAEDONG это аналогичный коннектор с DFI 1.1 -1.3, то на других марках форсунки могут иметь такие коннекторы, как у типа DFI3. Коннектор для обратного слива может быть металлическим с резиновым ниппелем или пластиковым. Принцип работы этого типа форсунок такой же как у типа 1.5, а калибровка на заводе проходит по принципу C3I с 20-ти значным кодом. Форсунки типа DFI 2.5 HPI предназначены для больших двигателей. Они работают на агрегатах для экологического класс выше Евро 4 и под максимальным давлением в 2000 бар. Они отличаются большим диаметром корпуса (26мм и 28мм), и большим диаметром входных отверстий. Еще одна особенность форсунки — особый коннектор. Поскольку форсунка находится глубоко в головке блока цилиндров, наружи выводится только провод, связанный со жгутом центральной проводки двигателя. Сам же коннектор проникает глубоко в двигатель и подключается к форсунке в середине ее корпуса, что очень необычно по сравнению с другими типами форсунок. Но это обусловлено применением данной форсунки на двигателях с большим физическим размером. Поэтому канал для обратного слива находится также в середине форсунки и связан с внутренними каналами в головке блока.

Форсунки DFI3

Форсунки DELPHI DFI 3Б отличаются от других поколений наличием пьезоэлемента прямого действия, когда эффект изменения своего размера кристалла под действием напряжения используется для прямого управления иглой вместо электро-гидравлического принципа. Эта технология позволяет открывать форсунку на время в 100 микросекунд, что позволяет добавиться 7 и более открытий во время полного цикла впрыска. Новое поколение форсунок не имеет слива в обратку, что позволяет не расходовать энергию форсунки на передачу топлива в бак. Другое достижение — возможность добиваться удивительной стабильности впрыска на всем протяжении времени эксплуатации двигателя несмотря. Кроме того у пьезо форсунки процесс атомизации смеси в камере сгорания проходит быстрее, а давление впрыска больше. Быстрое движение иглы позволяет управлять и экономить топливом, которое попадает в двигатель в момент движения иглы вверх или вниз, контролируя качество распыла как в начале, так и в конце впрыска. Такая технология позволила снизить выбросы сажи и NOX на 30%, дала возможность уменьшить сажевые фильтры и многократно снизить шумность двигателя. Для подключении форсунки к управляющему кабелю используется коннектор нового поколения.

Когда форсунка находится под давлением, все сжатое топливо подается внутрь нее. Под воздействием напряжения в 200 Вольт пьезоэлемент в сбалансированной системе находится в сжатом состоянии. Физическое сжатие уменьшает объём топлива внутри форсунки. Давление между поршнем и пружиной падает и нарушается внутренний баланс давления. Теперь давление у пружины ниже, чем в поршне. Это позволяет пружине подняться для начала впрыска до самого конца и в этот момент всё сжатое топливо поступает в камеру сгорания до тех пор, пока опять не будет прекращена подача напряжения в 200 Вольт. Коррекция инжектора проводится по 24-х значному коду. 


При работе с этим типом форсунок необходимо соблюдать осторожность: никогда не снимать электрический коннектор на работающем двигателе, поскольку мы не можем предугадать, в каком положении останется игла, а она может остаться в открытом состоянии. Также ни в коем случае нельзя менять полярность коннектора. Поскольку пиковое напряжение в цепи форсунки может превышать 250 вольт, необходимо соблюдать правила безопасности при работе с ними. Нельзя прикасаться руками к оголенным контактам форсунки после снятия коннектора, поскольку в ней может оставаться заряд электричества. Именно поэтому DELPHI предлагает набор колпачков YDT499, которые надеваются на форсунку сразу после снятия коннектора.

Топливные Рейки DELPHI COMMON RAIL

В задачу топливной рейки или рампы входит аккумулирование топлива под высоким давлением, которое поступает туда из ТНВД и дальнейшее распределение его по форсункам. Топливная рейка состоит из корпуса, датчика давления топлива, входного и выходных отверстий, активатора высокого давления HPV и клапана ограничения давления PLV. Рампы типа DELPHI могут иметь цилиндрическую форму, а могут иметь форму сферы, как, например, у Ford Lynx и Renault K9K. Преимущество такой конструкции в том, что рампа имеет небольшой объём, она легкая и недорогая в изготовлении, но все трубки имеют разную длину до форсунок. Поэтому этот тип можно применять только на небольших по размерам двигателях, поскольку трубку от рейки до форсунок не должны быть слишком длинными, так как это скажется на стабильности давления. Если у рампы меньший физический объём, то ее быстрее наполнить и поэтому можно быстро регулировать увеличение и уменьшение давления. Поэтому выбор типа рейки для конструкторов — это компромисс между быстрой управляемостью системой и гидравлической стабильностью внутри нее. 


На месте крепления выходных трубок к форсункам рейки имеют сужение канала, что дает возможность избежать колебаний давления и лучшей управляемости впрыска. На последних поколениях реек используют сужения канала не на конце патрубка в месте крепления топливной трубки, а на внутренней части канала, начиная от главной магистрали.


Датчик давления топлива

Традиционно датчик расположен на топливной рейке. Принцип его работы в деформации металлической пружины. В мембране находится пьезо элеимент, который меняет своё сопротивление в соответствии с деформацией мембраны. Уровень давления равен уровню деформации мембраны. Уровень сопротивления конвертируется в выходной сигнал на блок управления. Раннии версии датчиков имели прокладку между носиком клапана и корпусом рампы, но в последнее время применяется вариант, когда датчик касается рампы напрямую. При фиксации его резьба деформируется, поэтому, как правило, эти датчики не меняются отдельно от рампы. 

Клапан контроля давления в рейке (HPV)

Клапан контроля высокого давления находится в топливной рампе и вместе с клапаном контроля потока IMV управляет высоким давлением в системе. Задача клапана — понижать давление в рампе, сливая часть топлива в обратку в бак. Поэтому на системах с датчиком HPV не используется управление сливом в обратку с форсунки. Другая задача клпана — устранение колебания пикового давления. Еще одна роль — аварийная, или резкое понижение давления в системе по причине неисправности рейки или форсунки. ЭБУ двигателя управляет клапаном, когда надо быстро разогреть двигатель на старте в холодную погоду, без управления клапана IMV. Также он активно используется при выходе из строя клапана IMV. В случае его неисправности возникает код ошибки. При этом, в случае разрыва собственной электрической цепи, клапан должен создать нужное для запуска двигателя давление. 


Клапан состоит из поршня, который полностью открывается и закрывается пружиной, электрического коннектора, катушки клапана, которая управляется током, прикрепленного к поршню штока с шариковым механизмом, циллиндрическим сетчатым фильтром, с центральным входным отверстием и двумя выходными. При отсутствии давления клапан находится в постоянно открытом состоянии и закрывается для создания давления необходимого для холостого хода, а затем в соотвествии с заданной скважностью. Скважность сигнала зависит от скорости двигателя, необходимого давления в рампе, реального давления в рампе и температуры топлива. Он также используется для полной остановки двигателя. 

Механический ограничитель давления (PLV)

Механический ограничитель давления топлива используется опционально для систем DFP1 и DFP3. Клапан механически открывается на уровне давления 2450-2640 бар и сливает топливо в обратку в бак. Клапан может быть как на ТНВД, так и на рампе (всегда, если нет HPV клапана). Задача клапана — защищать систему в аварийных случаях. 

Датчик давления в цилиндре

На некоторых системах с топливным классом Евро 6 могут использоваться датчики давления в цилиндре. Они крепятся болтом к блоку цилиндров недалеко от каждой форсунки (Daimler) или интегрируются в свечи накаливания (VW). Задача датчика — дать информацию о реальном давлении в каждом цилиндре. Он играет роль термодинамического индикатора для мониторинга процесса сгорания и эффективного управления в закрытом цикле. Его сигнал влияет на управление впрыском и вращение двигателя. 

Список автомобилей, на которых используется система COMMON RAIL типа DELPHI: 
ALPHA ROMEO : 4C 
BMW : 3 СЕРИЯ GT 
CHEVROLET : CORVETTE STINGRAY 
CITROEN : C3 1.4 HDI, C3 PICASSO 
FERRARI : LA FERRARI 
FORD : TRANSIT, FOCUS 1.8 Tdci, MONDEO 2.0 TDCI, TRANSIT 2.4 EU3 
HYUNDAI : TERRACAN, TRAJET, I20, I30 
INFINITI : Q50 
JOHN-DEERE : 6125 H 
KIA : CARNIVAL, BONGO 
LAND ROVER : FREELANDER td5
MERCEDES BENZ : CLA, E CLASS 
NISSAN : NOTE 
OPEL : ZAFIRA 
PEUGEOT : 2008 
PORSCHE : 911 GT 
RENAULT : CLIO, CAPTUR, KANGOO, SCENIC 
ROLLS-ROYCE : WRAITH 
SSANYONG : REXTON/KYRON/ACTYON/RODIUS/STAVIC CRDI
SEAT : LEON SC 
SKODA : OCTAVIA 
VOLVO : V60 
VOLVO\DAF : F105
VOLVO TRUCK :Fh22 420HP /460HP, V60 

Дизельные топливные насосы — Топливный насос

Фото 2/5 | Дизельные нагнетательные насосы, боковой угол

Топливный насос высокого давления — это сердце дизельного двигателя. Точно поданное топливо поддерживает ритм или синхронизацию, которые обеспечивают бесперебойную работу двигателя. Одновременно насос также регулирует количество топлива, необходимое для получения желаемой мощности. ТНВД выполняет работу как дроссельной заслонки, так и системы зажигания, необходимых в бензиновых двигателях.При устранении неисправностей бензинового двигателя вы проверяете компрессию, топливо и искру. У дизеля нет системы зажигания, поэтому с ним на одну ошибку меньше. Основные успехи в разработке дизельного двигателя являются прямым результатом улучшенного впрыска топлива. Вот как работает ТНВД.

Насосы с линейным впрыском (рывками)
Первые насосы, в которых для подачи дозированного топлива в камеру сгорания использовались плунжеры, были разработаны еще в 1890-х годах. На это ушло почти сорок лет, но в 1927 году Bosch представила серийный линейный насос с спиральным управлением.Эти первые насосы очень похожи на Bosch P7100 (P-pump) на двигателях Dodge Ram 5.9L Cummins ’94 — ’98. Иногда их называют толчковыми насосами. Они состоят из отдельных насосов и плунжеров, соединенных в линию, по одному на цилиндр. Они активируются кулачком, который механически связан с двигателем. Тем не менее, насос может изменять время, хотя и не до такой степени, как система с электронным управлением. Рядные ТНВД похожи на рядные мини-двигатели. Первые рядные ТНВД обеспечивали давление впрыска от 3000 до 5000 фунтов на квадратный дюйм, в то время как более новый Bosch P7100, установленный на двигателях Cummins ’94 — 981/2, обеспечивает давление 18000 фунтов на квадратный дюйм.

Распределительные (роторные) впрыскивающие насосы
Эти типы насосов имеют только один дозатор топлива. Вращающийся ротор обеспечивает гидравлическое соединение с различными портами на распределительной головке, что отчасти похоже на то, как распределитель работает на бензиновом двигателе. Преимущества роторного насоса только с одним плунжером в том, что все порции топлива абсолютно одинаковы, что позволяет уменьшить габаритные размеры. Кроме того, насосы распределительного типа имеют меньше движущихся частей по сравнению с линейными насосами.Двумя примерами механических ротационных насосов являются Stanadyne DB2 и Bosch VE. Stanadyne DB2 создает давление 6700 фунтов на квадратный дюйм, а Bosch VE — 17000 фунтов на квадратный дюйм.

Примером электронного роторного насоса является Bosch VP44, который способен создавать давление 23 000 фунтов на квадратный дюйм. Это самый умный насос с максимальной ответственностью — даже по сравнению с новыми насосами Common Rail CP3. Это так, потому что все, что нужно сделать CP3, — это создать давление. Помимо создания давления, VP44 необходимо электронно контролировать время и количество топлива, подаваемого в двигатель.

Система впрыска Common-Rail
При системе впрыска Common-Rail сам насос потерял большую часть своих полномочий решать, когда и в каком количестве подавать топливо под давлением. Например, насос CP3 получает топливо из топливного бака. Затем он использует радиально-поршневую конструкцию для значительного увеличения давления. Топливо под высоким давлением отправляется в общую топливную рампу, которая по сути является аккумулятором для форсунок. Форсунки вступают во владение оттуда.

Насос-форсунки
Линии, соединяющие ТНВД с топливной форсункой, вызвали проблемы у первых инженеров-дизелей.Поэтому в 1905 году Карл Вайдман избавился от них, соединив впрыскивающий насос и инжектор. Насос-форсунка представляет собой компактную конструкцию с впрыском топлива, в которой плунжер насоса создает высокое давление за счет механической силы, прилагаемой двигателем. Плунжер и форсунка сливаются в одно целое, задача которого — подавать топливную струю в камеру сгорания. Чаще всего насос-форсунки используются в двигателях Volkswagen и больших дизельных двигателях. ДП

Интересные факты о впрыске топлива
* Первые дизельные двигатели использовали сжатый воздух для подачи топлива в камеру сгорания.Это была технология, оставшаяся после экспериментов с угольной пылью.

* Компания Atlas Imperial Diesel Company из Окленда, Калифорния, разработала свою первую топливную систему Common Rail еще в 1919 году.

* Основной проблемой для систем впрыска топлива является отсутствие подтекания в конце впрыска. Даже небольшая дополнительная капля нарушит цикл сгорания.

* В современных дизельных двигателях топливо выходит из форсунки под давлением 30 000 фунтов на квадратный дюйм. Для сравнения, это число укладывается в диапазон давлений, в которых работают гидроабразивы.Watejets использует высокое давление h30 для резки многих различных материалов, включая пластик, дерево, сталь и алюминий.

* Cummins и Scania объединились для создания системы впрыска XPI Common-Rail высокого давления, которая способна поддерживать высокое давление топлива при любой работе двигателя.

* Первые ТНВД имели масляные щупы.

Серия знаний о топливной системе

: Дизельные подъемные насосы — Давление и давление. Поток

Серия знаний о топливной системе: Дизельные подъемные насосы — давление в сравнении сРасход

Похоже, здесь много путаницы. У вас должен быть достаточный поток, чтобы поддерживать потребности двигателя. А как насчет давления? Давление — это всего лишь продукт, вызванный сопротивлением потоку? Давление необходимо? Означает ли падение давления при полностью открытой дроссельной заслонке недостаточный поток?

Первым шагом является определение размеров дизельного подъемного насоса с достаточным расходом. Вам необходим достаточный поток, чтобы поддерживать тип системы впрыска, который вы используете. Определение мощности в лошадиных силах даст вам приблизительную оценку, но в конечном итоге необходимо учитывать вашу систему впрыска.Недостаточно информации только о снижении мощности.

Давление существует из-за сопротивления потоку. В таком случае это звучит плохо. Однако для топливной системы необходимо давление. Многие топливные насосы для впрыска топлива зависят от давления топлива для работы цепи газораспределения. Все топливные системы извлекают выгоду из давления в ситуациях высокого спроса. У дизельного двигателя, работающего на 3000 об / мин, очень мало времени, чтобы заполнить насосный элемент до следующего цикла… буквально миллисекунды. Давление помогает заполнить насосный элемент.Если давление упадет слишком сильно, насосный элемент создаст разрежение. Он будет жить при небольшом вакууме, но слишком большой вызовет кавитацию и испарение. Это состояние может нанести больший ущерб, чем грязное топливо. Проще говоря, кавитация вызывает испарение топлива. Пар заполняет полость насоса; затем насос нагнетает пар. Когда пар сжимается, он взрывает пилюлю лексапро. Имплозия разъедает металл и оставляет на поверхности кратеры.

Качественный манометр давления топлива на входе в топливный насос должен использоваться во всех высокопроизводительных приложениях.Это дешевый и простой способ контролировать потребности топливной системы.

Что вызывает падение давления на WOT? Первое, что обычно приходит в голову, это то, что подъемный насос не успевает. Однако это обычно неправильный ответ.

Низкое давление может быть вызвано многими вещами. Клапан сброса давления топлива (который регулирует давление) часто упускается из виду. Не все предохранительные клапаны одинаковы. Даже если они выглядят одинаково, могут быть незначительные различия, которые существенно влияют на работу клапана.Выбор пружины — одна из распространенных ошибок бюджетных предохранительных клапанов. В этой категории не существует универсального решения. Вы не можете взять предохранительный клапан на 8 фунтов на квадратный дюйм и просто установить регулировочную прокладку пружины на 18 фунтов на квадратный дюйм. Его можно настроить на работу при давлении 18 фунтов на квадратный дюйм, но он будет нестабильным и падать при полностью открытой дроссельной заслонке. Качественный предохранительный клапан будет поддерживать постоянное давление на холостом ходу и поддерживать это давление на крейсерской скорости. При полном открытии дроссельной заслонки падение давления должно быть минимальным.

Следует отметить, что конструкция тарельчатого клапана сброса давления топлива может иметь большое влияние на давление и расход топлива.Обычно используется шарообразная тарельчатая тарелка, однако это дефектная конструкция, поскольку шар может вибрировать (также известный как «дребезжание клапана»), что препятствует плавному потоку топлива и создает скачки давления топлива. Тарелка цилиндрической формы обеспечивает превосходную конструкцию, поскольку диаметр верхней части тарелки стабилизирован внутри отверстия корпуса клапана. Тарельчатый клапан плавно открывается и закрывается по отверстию. Это в сочетании с впускными отверстиями на стороне тарельчатого клапана сглаживает поток топлива и практически исключает вибрацию клапана.Это снижает всплески давления топлива и приводит к гораздо лучшей кривой расхода топлива.

Давление в зависимости от расхода, они оба важны. Хотя поток необходим, давление при хорошей регулировке жизненно важно для качественной топливной системы.

Для обзора дизельных топливных насосов и регуляторов давления топлива FUELAB перейдите по ссылке http://fuelab.com/products/diesel/

По сценарию Мэтта Гилмора

Бензиновый насос прямого впрыска — Spectra Premium

Область применения

В 2017 году 40% продаж новых автомобилей были представлены с использованием топливных насосов GDI Technology и GDI (прогнозируемые 6).7 миллионов новых автомобилей.

Аналитики прогнозируют, что эта доля увеличится: ожидается, что 49% новых автомобилей в 2020 году будут иметь бензиновый топливный насос с непосредственным впрыском.

Другие условия производителя для насосов GDI

Прямой впрыск бензина был впервые разработан в начале 20 века для истребителей, пока компания Mitsubishi не представила первый современный автомобильный GDI в 1996 году. По сравнению с низким показателем в 2,3 процента новых автомобилей в 2008 году, использование насосов GDI быстро выросло и составляет более 40 процентов текущего рынка.

Spectra Premium предлагает лучшее послепродажное обслуживание топливных насосов высокого давления, хотя технология может иметь другое название в зависимости от исходного производителя:

Производитель Особые термины для бензиновых насосов прямого впрыска топлива
Тойота D4 с прямым впрыском
Volkswagen Стратифицированный впрыск топлива (FSI) / Стратифицированный впрыск топлива с турбонаддувом (TFSI)
Форд SCi (впрыск Smart Charge) / GTDI (непосредственный впрыск бензина с турбонаддувом)
BMW HPI (высокоточный впрыск) / CGI (впрыск заряженного бензина)
GM SIDI (Прямой впрыск искрового зажигания)
Мазда DISI (Искровое зажигание с прямым впрыском)

Общие признаки отказа насоса GDI

  • Отсутствие обслуживания
  • Неправильное масло
  • Датчики давления и температуры
  • Низкое давление от неисправного соленоида
  • Утечки

Если не заменить поврежденный или неисправный топливный насос высокого давления, это может сократить общий срок службы двигателя и снизить экономию топлива.Кроме того, поскольку время впрыска будет некорректным, следует ожидать увеличения вредных выбросов, что может привести к выходу из строя каталитического нейтрализатора, если не принять меры вовремя.

Как это работает

Топливный насос высокого давления подает топливо под высоким давлением в системы прямого впрыска бензина (GDI). Насос с механическим приводом от кулачка распределительного вала обеспечивает рабочее давление от 30 до 250 бар или от 100 до 2900 фунтов на квадратный дюйм. Подробнее.

Важность замены

Если не заменить поврежденный или неисправный топливный насос высокого давления, это может сократить общий срок службы двигателя и снизить экономию топлива.Кроме того, поскольку время впрыска будет некорректным, следует ожидать увеличения вредных выбросов, что может привести к выходу из строя каталитического нейтрализатора, если не принять меры вовремя.

Как контролировать давление в рампе в топливной системе с прямым впрыском бензина

По мере того, как автомобили становятся чище, производительнее и надежнее, их конструкция меняется. Одна из важнейших систем, претерпевающих кардинальные изменения, — это топливная система; согласно прогнозам Агентства по охране окружающей среды США, количество проданных топливных систем DI в легковых автомобилях растет и, как ожидается, к 2025 году вырастет до более 90% от доли проданных автомобилей.Поскольку исследователи и разработчики продолжают вводить новшества и искать решения для двигателей, понимание того, как управлять этими топливными системами, имеет первостепенное значение.


Источник: Агентство по охране окружающей среды США: «Проект отчета о технической оценке: Среднесрочная оценка стандартов выбросов парниковых газов для легковых автомобилей и корпоративных стандартов средней экономии топлива на модельные годы 2022-2025»


Компоненты топливной системы GDI

Типичная система прямого впрыска бензина состоит из нескольких компонентов: топливных форсунок, топливной рампы, датчика давления в рампе, топливного насоса среднего давления и датчиков положения кулачка и кривошипа.Компоненты выполняют разные функции: насос нагнетает топливо от примерно 3-4 бар (40-60 фунтов на квадратный дюйм) до 100-300 бар (1500-4500 фунтов на квадратный дюйм). Топливные форсунки распыляют топливо прямо в цилиндры. Топливная рампа подает топливо от насоса к форсункам, а датчик давления в рампе измеряет давление в рампе и отправляет сигнал обратно в блок управления двигателем (ЭБУ), указывающий текущее давление в рампе.

Насос среднего давления обычно приводится в действие кулачком, что можно увидеть на этом видео.Лепесток кулачка создает давление в топливе, а клапан количества топлива на насосе открывается и закрывается, что позволяет топливу попасть в рампу. Выбор времени закрытия клапана критически важен для создания давления в топливной рампе, потому что топливо находится под давлением только тогда, когда кулачок поднял плунжер.

GDI Электроника топливной системы

Наличие надлежащего электрического интерфейса для всех этих компонентов является ключевым элементом управления давлением в топливной рампе. Если у вас нет ЭБУ, предназначенного для взаимодействия со всеми из них, или вы ищете решение ЭБУ с открытым исходным кодом, которое обеспечивает большую гибкость в управлении двигателем, вам нужна правильная электроника для управления форсунками и считывания датчики.Чтобы управлять форсунками, вам понадобится полувысокая мостовая схема для отправки команд форсункам. Иглы инжектора открываются либо соленоидами, либо пьезоэлектрическими батареями, и, следовательно, они должны приводиться в действие с помощью соответствующего оборудования. Точно так же клапан в топливном насосе приводится в действие соленоидом и должен приводиться в действие аналогичной схемой. Датчик давления обычно выдает аналоговое напряжение и должен считываться аналого-цифровым преобразователем, в то время как датчики положения кулачка и кривошипа должны считываться либо цифровыми входными каналами, либо входными каналами с переменным магнитным сопротивлением, в зависимости от тип датчика.LHP Technology Solutions, как партнер по альянсу National Instruments (NI), специализируется на продаже, обслуживании и поддержке решений NI для управления форсунками с прямым впрыском топлива, топливными насосами с прямым впрыском и другой электроникой двигателей внутреннего сгорания (IC).

GDI Pressure Control Algorithm

Для управления давлением топлива простого наличия надлежащего электрического оборудования недостаточно; ЭБУ необходим алгоритм управления, чтобы объединить измерения и исполнительные механизмы вместе для достижения желаемого давления в топливной рампе.В этой статье используется подход, основанный на законе управления с обратной связью ПИД (пропорциональный, интегральный, производный) для определения ширины импульса импульсов клапана количества топлива на основе измеренного давления в топливной рампе. Если давление в направляющей превышает целевое значение, команда ширины импульса для клапана количества топлива будет уменьшаться, чтобы уменьшить количество топлива, попадающего в направляющую. Поскольку форсунки работают и распыляют топливо в цилиндры для привода двигателя, давление в рампе будет уменьшаться.И наоборот, если давление в направляющей ниже целевого значения, команда ширины импульса к клапану количества топлива будет увеличиваться, чтобы увеличить количество топлива, попадающего в направляющую, и давление повысится. Настройка пропорционального, интегрального и производного коэффициентов усиления позволит лучше реагировать на изменения желаемого давления в рампе или частоты вращения двигателя. Типичные значения импульсов находятся в диапазоне приблизительно 3-10 миллисекунд.

Реализация алгоритма давления

Чтобы найти количество импульсов для команды на клапан, воспользуйтесь одним из трех подходов.Во-первых, попытайтесь изучить насос и двигатель, чтобы определить, какое количество импульсов нужно подавать. Во-вторых, если возможно, осмотрите кулачок и насос, чтобы определить, сколько импульсов (обычно 1, 2, 3 или 4) отправить на клапан. Найдите выступы кулачка, которые приводят в действие насос, и посчитайте их. Наконец, если ни один из этих методов не подходит, выберите значение и попытайтесь определить синхронизацию импульсов.

Чтобы определить синхронизацию импульсов клапана количества топлива, просматривайте команды во всем рабочем диапазоне, когда двигатель работает, и следите за давлением топлива.Он должен увеличиться, когда вы найдете правильное время. Если вы выбрали значение импульсов и не заметили увеличения давления топлива, попробуйте добавить в систему дополнительные импульсы.

Кроме того, в двигателях с регулируемой синхронизацией кулачков синхронизация импульсов клапана количества топлива должна быть отрегулирована, чтобы компенсировать изменения синхронизации кулачка, потому что выступ кулачка для топливного насоса перемещается вместе с выступами для впускных и / или выпускных клапанов. . Это может быть достигнуто просто путем добавления опережения кулачка или задержки регулирующего положения кулачка к синхронизации импульсов, чтобы гарантировать, что импульсы, приводящие в действие клапан количества топлива, продолжают подавать топливо под давлением в направляющую.

Теперь, когда у вас есть вся информация, необходимая для контроля давления в рампе в топливной системе GDI, получайте удовольствие!

Нужна дополнительная информация? Чтобы узнать больше, загрузите последний технический документ — Управление тепловым режимом для электромобилей и гибридных электромобилей.




Статьи по теме

Связанные загрузки

под давлением: нагнетательные насосы высокого давления

ТНВД — это сердце головоломки, связанной с созданием энергии для любого дизеля.Независимо от того, говорите ли вы о механических P-насосах, насосах Common Rail высокого давления или даже о насосах HEUI, все они являются жизненно важным промежуточным звеном в системе, которая использует топливо под высоким давлением, чтобы двигатель работал на сжатие. магия зажигания. Увеличьте это давление, и вы прибавите мощности. Увеличьте и объем, и давление, и вы получите действительно большую мощность. В дальнем углу дизельного автоспорта, где живут двигатели мощностью от 2000 до 3000 л.с., ТНВД могут стать довольно безумными. Используется все, от сильно модифицированных заводских насосов до экзотических узлов, изготовленных из цельного куска алюминиевой заготовки, наряду с несколькими насосами высокого давления, которые являются нормой для высокопроизводительных мельниц Cummins, Duramax и Power Stroke с общей топливной рампой.

Ниже мы познакомим вас с самыми плохими недостатками технологии впрыска дизельного топлива. От печально известного механического насоса «Sigma» до комбинаций из нескольких CP3, которые сделали возможными двигатели с общей топливной магистралью мощностью 2500 л.с., следующая технология — это то, что прикреплено болтами к лучшим съемникам салазок и самым быстрым гонщикам в Северной Америке.

Механические насосы

«Сигма»

Также известный как ТНВД стоимостью 10 000 долларов, насос Sigma представляет собой плунжерный встроенный механический насос, аналогичный по конструкции Bosch P7100, установленному на модели 5.9L Cummins, на которых устанавливались Dodge Ram 2500 и 3500 с 1994 по 1998 годы. Однако вместо использования 12-миллиметровых поршней (которые вы найдете в Bosch P7100) Sigma поставлялась с 16-миллиметровыми поршнями прямо с завода. Эти массивные поршни способствуют гораздо более высокой скорости впрыска (т.е. большему количеству топлива впрыскивается быстрее), что приводит к повышению эффективности двигателя и, в конечном итоге, увеличению мощности. Хотя съемники грузовика уже используют Сигмы более чем десятилетие, прорывы в заготовочных блоках цилиндров, головки потока, распредвалы и турбо-технологии в последние года позволили больше своих возможности заправки топлива, чтобы быть реализованы.Этот заводской литой алюминиевый 16-миллиметровый двигатель Sigma, предлагаемый Columbus Diesel Supply, может расходовать до 1600 куб. См топлива, хотя большинство комбинаций двигателей в начале используют от 950 до 1100 куб. Для сравнения: по данным Bosch Motorsport, стандартный Bosch P7100 с 12-миллиметровым поршнем имеет объем всего 135 куб.

Заготовка Mack Daddy

Насос Sigma диаметром 17 мм от компании Columbus Diesel Supply — это большой папа в мире топливных насосов. Корпус насоса изготовлен из алюминиевых заготовок высокой плотности и включает 17-миллиметровые плунжеры, специальный шлифованный распределительный вал и другие запатентованные внутренние элементы (такие как нагнетательные клапаны и держатели, регулирующие втулки, вентиляционное отверстие насоса и регулятор, среди других компонентов).В сочетании с правильными инжекторами (обычно с тройной подачей и на базе International или John Deere) и воздушным потоком (большие одноступенчатые или двухступенчатые турбонаддувы) 17-миллиметровая Sigma может поддерживать мощность более 3000 л.с. В то время как 16-миллиметровую версию Sigma можно найти в некоторых приложениях для дрэг-рейсинга, а также на многих тягачах Super Stock, в мире тракторов вы, скорее всего, заметите одного из этих 17-миллиметровых плохих парней, свисающих сбоку. двигателя. Скажем так, вы это знаете, когда видите.

Scheid Diesel 14 мм и 16 мм P8600s

Scheid Diesel также занимается производством P-насосов, готовых к соревнованиям. Показанный выше насос на базе Bosch P8600 позволяет драгстеру с двигателем Cummins, который является рекордсменом компании, развивать мощность 2500 л.с. и пробегать шесть секунд четверть мили со скоростью более 220 миль в час. Также широко используется в тягачах Pro Stock, его основные особенности включают 14-миллиметровые поршни и цилиндры, специальный кулачок для шлифования и регулируемый механизм газораспределения. Все жизненно важные движущиеся внутренние детали покрыты редуктором трения для плавной работы и оптимальной долговечности, и — в зависимости от области применения — насос можно настроить с регулятором RSV («Ag»), который обеспечивает полную заправку топливом со скоростью до 7000 об / мин! 14-миллиметровый насос Scheid пропускает максимум 1100 куб. См, но если этого недостаточно, Scheid также предлагает 16-миллиметровую версию, которая, по слухам, способна пропускать более 1500 куб.

12-цилиндровые насосы

Когда одного плунжера на цилиндр недостаточно, всегда есть 12-цилиндровый Р-насос! Первоначально использовавшиеся в 12-цилиндровых двигателях Deutz F12L714, несколько модифицированных версий этих насосов использовались в тяговом контуре грузовиков примерно десять лет назад. Для каждого инжектора требовалось две линии впрыска, и они, как известно, доставляли потоки топлива за чрезвычайно короткое время и вырабатывали довольно хорошую мощность. Однако они оказались довольно темпераментными (нам сказали, что застрявшие поршни были обычной проблемой), и, в конечном итоге, технологические прорывы в одноплунжерных насосах в конечном итоге их убили.

13 мм P7100s

Способные поддерживать мощность более 1400 л.с., насосы на базе P7100, использующие 13-миллиметровые поршни и стволы, являются популярным товаром как на тормозной полосе, так и в классах тяги Limited Pro Stock. Иногда их даже можно встретить на невероятно быстрых уличных грузовиках. Несмотря на то, что он питал сильно изношенный 12-клапанный 5,9-литровый двигатель Cummins с пробегом в 250 000 миль, 13-миллиметровый насос, изображенный выше, по-прежнему выдерживал 1237 л / с, 2114 фунт-фут на динамометрическом стенде шасси.

Насосы Common Rail

Пятиместный CP3 Duramax: 2,570 л.с. (топливо)

В то время как старая игра использования огромных форсунок для получения большой мощности одинакова для механического впрыска и впрыска Common Rail, современные высокотехнологичные системы Common Rail требуют для этого несколько насосов высокого давления (1200 л.с. +). В случае Super Stock Duramax Уэса Кусилека форсунки двигателя настолько велики, что для поддержания давления в рампе требуется пять модифицированных Bosch CP3.На динамометрическом стенде двигателя — и в сочетании с 5,25-дюймовым индуктором Pro Stock с турбонаддувом от Columbus Diesel Supply, усиливающим подачу топлива в Wagler Competition Products DX460 Duramax — одноразовая конфигурация CP3 с пятью насосами, обеспечивающая мощность 2570 л.с., которая будет производиться на заводе. 4900 об / мин (и 2854 фунт-фут крутящего момента при 4600 об / мин).

Triple CP3 Cummins: 2,571RWHP (закись азота)

Чтобы получить почти 2600 л.с. на колеса, требуется серьезная заправка, много воздуха и, в случае Шона Баки, дополнительный удар через N2O, хотя его Dodge Ram 2006 года выработал безумные 2375 л / ч на топливе. один в прошлом.В то время как тройные XP CP3 от Industrial Injection, похоже, не имеют проблем с набором форсунок, которые, вероятно, находятся где-то на 500-800 процентов больше стандартного, двигатель питается воздухом через массивную тройную турбонагнетатель. состоит из трех зарядных устройств 106 мм. С турбинами такого размера требуется значительное количество оборотов двигателя, чтобы удержать их на своем счастливом месте. В результате 6,7-литровый двигатель Baca на базе двигателя Cummins с палубной обшивкой регулярно достигает 5000 об / мин. Чтобы CP3 не превышал скорость, они имеют недостаточную тягу с помощью массивных шкивов от Beans Diesel Performance.

Triple CP3 Duramax: 1,680 л.с. (топливо)

На фотографии выше вы видите тройную шестеренчатую передачу CP3 из алюминиевых заготовок, прикрепленную болтами к морскому двигателю Duramax, собранную компанией Wagler Competition Products. На динамометрическом стенде двигателя и благодаря набору форсунок на 250 процентов, вышеупомянутой конфигурации с тройным CP3, автономному блоку управления двигателем Bosch, 98-мм турбонагнетателю от Precision Turbo & Engine и переделанным головкам блока цилиндров Ваглера -воздушный интеркулер, двигатель мощностью 1680 л.с. и 2400 Нм крутящего момента.Для максимальной долговечности на этом уровне мощности был использован совершенно новый блок LML (самый прочный блок Duramax, когда-либо отлитый GM), а также внутренне сбалансированный коленчатый вал из заготовки, пояс для соревнований, основные крышки заготовок, стальные шатуны, кованые поршни и масляная система с сухим картером.

Dual CP3 Duramax: 1600 л.с. на колесах

Благодаря объединению усилий двух 12-миллиметровых насосов CP3 с поршневым ходом и набора форсунок на 250 процентов (наряду с тройным турбонаддувом) кабина экипажа GMC Sierra с приводом от LB7, принадлежащая и управляемая Майком Грейвсом из Hollyrock Customs, взорвалась. через четверть мили за 9.55 секунд при 149 миль / ч. При 7000 фунтах и ​​такой скорости ловушки его полная внутренняя-тонна посылает на землю не менее 1600 лошадиных сил. Более того, мощный GMC с двойным CP3 подкреплен трансмиссией Allison 1000 производства Limitless Diesel Performance, а не заменой 47/48.

Масляные насосы высокого давления

Двойной HPOP 6.0L, рабочий ход: 1870 л.с. (топливо)

Экзотические компоненты впрыска предназначены не только для механических систем или систем с общей топливной магистралью, как этот двойной масляный насос высокого давления на двигателе HEUI 6.Показан 0L Power Stroke (HEUI означает насос-форсунку с гидравлическим приводом и электронным управлением). Добавление HPOP с ременным приводом к этому уравнению принесло большие дивиденды для экстремального конструктора объемом 6,0 л и заядлого конкурента Джесси Уоррена из Warren Diesel Injection. Этот двигатель, оснащенный большой составной турбо-конфигурацией и набором запатентованных форсунок объемом 760 куб. См, позволил платформе HEUI приблизиться к 1900 л.с. на динамометрическом стенде.

Хотите увидеть еще какую-нибудь экстремальную дизельную технику? Мы составили список из 5 самых крайних 7.3L Power Strokes!

Диагностика и обслуживание систем прямого впрыска бензина | 2018-03-29

Прямой впрыск бензина (GDI) подает топливный заряд непосредственно в камеру сгорания, а не через впускной канал. Системы GDI различаются по режиму работы и рабочим напряжениям. Обслуживание этих систем связано с проблемами диагностики и ремонта, а также с мерами предосторожности, уникальными для GDI. В этой статье Билл Фултон предлагает свои идеи, которые помогут разобраться в этих проблемах.

Для тех из вас, кто может вспомнить, когда производители впервые представили системы впрыска топлива в порт, вы помните, что вскоре мы увидели некоторые предсказуемые проблемы на этих транспортных средствах, такие как скопление олефинов и диолефинов в области штырей. форсунки, вызывающей ограничение.

Мы все провели химическую очистку направляющей форсунки, чтобы улучшить или исключить обычные условия обедненной смеси. Кроме того, частой проблемой было накопление углерода на задней части впускных клапанов.Если вы помните, европейские производители использовали для очистки этих клапанов установку для струйной обработки скорлупы грецкого ореха.

С введением инжекторов сопротивления отложению (DRI) ограничение иглы было значительно улучшено, но не полностью устранено. Благодаря усилиям Американского института нефти (API), Общества автомобильных инженеров (SAE) и Агентства по охране окружающей среды (EPA), количество современных высокоуровневых моющих присадок к бензину было увеличено, чтобы практически устранить эту проблему.

Заметили ли вы за последние несколько лет, что, когда производители оригинального оборудования выпускают новую систему, всегда появляются новые проблемы, которые проявляются с течением времени и с течением времени? Это действительно так, когда речь идет о современных системах с прямым впрыском бензина (GDI). Но прежде чем мы обратимся к этим предсказуемым проблемам, давайте посмотрим на динамику этих систем.

Топливный бак

Начнем с топливного бака. В системах GDI есть сторона низкого давления и сторона высокого давления.Существуют две системы, известные как механические безвозвратные системы и электронные безвозвратные системы. В механических безвозвратных системах регулятор давления топлива на стороне подачи находится в баке и является частью модуля топливного насоса. Насколько мне известно, GM — единственный производитель, который до сих пор поставляет обычный порт для проверки давления топлива для проверки давления подачи на стороне низкого давления с помощью обычного порта для проверки давления топлива. Иди разберись. Ford поставляет некоторые из них в 2010 модельном году, а в 2011 модельном году их заменит.Т-образный переходник можно приобрести у специалистов OTC, чтобы вручную использовать обычный манометр для проверки давления топлива. Обычно давление подачи на стороне низкого давления обычно находится в диапазоне от 50 до 60 фунтов на квадратный дюйм. Интересно то, что системы GDI предназначены для запуска и работы при низком боковом давлении, хотя и не очень хорошо.

Еще до того, как были введены безвозвратные системы, вероятность наличия порта для проверки давления топлива с годами уменьшалась. Если вы помните, системы Honda PGMFI имели вкладку в пульсаторе давления топлива, которая выдвигалась при достижении давления в системе.В других системах было действительно сложно выяснить, как вручную проверить давление топлива.

В электронных безвозвратных системах Ford отсутствует регулятор давления топлива. Давление топлива регулируется электронно модулем управления топливным насосом. Модуль управления воздействует на насос системным напряжением или со стороны заземления, управляя насосом со скоростью 9500 раз в секунду. PCM определяет нагрузку на двигатель и увеличивает сигнал рабочего цикла в цепи модуля управления подачей топлива.

Модуль управления топливным насосом GM подает системное напряжение на насос со скоростью 25 000 раз в секунду.Когда модуль управления топливным насосом хочет увеличить давление на стороне низкого давления, он просто увеличивает время включения насоса по шкале рабочего цикла. При любых условиях нагрузки двигателя частотный сигнал никогда не изменяется, но сигнал рабочего цикла будет увеличиваться по мере увеличения нагрузки двигателя и потребности в давлении топлива на стороне низкого давления. PCM считывает нагрузку на двигатель и использует схему шины для передачи этого сигнала рабочего цикла на модуль управления топливным насосом.

Эти сигналы рабочего цикла можно увидеть на диагностическом приборе.По мере увеличения нагрузки на двигатель будет поступать и этот сигнал. Кроме того, в системах GM есть два новых параметра диагностического прибора, которые важны для обнаружения слабых или неисправных топливных насосов. Они известны как краткосрочная коррекция топливного насоса и долгосрочная коррекция топливного насоса. Если на стороне подачи низкого давления все в порядке, значения будут очень близки к 1.

Число выше 1 означает, что модуль управления топливным насосом увеличивает команду рабочего цикла, чтобы поддерживать показания низкого давления в пределах спецификации.

Цифры ниже 1 показывают, что модуль управления топливным насосом снова снижает сигнал рабочего цикла, чтобы поддерживать давление топлива на стороне низкого давления в пределах спецификаций (см. Рисунок 1).

В электронных безвозвратных системах Ford также используется модуль управления топливным насосом. PCM Ford считывает нагрузку на двигатель и передает сигнал управления топливным насосом (FPC) в шкале рабочего цикла. Например, скажем, на холостом ходу в условиях холостого хода ваш диагностический прибор показывает команду рабочего цикла 30% от PCM к модулю управления топливным насосом. Модуль управления топливным насосом Ford внутренне удваивает это значение и включает насос на 60% и выключает 40%. Напряжение на насос от модуля управления топливным насосом подается с частотой 9500 раз в секунду.Топливные насосы Ford управляются либо со стороны земли, либо со стороны подачи, управляемой модулем управления топливным насосом.

Очевидно, что по мере увеличения нагрузки двигателя сигнал рабочего цикла увеличивается, но частота сигнала остается постоянной. В системах Ford и GM модули управления топливным насосом отвечают за обнаружение электрических неисправностей и передачу их на PCM. В системах Ford используется специальная цепь контроля топливного насоса (FPM) для сообщения об этих неисправностях. Системы GM будут использовать схему двухпроводной высокоскоростной шины для связи между PCM и модулем управления топливным насосом.Хорошая новость заключается в том, что в этих электронных безвозвратных системах есть трехпроводной датчик низкого давления, который сообщает о подаче топлива на стороне низкого давления в модуль управления топливным насосом, что означает, что мы можем считывать это значение с диагностического прибора.

Имейте в виду, что эти системы фактически появились еще в 1998 году на нескольких системах Ford PFI. GM также использовала эти системы еще в 2007 году в некоторых своих системах PFI. ПРИМЕЧАНИЕ. В системе Ford модуль управления топливным насосом вместе обеспечивает массу для топливного насоса и модуля.На пикапе серии F этот модуль в алюминиевом корпусе установлен на стальной поперечине. Происходит коррозия разнородных металлов, и вы теряете заземление топливного насоса. У Ford на самом деле есть исправление TSB для этой проблемы. В системах GDI у вас будет любая версия.

Для первичной диагностики сначала необходимо проверить давление на стороне подачи к насосу высокого давления (см. Рисунок 2). На верхнем графике диагностического прибора показано низкое давление подачи на стороне около 60 фунтов на кв. На нижнем графике показано высокое давление в рампе форсунок.На 17 кадре мы выполнили условие торможения с усилителем WOT. Обратите внимание, что давление на стороне высокого давления достигло 9,8 МПа. Преобразование в фунты на квадратный дюйм означает, что 9,8 х 145 равно 1421 фунту на квадратный дюйм. В условиях WOT при 5000 об / мин это давление будет превышать 2000 фунтов на квадратный дюйм.

Система на стороне подачи подает давление топлива на стороне низкого давления в насос высокого давления, который приводится в действие распределительным валом. Этот насос высокого давления имеет встроенный управляющий соленоид, которым управляет PCM. Подпружиненный соленоид открывается, а рабочий цикл регулируется для закрытия, чтобы поднять давление на стороне высокого давления в рампе инжектора.

Ford использует четыре кулачка на распредвале, в то время как другие производители используют три кулачка на распредвале. Кулачковый толкатель используется для механического соединения насоса с распределительным валом. При снятии насоса всегда снимайте толкатель кулачка и проверяйте наличие вогнутых следов износа там, где, скорее всего, изношены выступы кулачка. Это предотвратило бы полный ход поршня насоса, тем самым создавая потерю давления топлива на стороне высокого давления. Эта проблема хорошо задокументирована на некоторых европейских автомобилях.

Кроме того, датчик давления топлива на стороне высокого давления, установленный на рампе форсунки, сообщает PCM о давлении топлива на стороне высокого давления.Этот PID доступен на диагностическом приборе. Диагностический прибор покажет командный сигнал управляющему соленоиду. GM показывает это время в градусах поворота кривошипа, хотя я видел, как некоторые инструменты сканирования, поставляемые на вторичный рынок, преобразовывают это в шкалу рабочего цикла (см. Рисунок 3). Верхний график сканирования — это сигнал рабочего цикла от PCM к соленоиду управления насосом высокого давления в шкале рабочего цикла. Нижний график сканирования — это команда для соленоида управления насосом высокого давления в градусах поворота кривошипа. На 10 кадре мы задействовали силовой тормоз WOT.Обратите внимание на увеличение обоих параметров. Ford и другие производители показывают это значение в шкале рабочего цикла.

В зависимости от вашего диагностического прибора вы можете иметь возможность двунаправленно управлять этим соленоидом, задав большее время включения, что должно увеличить давление на стороне высокого давления. Имейте в виду, что вам придется повышать обороты, когда вы используете эту функцию в своем отсеке. Управляющие соленоиды имеют очень низкие значения сопротивления, около 0,5 Ом, поэтому PCM будет ударять по соленоиду 6000 раз в секунду (вкл. / Выкл.), Чтобы ограничить ток.

Как и в случае с управлением топливным насосом, PCM просто увеличивает время включения для увеличения бокового давления высокого давления. PCM в обеих системах подает напряжение и землю для этих соленоидов. Коды схем для этих систем очень надежны. Для ограничения протекания тока сигнал регулируется по частоте с помощью PCM. На автомобилях GM, если снят трубопровод высокого давления, замените его и не используйте повторно. Форд говорит, что если снимается датчик давления топлива на стороне высокого давления, его необходимо заменить на новый.

Обедненная смесь — обычная проблема из-за неисправного насоса высокого давления. Кроме того, были случаи, когда из насоса высокого давления топливо протекало в картер, поэтому всегда проверяйте уровень масла в этих системах. Перед тем, как разорвать топливопроводы в этих системах, удалите предохранитель топливного насоса или снимите реле топливного насоса и проверните двигатель до тех пор, пока он не заглохнет и не будет сброшено высокое давление топлива.

До того, как Ford выпустил свои системы GDI, они использовали электронные безвозвратные системы еще в 1998 году.На рампе форсунок расположен трехпроводной датчик давления в топливной рампе. У него также была вакуумная линия, подключенная к коллектору источника вакуума. Инженерная идея здесь заключается в том, что PCM может видеть точное падение давления топлива на форсунках. Правило состоит в том, что на каждые 2 дюйма вакуума соприкасающиеся с ним наконечники форсунок увеличивают перепад давления на форсунках на 1 фунт / дюйм2. Например, при 18 дюймах вакуума перепад давления на форсунках увеличится на 9 фунтов на квадратный дюйм. Если давление в рампе показывает 35 фунтов на квадратный дюйм, диагностический прибор покажет 44 фунта на квадратный дюйм.Показания манометра давления топлива и показания давления топлива диагностического прибора никогда не будут одинаковыми. Одна проблема, которую мы видели в этих системах, заключается в том, что датчики, как известно, пропускают давление топлива в его источник вакуума, вызывая богатые условия и отрицательные корректировки корректировки топливоподачи. В этом случае, отключив источник вакуума и отметив скорректированные значения корректировки топливоподачи, вы сможете проверить датчик утечки.

В системах GDI форсунки не могут работать с напряжением 12 В, как в обычных системах PFI. Форсунки заряжаются конденсаторами внутри PCM на 65 вольт.Две форсунки заряжаются одновременно, но только одна форсунка получает заземление от PCM через последовательный порядок включения форсунок.

При диагностике отсутствия запуска двигателя при наличии зажигания и давления топлива может потребоваться проверка цепи привода форсунки. Никакие огни и контрольные лампы не работали. Кроме того, доступ к форсункам потребует разборки двигателя сверху.

Легкий доступ будет через PCM или жгут проводов.При просмотре кривой напряжения потребуется двухканальный осциллограф. Один канал будет идти к одному проводу к инжектору, а другой вывод канала — к другому проводу.

Во время запуска вы увидите 65 вольт на обоих каналах. Когда PCM хочет, чтобы форсунка была под напряжением, PCM снова подает питание на землю (см. Рисунок 4). Зонд с низким индуктивным током был зажат вокруг провода управления форсункой. Значения силы тока на этих форсунках GDI варьируются от 8 до 12 ампер. На этой системе GM GDI пиковый ток достигал 12 ампер до того, как PCM модулировал землю, чтобы ограничить ток.График напряжения справа показывает, что PCM емкостно зарядил инжектор напряжением 65 вольт. Значения сопротивления форсунок GDI очень низкие в диапазоне 1,5 Ом. Для снятия форсунок потребуется небольшой перфоратор. Кроме того, для очистки отверстия форсунки потребуется щетка. Помните, форсунка вставляется в камеру сгорания, поэтому необходимо заменить уплотнение. Для установки нового компрессионного уплотнения форсунки необходим специальный инструмент.

В этих системах GDI есть некоторые общие проблемы, которые начали проявляться.Номер один — скопление нагара на конце форсунки, вызывающее уменьшенную и искаженную форму распыления форсунки, что приводит к пропускам воспламенения при обедненной плотности.

Проблема номер два — это накопление нагара в камере сгорания, которое может повысить степень сжатия и может раскалиться докрасна, вызывая искровой детонатор. Большинство современных систем GDI замедляют синхронизацию зажигания на цилиндр в случае обнаружения детонации от отдельных цилиндров. В системах GM у вас будут данные сканирования для этой проблемы с каждого отдельного цилиндра.

Третья наиболее распространенная проблема связана с отложением нагара на задней стороне впускных клапанов. Помните, что у нас больше нет эффекта растворителя от топлива, подаваемого на заднюю сторону впускных клапанов. Эта проблема вызвана испарениями картера от молекул испаренного масла, всасываемых через систему PCV. Синтетические или полусинтетические масла уменьшают эту возможность. Конечно, у всех нас есть клиенты, которые пренебрегают рекомендуемыми интервалами замены масла и рекомендуемым конкретным типом масла.

Четвертая проблема становится более серьезной из-за накопления нагара в области контакта верхнего компрессионного кольца поршня.Это предотвращает расширение верхнего компрессионного кольца, что приводит к прорывам и потере сжатия.

На мой взгляд, эти проблемы могут быть решены путем длительного химического замачивания. Идея здесь состоит в том, чтобы позволить продолжительный период замачивания, как в течение ночи, чтобы позволить химическому веществу разорвать молекулярные связи углерода.

Очевидно, что это не удалит все отложения, но, увеличив период замачивания, можно добиться улучшения. Для получения дополнительной информации по этому поводу вы можете посетить веб-сайт BGs по адресу www.BGprod.com. Люди из BG продают комплект из трех банок, в котором одна банка используется для очистки форсунок через направляющую. Химическое вещество, известное как 44K, распыляется через впускное отверстие, чтобы устранить накопление углерода на задней части клапанов. В крайних случаях необходимо снять верхнюю камеру впускного коллектора. Половина впускных клапанов будет закрыта. На заднюю часть этих впускных клапанов наносится несколько унций 44К. Требуется минимум 15 минут замачивания. В комплект входят большие деревянные зубочистки, чтобы пробить уголь и разбить его.

Кроме того, в комплект поставки входит проволочная щетка для очистки задней части впускных клапанов. Все это можно посмотреть на сайте BG.

Поскольку количество этих автомобилей увеличивается с каждым годом, эти системы будут приходить в ваш магазин с некоторыми из этих распространенных проблем. В нашей отрасли принято: «Покажите мне проблему, и я покажу вам возможность». ■

Билл Фултон является автором руководств Mitchell 1 по расширенной диагностике производительности двигателя и расширенной диагностике двигателя.Он также является автором нескольких лабораторных работ и руководств по управляемости, таких как системы Ford, Toyota, GM и Chrysler OBD I и OBD II, Testing Fuel System Testing, многих других учебных пособий в дополнение к его собственным 101 Lab Scope Testing Tips. Он является сертифицированным техническим специалистом с более чем 30-летним опытом обучения и исследований. Он вошел в тройку лучших национальных тренеров журнала Motor Service Magazine и был инструктором по программам Mitchell 1, Precision Tune, OTC, O’Reilly Auto Parts, BWD, JD Byrider, Snap-on Vetronix и Standard Ignition.Возможно, вы также видели Фултона во многих обучающих видео и DVD-дисках Lightning Bolt, а также читали его статьи во многих журналах по автосервису. В настоящее время он владеет и управляет Ohio Automotive Technology, центром по ремонту автомобилей и научно-исследовательскими разработками.

Может ли ваш топливный насос создавать слишком высокое давление?

Топливный насос в вашем автомобиле забирает газ из бака для подачи топлива в карбюратор или топливные форсунки. Требуется определенное давление, чтобы топливо доставлялось правильно и в нужном количестве.Замена топливного насоса на неправильную модель может привести к чрезмерному давлению и проблемам с работой двигателя.

Карбюраторные двигатели

Карбюраторы на старых двигателях могут быть очень разборчивыми. Опытные механики знают количество регулировок, которые могут потребоваться для поддержания работы карбюраторной системы на пике производительности. Система подачи топлива использует механический топливный насос, который обеспечивает более низкий уровень давления, на котором работает карбюратор.

Давление топлива в карбюраторе будет варьироваться от 4 до 7 фунтов на квадратный дюйм, при этом некоторые автомобили используют более высокое давление.Использование неправильного топливного насоса, который обеспечивает избыточное давление, может вызвать проблемы, начиная от плохой производительности и меньшего расхода топлива до переполнения и повреждения карбюратора.

Когда давление лишь немного превышает требуемую величину, ваш автомобиль может шипеть, когда вы впервые ускоряетесь из остановленного положения. Затопление при попытке завести автомобиль может быть обычным явлением. В более крайних случаях поплавковая игла и уплотнение в карбюраторе могут быть повреждены, и при работе на холостом ходу может произойти утечка газа.

И наоборот, насос, который подает слишком маленькое давление, вызовет проблемы с производительностью, вплоть до полного прекращения работы. Производители перешли с карбюраторов на впрыск топлива по многим причинам, включая надежность и способность выдерживать более широкий диапазон условий.

Двигатели с впрыском топлива

В двигателях с впрыском топлива обычно используются электрические топливные насосы для обеспечения более высокого давления, требуемого системой. При впрыске через порт необходимое давление составляет от 45 до 66 фунтов на квадратный дюйм.В системах впрыска в корпус дроссельной заслонки (TBI) давление обычно составляет от 9 до 18 фунтов на квадратный дюйм. Это большая разница в величине давления, необходимого для нормальной работы.

Неисправный регулятор также может привести к проблемам с подачей давления в систему форсунок.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *