Аксиально поршневой мотор: Аксиальный двигатель внутреннего сгорания — Википедия – Аксиальные двигатели внутреннего сгорания / Habr

Аксиальные двигатели внутреннего сгорания / Habr


Аксиальный ДВС Duke Engine

Мы привыкли к классическому дизайну двигателей внутреннего сгорания, который, по сути, существует уже целый век. Быстрое сгорание горючей смеси внутри цилиндра приводит к увеличению давления, которое толкает поршень. Тот, в свою очередь, через шатун и кривошип крутит вал.


Классический ДВС

Если мы хотим сделать двигатель помощнее, в первую очередь нужно увеличивать объём камеры сгорания. Увеличивая диаметр, мы увеличиваем вес поршней, что отрицательно сказывается на результате. Увеличивая длину, мы удлиняем и шатун, и увеличиваем весь двигатель в целом. Или же можно добавить цилиндров — что, естественно, также увеличивает результирующий объём двигателя.

С такими проблемами столкнулись инженеры ДВС для первых самолётов. Они, в конце концов, пришли к красивой схеме «звездообразного» двигателя, где поршни и цилиндры расположены по кругу относительно вала через равные углы. Такая система хорошо охлаждается потоком воздуха, но очень уж она габаритная. Поэтому поиски решений продолжались.

В 1911 году Macomber Rotary Engine Company из Лос-Анджелеса представила первый из аксиальных (осевых) ДВС. Их ещё называют «бочковыми», двигателями с качающейся (или косой) шайбой. Оригинальная схема позволяет разместить поршни и цилиндры вокруг основного вала и параллельно ему. Вращение вала происходит за счёт качающейся шайбы, на которую поочерёдно давят шатуны поршней.


У двигателя Макомбера было 7 цилиндров. Изготовитель утверждал, что двигатель был способен работать на скоростях от 150 до 1500 об/мин. При этом на 1000 об/мин он выдавал 50 л.с. Будучи изготовлен из доступных в то время материалов, он весил 100 кг и имел размеры 710×480 мм. Такой двигатель был установлен в самолёт авиатора-первопроходца Чарльза Фрэнсиса Уолша «Серебряный дротик Уолша».

Не остались в стороне и советские инженеры. В 1916-м году появился двигатель конструкции А. А. Микулина и Б. С. Стечкина, а в 1924 г — двигатель Старостина. Об этих двигателях знают, пожалуй, только любители истории авиации. Известно, что детальные испытания, проведенные в 1924 г, выявили повышенные потери на трение и большие нагрузки на отдельные элементы таких двигателей.


Двигатель Старостина из музея авиации в Монино

Гениальный и слегка безумный инженер, изобретатель, конструктор и бизнесмен Джон Захария Делореан мечтал построить новую автомобильную империю в пику существующим, и сделать совершенно уникальный «автомобиль мечты». Все мы знаем машину DMC-12, которую называют просто DeLorean. Она не только стала звездой экрана в фильме «Назад в будущее», но и отличалась уникальными решениями во всём — начиная от алюминиевого кузова на плексигласовом каркасе и заканчивая дверями «крылья чайки». К сожалению, на фоне экономического кризиса производство машины не оправдало себя. А затем Делореан долго судился по подложному делу о наркотиках.

Но мало кто знает, что Делореан хотел дополнить уникальный внешний вид машины ещё и уникальным мотором — среди найденных после его смерти чертежей были и чертежи аксиального ДВС. Судя по его письмам, он задумал такой двигатель ещё в 1954 году, а всерьёз принялся за разработку в 1979-м. В двигателе Делореана было три поршня, и они располагались равносторонним треугольником вокруг вала. Но каждый поршень был двусторонним — каждый из концов поршня должен был работать в своём цилиндре.


Чертёж из тетради Делореана

По каким-то причинам рождение двигателя не состоялось — возможно, потому, что разработка автомобиля с нуля вышло достаточно сложным предприятием. На DMC-12 устанавливали 2,8-литровый двигатель V6 совместной разработки Peugeot, Renault и Volvo мощностью 130 л. с. Пытливый читатель может изучить сканы чертежей и заметок Делореана на этой странице.


Экзотический вариант аксиального двигателя — «двигатель Требента»

Тем не менее, такие двигатели не получили широкого распространения — в большой авиации постепенно состоялся переход на турбореактивные двигатели, а в автомобилях по сию пору используется схема, в которой вал перпендикулярен цилиндрам. Интересно только, почему такая схема не прижилась в мотоциклах, где компактность пришлась бы как раз кстати. По-видимому, они не смогли предложить какой-либо существенной выгоды по сравнению с привычным нам дизайном. Сейчас такие двигатели существуют, но устанавливаются в основном в торпедах — благодаря тому, как хорошо они вписываются в цилиндр.



Вариант под названием «Цилиндрический энергетический модуль» с двусторонними поршнями. Перпендикулярные штоки в поршнях описывают синусоиду, двигаясь по волнистой поверхности

Главная отличительная черта аксиального ДВС — компактность. Кроме того, в его возможности входит изменение степени сжатия (объёма камеры сгорания) просто путём изменения угла наклона шайбы. Шайба качается на валу благодаря сферическому подшипнику.

Однако новозеландская компания Duke Engines в 2013 году представила свой современный вариант аксиального ДВС. В их агрегате пять цилиндров, но всего лишь три форсунки для впрыска топлива и — ни одного клапана. Также интересной особенностью двигателя является тот факт, что вал и шайба вращаются в противоположных направлениях.

Внутри двигателя вращаются не только шайба и вал, но и набор цилиндров с поршнями. Благодаря этому удалось избавиться от системы клапанов — движущийся цилиндр в момент зажигания просто проходит мимо отверстия, куда впрыскивается топливо и где стоит свеча зажигания. На стадии выпуска цилиндр проходит мимо выпускного отверстия для газов.

Благодаря такой системе количество необходимых свечей и форсунок получается меньшим, чем количество цилиндров. А на один оборот приходится в сумме столько же рабочих ходов поршня, как у 6-цилиндрового двигателя обычного дизайна. При этом вес аксиального двигателя на 30% меньше.

Кроме того, инженеры из Duke Engines утверждают, что и степень сжатия их двигателя превосходит обычные аналоги и составляет 15:1 для 91-го бензина (у стандартных автомобильных ДВС этот показатель равен обычно 11:1). Все эти показатели могут привести к уменьшению расхода топлива, и, как следствие — к уменьшению вредного воздействия на окружающую среду (ну или к увеличению мощности двигателя — в зависимости от ваших целей).

Сейчас компания доводит двигатели до коммерческого применения. В наш век отработанных технологий, диверсификации, экономии на масштабе и т.п. сложно представить, как можно серьёзно повлиять на индустрию. В Duke Engines, по-видимому, это тоже представляют, поэтому намереваются предлагать свои двигатели для моторных лодок, генераторов и малой авиации.


Демострация малых вибраций двигателя Duke

Самый странный двигатель, который вы когда-либо видели

По словам компании Duke Engineering, разработанный ими осевой двигатель – самый эффективный и лёгкий двигатель из всех, которые вы можете установить на свою лодку, малый самолёт или генератор.,

Как сообщают сами разработчики, финальная коммерческая модель их двигателя пока не завершена, но уже сейчас подаёт большие надежды:

«Механические и другие ключевые характеристики двигателя (сгорание топлива, производительность, тайминг портов, их геометрия, и так далее) показывают удовлетворительные результаты уже сейчас, на стадии прототипа, но без всякого сомнения получат выгоду от дальнейших исследовательских и конструкционных разработок».

Смотрим видео:

 

Двигатель имеет пять цилиндров, три топливные форсунки и ни одного клапана.
Все пять поршней как ив классическом двигателе внутреннего сгорания расположены на шатунах, а вот шатуны на крестовине с осевым перемещением, которая вращается в результате движения поршней, коленчатый вал при этом вращается в противоположном направлении. Трансформируя тепловую энергию в механическую поршни двигаются через порты в которых расположены топливные форсунки и свечи зажигания, устраняя при этом необходимость в клапанах. Система впуска и выпуска весьма схожа с двухтактным двигателем.

 

 

 

Осевой двигатель имеет ряд интересных особенностей:

1Очень низкий уровень вибрации
2Только три форсунки и три свечи зажигания на пять цилиндров, плюс нет клапанов, автоматически в разы уменьшается количество элементов.
3Может работать на самых разнообразных видах топлива
4Легче и компактнее, чем традиционные двигатели внутреннего сгорания.

На видео, показан принцип работы как самого двигателя в целом, так и отдельных его элементов. На втором продемонстрирован прекрасный баланс с очень низкой вибрацией. Данные двигатели разрабатываются в первую очередь для авиации, но компактность и низкая вибрация помогут двигателю найти свое пременение в ряде сфер не связанных с авиацией.

 

,

 

А вот еще интересный Двигатель Ванкеля, а вот еще Знаете чей это двигатель Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия — http://infoglaz.ru/?p=50828

Аксиально-поршневой двигатель внутреннего сгорания

Изобретение относится к двигателестроению, к аксиально-поршневым двухтактным двигателям внутреннего сгорания.

Известен аксиально-поршневой двухтактный двигатель внутреннего сгорания (1) с внутренним смесеобразованием и ее воспламенением от электрической искры, он содержит пять цилиндров с параллельным расположением вдоль продольной оси выходного вала, на котором жестко закреплена косая шайба с качающейся крестовиной, шарнирно соединенная с шатунами, а шатуны шарнирно соединены с пятью поршнями. В нем система впуска и выпуска работает через окна, схожая с двухтактными двигателями.

Недостатком данного двигателя является сложное устройство механизма преобразующего возвратно-поступательное движение поршней во вращательное движение выходного вала.

Известен аксиально-поршневой двухтактный двигатель внутреннего сгорания (2), содержащий блок с четырьмя прямолинейными цилиндрическими цилиндрами с размещенными в них поршнями, расположенными параллельно вдоль продольной оси выходного вала. Наклонный диск прикреплен к выходному валу. Шатуны соединены с поршнями и толкателями с возможностью скольжения по несущей поверхности наклонного диска, вращающие выходной вал при перемещении поршней.

Недостатками данного аксиально-поршневого двигателя внутреннего сгорания, принятого за прототип, является то, что он обладает низким коэффициентом полезного действия и недостаточной литровой мощностью, а его прямолинейные цилиндрические цилиндры блока, выполненные параллельно вдоль продольной оси выходного вала, делают механизм преобразования возвратно-поступательного движения поршней во вращательное движение выходного вала многозвенным, сложным по устройству, а корпус двигателя с увеличенными габаритными размерами и весом.

Технической задачей предлагаемого изобретения является создание аксиально-поршневого двухтактного двигателя внутреннего сгорания, касающееся повышения его коэффициента полезного действия, увеличения литровой мощности, упрощения его устройства, уменьшения габаритных размеров и веса и улучшения качества продувки полостей криволинейных цилиндров от отработавших газов после рабочих ходов с возможностью наддува.

Это достигается тем, что в аксиально-поршневом двухтактном двигателе внутреннего сгорания его корпус сборный и разъемный по его вертикальной оси А-А, состоящий из двух половин с шестью криволинейными цилиндрами, выполненными через 60° друг от друга вдоль продольной оси выходного вала с профилем поперечного сечения с углом 42° под криволинейные поршни. В правой половине корпуса криволинейные цилиндры выполнены открытыми в картерную полость корпуса, а в левой половине корпуса криволинейные цилиндры выполнены открытыми с наружной полусферической поверхности, которая плотно закрывается от прорыва газов полусферической крышкой корпуса, соединенные с правой половиной корпуса с их фиксацией от проворачивания шестью стяжными болтами. На полусферической крышке корпуса выполнены выпускные окна, сообщающиеся с внутренними полостями криволинейных цилиндров. Между криволинейными цилиндрами выполнены воздушные каналы для их охлаждения. В картерной полости корпуса криволинейных цилиндров размещен в подшипниках скольжения выходной вал с разъемным наклонным диском, выполненным под углом 17-18° к вертикальной оси корпуса, закрепленным на шлицах выходного вала стяжной гайкой. В прямоугольном пазу наклонного диска размещена пространственно-качающаяся шайба с шестью цилиндрическими пальцами, соединенными с криволинейными поршнями через их цилиндрические отверстия на внутренних поверхностях.

Отличительной особенностью от прототипа в аксиально-поршневом двухтактном двигателе внутреннего сгорания является то, что в нем нет традиционных объемов камер сгорания над криволинейными поршнями, находящимися в верхней мертвой точке и нет опорного осевого подшипника для выходного вала.

Опорным подшипником выходного вала является опорное конусное гнездо в левой половине корпуса открытых криволинейных цилиндров, в котором размещен упирающийся в него перепускной конусный распределитель, выполненный вместе с выходным валом для плотного закрывания открытых торцов криволинейных цилиндров от прорыва газов, прижимная сила и сила трения вращающегося перепускного конусного распределителя в его конусном гнезде уменьшается обратной газовой силой из полостей криволинейных цилиндров, действующей на его открытые закрывающиеся конусные поверхности. В аксиально-поршневом двигателе для очистки полостей криволинейных цилиндров от остаточных газов после прохождения рабочих ходов применен осевой турбонагнетатель, свободно насаженный на продленную полую часть выходного вала, закрепленного на нем гайкой с левой резьбой, вращающийся от выхлопных газов против вращения выходного вала, встречное вращение которых повышает давление нагнетаемого воздуха и увеличивает его скорость движения, для уменьшения скорости скольжения и силы трения между ними применена плавающая втулка. Нагнетатель турбонагнетателя размещен во внутренней полости вращающегося перепускного конусного распределителя, из которой чистый поток воздуха нагнетается им поочередно в полости криволинейных цилиндров через продувочное окно на конусной поверхности перепускного распределителя и выходит воздух через выпускное окно, вытесняя отработанные газы по наклонным газовым каналам крышки корпуса на турбину, размещенную в газовом кожухе с отводным патрубком, сообщающимся с атмосферой. Продувочное окно на конусной поверхности перепускного распределителя выполнено с углом 22°, вертикальная ось которого не доходит до нижней мертвой точки наклонного диска на 20° его угла поворота, сообщающее внутреннюю полость перепускного конусного распределителя с полостями криволинейных цилиндров корпуса, при этом осевая сила тяги воздушного нагнетателя дополняет отжимную газовую силу на уменьшение прижимной силы и силы трения перепускного конусного распределителя в конусном гнезде криволинейных цилиндров корпуса. Воздушный центробежный вентилятор выполнен вместе с маховиком, закрепленным на шлицах выходного вала винтом, ввернутым в его торец, примыкает к подводным воздушным каналам охлаждения криволинейных цилиндров корпуса двигателя, через которые происходит засасывание воздуха из атмосферы. Еще на наружной поверхности перепускного конусного распределителя выполнена 60° дугообразная перепускная канавка для очередных перепусков сжимаемой рабочей смеси в тактах сжатия из одной надпоршневой полости в другую надпоршневую полость криволинейных цилиндров против часовой стрелки в такты рабочих ходов, а для смазки наружной конусной поверхности вращающегося перепускного конусного распределителя в конусном гнезде корпуса криволинейных цилиндров на ней в ее нижнем основании выполнена кольцевая нагнетательная масленая канавка с лопастями, сообщающаяся с маслеными карманами картера и с шестью радиальными маслеными канавками, размещенные в конусном гнезде между криволинейными цилиндрами, раздвоенные при выходе на наружную полусферическую поверхность левой половины корпуса, которые через масленые канавки на боковых поверхностях криволинейных цилиндров правой половины корпуса они сообщаются с масленым картером. При этом масло при разбрызгивании в картере оседает в его карманах и самотеком стекает в кольцевую нагнетательную масленую канавку, из которой масло нагнетается лопастями вращающегося перепускного конусного распределителя по масленым канавкам в картер корпуса, а для исключения попадания нагнетаемого масла из радиальных канавок в полости криволинейных цилиндров на них в местах пересечения с перепускной дугообразной канавкой вращающегося перепускного конусного распределителя выполнены перепускные перемычки. Дополнительно наружная конусная поверхность перепускного распределителя смазывается горючей смесью, находящейся в полостях криволинейных цилиндров.

Воздухоочиститель с отводным газовым патрубком соединен с полусферической крышкой корпуса винтами, примыкающей к продленной части выходного вала, внутренняя полость которого сообщается с внутренней полостью перепускного конусного распределителя через его отверстия. Выпускные окна на полусферической крышке корпуса открываются криволинейными поршнями за 30° до нижней мертвой точки, а закрываются за 30° после нижней мертвой точки угла поворота выходного вала, продувочное окно перепускного конусного распределителя открывается за 25° до нижней мертвой точки, а закрывается за 50° после нижней мертвой точки угла поворота выходного вала, в аксиально-поршневом двигателе за один оборот выходного вала происходят шесть двухтактных рабочих циклов, в которых каждый рабочий ход перекрывается двумя другими рабочими ходами на 90° и на 30° угла поворота выходного вала, что придает ему высокую уравновешенность при работе.

Такое исполнение устройства двигателя позволяет повысить коэффициент полезного действия и литровую его мощность, получить малые весогабаритные показатели, упростить устройство, повысить надежность его работы, а качественная прямоточная продувка полостей криволинейных цилиндров от отработавших газов уменьшает период их очистки, увеличивает продолжительность рабочих ходов и повышает наполнение криволинейных цилиндров чистым воздухом с возможностью наддува.

Предлагаемое изобретение иллюстрируется чертежами, где

на фиг. 1 показан аксиально-поршневой двигатель, общий вид в продольном разрезе;

на фиг. 2 показана правая половина корпуса двигателя в поперечном разрезе.

В аксиально-поршневом двухтактном двигателе внутреннего сгорания его корпус 1 сборный и разъемный по его вертикальной оси А-А состоит из двух половин 2, 3 с шестью криволинейными цилиндрами 4, выполненными через 60° друг от друга вдоль продольной оси выходного вала 5 с профилем поперечного сечения с углом 42° под криволинейные поршни 6. В правой половине 2 корпуса 1 криволинейные цилиндры 4 выполнены открытыми в картерную полость корпуса 1, а в левой половине 3 корпуса 1 криволинейные цилиндры 4 выполнены открытыми с наружной полусферической поверхности, которая плотно закрывается от прорыва газов полусферической крышкой 7 корпуса 1, соединены с правой половиной 2 корпуса 1 с их фиксацией от проворачивания шестью стяжными болтами 8 (фиг. 2). На полусферической крышке 7 корпуса 1 выполнены выпускные окна 9, сообщающиеся с внутренними полостями криволинейных цилиндров 4. Между криволинейными цилиндрами 4 выполнены воздушные каналы 10 (фиг. 2) для их охлаждения. В картерной полости корпуса 1 криволинейных цилиндров 4 размещен в подшипниках скольжения выходной вал 5 с разъемным наклонным диском 11, выполненным под углом 17-18° к вертикальной оси корпуса 1, закрепленным на шлицах выходного вала 5 стяжной гайкой 12. В прямоугольном пазе 13 наклонного диска 11 размещена пространственно-качающаяся шайба 14 с шестью цилиндрическими пальцами 15, соединенными с криволинейными поршнями 6 через их цилиндрические отверстия 16 на внутренних поверхностях.

Отличительной особенностью от прототипа в аксиально-поршневом двухтактном двигателе внутреннего сгорания является то, что в нем нет традиционных объемов камер сгорания над криволинейными поршнями 6, находящимися в верхней мертвой точке и нет опорного осевого подшипника для выходного вала 5.

Опорным подшипником выходного вала является опорное конусное гнездо 17, находящееся в левой половине корпуса открытых криволинейных цилиндров 4, в котором размещен упирающийся в него перепускной конусный распределитель 18, выполненный вместе с выходным валом 5 для плотного закрывания открытых торцов криволинейных цилиндров 4 от прорыва газов, прижимная сила и сила трения вращающегося перепускного конусного распределителя 18 в его конусном гнезде 17 уменьшается обратной газовой силой из полостей криволинейных цилиндров 4, действующей на его открытые закрывающиеся конусные поверхности.

В аксиально-поршневом двигателе для очистки полостей криволинейных цилиндров 4 от остаточных газов после прохождения рабочих ходов применен осевой турбонагнетатель 19, свободно насаженный на его продленную полую часть выходного вала 5, закрепленного на нем гайкой 20 с левой резьбой, вращающийся от выхлопных газов против вращения выходного вала 5, встречное вращение которых повышает давление нагнетаемого воздуха и увеличивает его скорость движения. Для уменьшения скорости скольжения и силы трения между ними применена плавающая втулка 21. Нагнетатель 22 турбонагнетателя 19 размещен во внутренней полости 23 вращающегося перепускного конусного распределителя 18, из которой чистый поток воздуха нагнетается им поочередно в полости криволинейных цилиндров 4 через продувочное окно 24 на конусной поверхности перепускного распределителя 18 и выходит воздух через выпускное окно 9, вытесняя отработанные газы по наклонным газовым каналам 25 крышки корпуса 1 на турбину 26, размещенную в газовом кожухе с отводным патрубком 27, сообщающимся с атмосферой. Продувочное окно 24 на конусной поверхности перепускного распределителя выполнено с углом 22°, вертикальная ось которого не доходит до нижней мертвой точки наклонного диска на 20° угла его поворота, при этом осевая тяговая сила нагнетателя дополняет отжимную газовую силу на уменьшение прижимной силы и силы трения перепускного конусного распределителя в конусном гнезде криволинейных цилиндров корпуса.

Воздушный вентилятор 28 центробежный выполнен вместе с маховиком 29, закрепленный на шлицах выходного вала винтом 30, ввернутым в его торец, примыкает к воздушным подводным каналам 10 охлаждения криволинейных цилиндров 4 корпуса 1 двигателя, через которые происходит засасывание воздуха из атмосферы. Еще на наружной поверхности перепускного конусного распределителя 18 выполнена 60° дугообразная перепускная канавка 31 для очередных перепусков сжимаемой рабочей смеси в тактах сжатия из одной надпоршневой полости в другую надпоршневую полость криволинейных цилиндров 4 против часовой стрелки в такты рабочих ходов, а для смазки конусной поверхности вращающегося перепускного конусного распределителя 18 в конусном гнезде корпуса криволинейных цилиндров на ней в ее нижнем основании выполнена кольцевая нагнетательная масленая канавка 32 с лопастями, сообщающаяся с маслеными карманами картера и с шестью радиальными маслеными канавками, размещенными в конусном гнезде 17 между криволинейными цилиндрами 4, раздвоенными при выходе на наружную полусферическую поверхность левой половины 3 корпуса 1, которые через масленые канавки на боковых поверхностях криволинейных цилиндров 4 правой половины 2 корпуса 1 сообщаются с масленым картером. При этом масло при разбрызгивании в картере оседает в его карманах и самотеком стекает в кольцевую нагнетательную масленую канавку 32, из которой масло нагнетается лопастями вращающегося перепускного конусного распределителя 18 по масленым канавкам в картер корпуса 1, а для исключения попадания нагнетаемого масла из радиальных канавок в полости криволинейных цилиндров 4 на них в местах пересечения с перепускной дугообразной канавкой 31 вращающегося перепускного конусного распределителя 18 выполнены перепускные перемычки.

Дополнительно наружная конусная поверхность перепускного распределителя 18 смазывается горючей смесью, находящейся в полостях криволинейных цилиндров 4. Воздухоочиститель 33 с отводным газовым патрубком 27 соединен с полусферической крышкой 7 корпуса 1 винтами, примыкающей к продленной части выходного вала 5, внутренняя полость 34 которого сообщается с внутренней полостью 23 перепускного конусного распределителя 18 через его отверстия 35.

Выпускные окна 9 на полусферической крышке 7 корпуса 1 открываются криволинейными поршнями 6 за 30° до нижней мертвой точки, а закрываются за 30° после нижней мертвой точки угла поворота выходного вала 5, продувочное окно 24 перепускного конусного распределителя 18 открывается за 25° до нижней мертвой точки, а закрывается за 50° после нижней мертвой точки угла поворота выходного вала 5, в аксиально-поршневом двигателе за один оборот выходного вала 5 происходят шесть двухтактных рабочих циклов, в которых каждый рабочий ход перекрывается двумя другими рабочими ходами на 90° и на 30° угла поворота выходного вала 5, что придает ему высокую уравновешенность при работе, при которой центробежный вентилятор 28 засасывает атмосферный воздух из воздушных полостей подводных каналов 10 охлаждения криволинейных цилиндров 6, примыкающих к нему, а нагнетаемый им нагреваемый воздух выводится в атмосферу через окна 36, находящиеся в правой половине корпуса 1.

Такое исполнение устройства двигателя позволяет повысить коэффициент полезного действия и литровую его мощность, получить малые весогабаритные показатели, упростить устройство, повысить надежность его работы, а качественная прямоточная продувка полостей криволинейных цилиндров 4 от отработавших газов уменьшает период их очистки, увеличивает продолжительность рабочих ходов и повышает наполнение криволинейных цилиндров чистым воздухом с возможностью наддува.

Аксиально-поршневой двигатель внутреннего сгорания работает следующим образом. При вращении выходного вала 5 его прямоугольный наклонный паз 13 наклонного диска 11 придает колебательные движения пространственно-качающейся шайбе 14, которая через свои цилиндрические пальцы 15, соединенные с криволинейными поршнями 6, приводит их к возвратно-поступательному движению, при этом в меняющихся объемах криволинейных цилиндров 4 совершаются термодинамические циклы работы двигателя внутреннего сгорания. Механизм связи поршней 6 с выходным валом 5 обладает свойством обратимости и поэтому сила давления газов преобразуется в крутящий момент на выходном валу 5. В нем после прохождения очередной прямоточной продувки каждой полости сквозных криволинейных цилиндров 4 от остаточных газов инерционным потоком чистого воздуха от осевого воздушного турбонагнетателя 19 через продувочное окно 24 перепускного конусного распределителя 18 и выпускные окна 9 и их очередного перекрытия сначала движущимися криволинейными поршнями 6, а затем вращающимся перепускным конусным распределителем 18 происходит сжатие чистого воздуха в каждой полости криволинейных цилиндров 4 с одновременной подачей топлива через форсунку низкого давления, которая прекращается при подходе криволинейного поршня 6 к верхней мертвой точке за 60° угла поворота выходного вала 5. С этого момента начинается перепуск сжимаемой рабочей смеси по перепускной дугообразной канавке 31 перепускного конусного распределителя 18 из одной надпоршневой полости криволинейного цилиндра 4 в другую надпоршневую полость криволинейного цилиндра 4 в такт рабочего хода.

При этом такт сжатия рабочей смеси заканчивается тогда, когда криволинейный поршень 6 в одном криволинейном цилиндре не доходит до верхней мертвой точки 30°, а в другом криволинейном цилиндре 4 он отходит от верхней мертвой точки также на 30° угла поворота выходного вала 5 в такт рабочего хода с воспламенением рабочей смеси от электрической искры свечи, при этом затраты энергии на перепуск сжимаемой рабочей смеси сводятся до минимума. В этот момент надпоршневые полости в сквозных криволинейных цилиндрах 4 становятся одинаковыми по своему объему со степенью сжатия 9-10. После воспламенения рабочей смеси в аксиально-поршневом двигателе внутреннего сгорания процесс сгорания протекает с некоторым отличием в сравнении с прототипом. С момента начала процесса сгорания рабочей смеси происходит перетекание сжимаемой рабочей смеси из передней уменьшающейся надпоршневой полости одного криволинейного цилиндра 4 в заднюю увеличивающуюся надпоршневую полость другого криволинейного цилиндра 4 в такт рабочего хода против часовой стрелки с одновременным ее сгоранием при максимальном давлении газов на криволинейный поршень 6 и в меньшем объеме в сравнении с прототипом в 1,5 раза при таком же угле поворота выходного вала 5. Перетекание рабочей смеси и ее сгорание заканчивается тогда, когда криволинейный поршень 6 в одном криволинейном цилиндре 4 подошел к своей верхней мертвой точке, а в другом криволинейном цилиндре 4 он отошел от верхней мертвой точки на 60° угла поворота выходного вала 5 в такт рабочего хода. При этом весь процесс расширения газов в полости криволинейного цилиндра 4 происходит в основном на большом плече поворота сходной поверхности прямоугольного паза наклонного диска выходного вала 5 и при повышенном давлении. Эти процессы, происходящие в полостях криволинейных цилиндров 4, повторяются поочередно по часовой стрелке через каждые 60° поворота выходного вала 5 с перекрытием каждого рабочего хода двумя другими рабочими ходами на 90° и на 30° угла поворота выходного вала 5 до конца рабочего хода, что увеличивает крутящий момент на выходном валу 5 аксиально-поршневого двигателя, повышает его мощность и придает двигателю высокую уравновешенность в его работе.

Источники информации

1. Аксиально-поршневой двигатель внутреннего сгорания DukeАМБС-1; Yandex, сайт Machinepedia.

2. Патент RU 2386047 С2 «Аксиально-поршневой двухтактный двигатель внутреннего сгорания», опубл. 10.04.2010 г. (прототип).

Аксиально-поршневой двухтактный двигатель внутреннего сгорания с параллельным расположением цилиндров с поршнями вдоль продольной оси выходного вала, в картере корпуса выходной вал закреплен с наклонным диском, вращающим выходной вал при перемещении поршней, отличающийся тем, что в аксиально-поршневом двухтактном двигателе внутреннего сгорания его корпус сборный и разъемный, состоящий из двух половин с шестью криволинейными цилиндрами, выполненными через 60° друг от друга вдоль продольной оси выходного вала с профилем поперечного сечения с углом 42° под криволинейные поршни, в правой половине корпуса криволинейные цилиндры выполнены открытыми в картерную полость корпуса, а в левой половине корпуса криволинейные цилиндры выполнены открытыми с наружной полусферической поверхности, которая плотно закрывается от прорыва газов полусферической крышкой корпуса, соединены с правой половиной корпуса с их фиксацией от проворачивания шестью стяжными болтами, на полусферической крышке корпуса выполнены выпускные окна, сообщающиеся с внутренними полостями криволинейных цилиндров, между криволинейными цилиндрами выполнены воздушные каналы для их охлаждения, в картерной полости корпуса криволинейных цилиндров размещен в подшипниках скольжения выходной вал с разъемным наклонным диском, выполненным под углом 17-18° к вертикальной оси корпуса, закрепленным на шлицах выходного вала стяжной гайкой, в прямоугольном пазу наклонного диска размещена пространственно-качающаяся шайба с шестью цилиндрическими пальцами, соединенными с криволинейными поршнями через их цилиндрические отверстия на внутренних поверхностях, опорным подшипником выходного вала является опорное конусное гнездо в корпусе открытых криволинейных цилиндров, в котором размещен упирающийся в него перепускной конусный распределитель, выполненный вместе с выходным валом, для очистки полостей криволинейных цилиндров от остаточных газов применен осевой турбонагнетатель, свободно насаженный на продленную полую часть выходного вала, закрепленного на нем гайкой с левой резьбой, для уменьшения скорости скольжения и силы трения между ними применена плавающая втулка, его нагнетатель размещен во внутренней полости вращающегося перепускного конусного распределителя, продувочное окно выполнено на конусной поверхности перепускного распределителя с углом 22°, вертикальная ось которого не доходит до нижней мертвой точки наклонного диска на 20° угла его поворота, сообщающее внутреннюю полость перепускного конусного распределителя с полостями криволинейных цилиндров корпуса, турбина размещена в газовом кожухе с отводным патрубком, сообщающимся с атмосферой, воздушный вентилятор центробежный, выполненный вместе с маховиком, закрепленным на шлицах выходного вала винтом, ввернутым в его торец, еще на наружной поверхности перепускного конусного распределителя выполнена 60° дугообразная перепускная канавка для очередных перепусков сжимаемой рабочей смеси в тактах сжатия из одной надпоршневой полости в другую надпоршневую полость криволинейных цилиндров, а для смазки наружной конусной поверхности вращающегося перепускного конусного распределителя в конусном гнезде корпуса криволинейных цилиндров на ней в ее нижнем основании выполнена кольцевая нагнетательная масленая канавка с лопастями, сообщающаяся с маслеными карманами картера и с шестью радиальными маслеными канавками, размещенными в конусном гнезде между криволинейными цилиндрами, раздвоенными при выходе на наружную полусферическую поверхность левой половины корпуса, которые через масленые канавки на боковых поверхностях криволинейных цилиндров правой половины корпуса сообщаются с масленым картером, а для исключения попадания нагнетаемого масла из радиальных канавок в полости криволинейных цилиндров на них в местах пересечения с перепускной дугообразной канавкой вращающегося перепускного конусного распределителя выполнены перепускные перемычки, воздухоочиститель с отводным газовым патрубком соединен с полусферической крышкой корпуса винтами, примыкающей к продленной части выходного вала, внутренняя полость которого сообщается с внутренней полостью перепускного конусного распределителя через его отверстия, выпускные окна открываются криволинейными поршнями за 30° до нижней мертвой точки, а закрываются за 30° после нижней мертвой точки угла поворота выходного вала, продувочное окно перепускного конусного распределителя открывается за 25° до нижней мертвой точки, а закрывается за 50° после нижней мертвой точки угла поворота выходного вала.
Аксиально-поршневой двигатель внутреннего сгорания
Аксиально-поршневой двигатель внутреннего сгорания

Аксиальный двигатель внутреннего сгорания Г.Л.Ф. Треберта (США)

В начале десятых годов прошлого века возникла новая тенденция в двигателестроении. Инженеры нескольких стран занялись созданием т.н. аксиальных двигателей внутреннего сгорания. Компоновка мотора с параллельным размещением цилиндров и главного вала позволяла уменьшить габариты конструкции с сохранением приемлемой мощности. Ввиду отсутствия устоявшихся альтернатив силовые установки этого класса представляли большой интерес и регулярно становились предметами новых патентов.

В 1911 году к работам по тематике аксиальных двигателей подключился американский конструктор Генри Л.Ф. Треберт. Работая в собственной мастерской в Рочестере (штат Нью-Йорк), он разработал свой вариант перспективного двигателя, который, в первую очередь, предназначался для самолетов. Предполагаемая сфера применения сказалась на основных требованиях к конструкции. Новый двигатель должен был иметь минимально возможные габариты и вес. Анализ перспектив различных идей и решений привел к уже известным выводам: одно из самых лучших соотношений размеров, веса и мощности дает аксиальная компоновка.

Аксиальный двигатель внутреннего сгорания Г.Л.Ф. Треберта (США)
Общий вид двигателя

Проект Треберта был готов к осени 1911 года. В октябре инженер подал заявку в патентное бюро, но ее одобрения пришлось ждать несколько лет. Патент был выдан только в ноябре 1917 года – через шесть лет после подачи документов. Тем не менее, конструктор получил все необходимые документы, которые, в частности, позволили ему остаться в истории как создателю интересного проекта.

Г.Л.Ф. Треберт решил строить новый авиационный двигатель по аксиальной схеме с воздушным охлаждением цилиндров. С целью улучшения охлаждения, подобно другим разработкам того времени, новый мотор планировалось делать ротативным с поворачивающимся блоков цилиндров. Кроме того, автор проекта предложил использовать новый механизм преобразования движения цилиндров во вращение вала. Предыдущие аксиальные двигатели для этого использовали шайбовый механизм. В проекте Треберта для этих целей предлагалось использовать коническую зубчатую передачу.

Основной деталью двигателя Треберта был цилиндрический картер, состоящий из крупной «банки» и крышки с болтовым соединением. Внутри картера размещался основной механизм. Поскольку двигатель был ротативным, на донной части картера предусматривались жесткие крепления для вала, на котором должен был устанавливаться воздушный винт. Кроме того, внутри картера предусматривались подшипники для главного вала, который предлагалось жестко закреплять на мотораме самолета.

В крышке предусматривались отверстия для установки литых цилиндров. Известно о существовании двух вариантов двигателя Треберта. В первом применялись четыре цилиндра, во втором – шесть. Патент 1917 года был выдан на шестицилиндровый двигатель. Следует отметить, количество цилиндров не сказывалось на общей компоновке двигателя и влияло только на размещение конкретных агрегатов. Общая структура двигателя и принцип его работы не зависели от числа цилиндров.

Аксиальный двигатель внутреннего сгорания Г.Л.Ф. Треберта (США)
Чертеж из патента

Внутри цилиндров размещались поршни с шатунами. Ввиду использования сравнительно простого механизма передачи Треберт использовал качающееся крепление шатунов, которые могли двигаться только в одной плоскости. В верхней части цилиндра предусматривался патрубок для подачи бензовоздушной смеси от карбюратора. Патрубок имел Г-образную форму и своим верхним концом соприкасался со специальным полым барабаном на главном валу двигателя. В стенке барабана предусматривалось окно для подачи смеси. При вращении подвижного блока двигателя впускные патрубки последовательно соединялись с окном барабана и подавали смесь в цилиндр. Кроме того, имелись клапаны для сброса выхлопных газов. Отдельный выхлопной коллектор не предусматривался, газы выбрасывались через патрубок цилиндра. Зажигание производилось свечами, соединенными с магнето. Последнее, согласно патенту, размещалось рядом с валом воздушного винта.

Более ранние аксиальные двигатели Смоллбоуна и Макомбера имели в своем составе механизм «планшайба-стержни». Такая система обеспечивала требуемые характеристики, но была сложной с точки зрения конструкции, эксплуатации и обслуживания. Генри Л.Ф. Треберт предложил использовать для тех же целей коническую зубчатую передачу. На жестко закрепленном главном валу размещалось зубчатое колесо, которое отвечало за поворот всей конструкции двигателя. С ним контактировали 4 или 6 зубчатых колес (по числу цилиндров) меньшего диаметра. Эти шестерни были связаны с кривошипами и шатунами поршней.

Аксиальный двигатель внутреннего сгорания Г.Л.Ф. Треберта (США)
Общая схема механизмов (без цилиндров и картера)

Во время работы двигателя поршни, двигаясь вниз и вверх относительно цилиндра, через шатуны и кривошипы должны были вращать малые шестерни. Последние, находясь в сцеплении с жестко закрепленным главным зубчатым колесом, заставляли блок цилиндров и картер вращаться вокруг главного вала. Вместе с ними должен был вращаться и воздушный винт, жестко закрепленный на картере. За счет вращения предполагалось улучшить обдув головок цилиндров с целью более эффективного охлаждения.

Запатентованный вариант двигателя Треберта имел цилиндры с внутренним диаметром 3,75 дюйма (9,52 см) и ходом поршня длиной 4,25 дюйма (10,79 см). Общий рабочий объем двигателя составлял 282 куб. дюйма (4,62 л). В составе двигателя планировалось использовать карбюратор фирмы Panhard и магнето компании Mea. Предлагаемый двигатель, по расчетам, мог развивать мощность до 60 л.с.

Аксиальный двигатель внутреннего сгорания Г.Л.Ф. Треберта (США)
Схема двигателя в сборе

Характерной особенностью аксиальных двигателей внутреннего сгорания являются сравнительно малые габариты и вес конструкции. Двигатель Треберта не стал исключением из этого правила. Он имел максимальный диаметр 15,5 дюйма (менее 40 см) и общую длину 22 дюйма (55,9 см). Общий вес двигателя со всеми агрегатами составлял 230 фунтов (менее 105 кг). Таким образом, удельная мощность составляла 1,75 л.с. на килограмм веса. Для авиационных двигателей того времени это было неплохим достижением.

Аксиальный авиационный двигатель конструкции Г.Л.Ф. Треберта стал предметом патента, выданного в ноябре 1917 года. Дальнейшая судьба проекта достоверно неизвестна. В некоторых источниках упоминается, что Треберт смог начать серийное производство изделий собственной разработки, но подробности этого отсутствуют. Дефицит информации позволяет предполагать, что двигатели Треберта не заинтересовали потенциальных покупателей. В противном случае история сохранила бы информацию об использовании таких моторов в качестве силовой установки каких-либо самолетов. Вероятно, ввиду позднего получения патента конструктор не успел представить свою разработку в то время, когда она была актуальна и представляла интерес. Как результат, двигатели, если и производились серийно, не имели большого успеха.

По материалам сайтов:
http://douglas-self.com/
http://mechanicalgalaxy.blogspot.ru/
http://gillcad3d.blogspot.ru/

Аксиально-поршневой двигатель

Изобретение относится к двигателестроению, к аксиально-поршневым двигателям внутреннего сгорания с осями цилиндров, расположенными в одной плоскости с осью ведущего вала и с пространственно-качающейся наклонной шайбой. Аксиально-поршневой двигатель содержит блоки цилиндров рабочей (1) и компрессорной (7) секций, коренной вал (13) с наклонными дисками (14, 15), распределительный вал (16), пространственно-качающиеся шайбы (18, 19), опоры (24) с рычагами (25), головку цилиндров рабочей секции (26) с камерами сгорания изменяющегося объема (27), головку цилиндров компрессорной секции (39), впускные коллектора (43), компрессор (44), топливный насос (45) и камеры противодавления (47). Блоки цилиндров (1 и 7) содержат попарно диаметрально противоположно расположенные цилиндры (2, 8). Пространственно-качающиеся шайбы (18, 19) установлены по одной на каждую пару цилиндров (2, 8) и выполнены с цапфами (20, 21). Камеры сгорания изменяющегося объема (27) содержат обратные (28), выпускные (30) и впускные (31) клапаны. Впускные клапаны (31) выполнены с разгрузочными полостями (32). Разгрузочные полости (32) соединены с выпускными коллекторами (33) каналами (34). Головка цилиндров компрессорной секции (39) содержит обратные клапаны на входе (41) и на нагнетании воздуха (41). Клапаны на нагнетании (41) соединены трубопроводами (42) с обратными клапанами (28) на входе воздуха в камеры сгорания (27). Рычаги (25), качающиеся в опорах (24), жестко соединены с шарнирами (5, 11). Камеры противодавления (47) расположены в головке цилиндров (26) рабочей секции и соединены между собой каналами (48). Поршни (46), перемещаясь внутрь камер противодавления (47), увеличивают объем камер сгорания (27) и возвращаются в исходное положение при снижении давления в камерах сгорания (27). Технический результат заключается в снижении нагрузок на детали двигателя при сохранении мощности. 4 ил.

 

Изобретение относится к двигателестроению, конкретнее к аксиально-поршневым двигателям внутреннего сгорания с осями цилиндров, расположенных в одной плоскости с осью ведущего вала, и с пространственно-качающейся наклонной шайбой.

Известен аксиально-поршневой двигатель, содержащий неподвижный корпус, цилиндры с двумя встречными поршнями в каждом, коренной вал с жестко закрепленными на нем дисками, на наружной поверхности которых через подшипники установлены пространственно-качающиеся шайбы, при этом поршни шарнирно соединены с шатунами, противоположные концы которых шарнирно соединены с качающимися шайбами, а оси цилиндров выполнены параллельными оси коренного вала, двигатель снабжен кольцами, каждая шайба соединена с одним из них посредством двух цапф, расположенных друг против друга на внутренней стороне кольца, кольца соединены с корпусом двумя другими цапфами, расположенными друг против друга с внешней стороны колец, и установлены с возможностью покачивания вокруг осей наружных цапф, расположенные на внутренней и внешней сторонах, перпендикулярны между собой и лежат в одной плоскости с центром вращения дисков и центром пространственного покачивания шайб (см. описание изобретения к патенту РФ №2125162, МПК6 F01В 3/02, F02В 75/26, публикация 20.01.99).

Недостатками этого двигателя являются недостаточно эффективный способ продувки выхлопных газов и наполнения цилиндров воздухом, а также недостаточная надежность узлов крепления шатунов.

Известен аксиально-поршневой двигатель, содержащий головку цилиндров компрессорной секции с впускными клапанами и с обратными клапанами на нагнетании воздуха, блок цилиндров компрессорной секции с поршнями и жестко закрепленными на них штоками с шарнирами, блок цилиндров рабочей секции с попарно диаметрально противоположно расположенными цилиндрами с двумя встречными поршнями в каждом, с тремя группами камер сгорания, впускных, обратных и выпускных клапанов, форсунок, расположенных в середине и по краям цилиндров, впускными и выпускными каналами, ведущий вал с шестерней привода распределительных валов, с жестко закрепленными на нем двумя встречно-наклонными дисками, на наружной поверхности которых через подшипники скольжения установлены пространственно-качающиеся шайбы (по одной на каждую пару цилиндров) с цапфами и удерживающиеся от вращения рычагами, качающимися в опорах, опорные поршни с шарнирами, жестко закрепленные через штоки с поршнями и движущиеся в направляющих цилиндрах, распределительные валы, воздушные ресиверы (см. описание изобретения к патенту РФ №2335647, МПК F01В 3/2, публикация 10.10.2008).

Недостатками этого двигателя, принятого за прототип, являются высокие нагрузки на детали, надежность и прочность которых обеспечивается увеличением их габаритов.

Задачей заявляемого изобретения является снижение нагрузок на детали двигателя при сохранении мощности.

Сущность изобретения заключается в том, что аксиально-поршневой двигатель внутреннего сгорания содержит:

— блок цилиндров рабочей секции с попарно диаметрально противоположно расположенными цилиндрами с поршнями, шатунами и шарнирами с шатунными шейками в каждом;

— блок цилиндров компрессорной секции с попарно диаметрально противоположно расположенными цилиндрами с поршнями, шатунами и шарнирами с шатунными шейками в каждом;

— коренной вал с жестко закрепленными на нем наклонными дисками;

— распределительный вал, продолжающий коренной вал, с кулачками;

— пространственно-качающиеся шайбы по одной на каждую пару цилиндров с цапфами, установленные через подшипники на наружной поверхности наклонных дисков;

— опоры с рычагами;

— головку цилиндров рабочей секции с камерами сгорания изменяющегося объема, с обратными клапанами, удерживаемыми в закрытом положении давлением воздуха из канала, с выпускными и впускными клапанами с разгрузочными полостями, соединенными с выпускными коллекторами каналами, с форсунками, толкателями, штангами, коромыслами;

— головку цилиндров компрессорной секции с обратными клапанами на входе и обратными клапанами на нагнетании воздуха, соединенными трубопроводами с обратными клапанами на входе воздуха в камеры сгорания;

— впускные коллектора;

— компрессор;

— топливный насос.

Двигатель дополнительно содержит расположенные в головке блока рабочей секции поршни и камеры противодавления, соединенные между собой каналами.

Рычаги жестко соединены с шарнирами, ограничивая их вращение относительно осей цапф и перемещения вдоль осей цапф.

Описание поясняется чертежами, где:

на фиг.1 показан аксиально-поршневой двигатель, общий вид в продольном разрезе;

на фиг.2 — то же, поперечный разрез А-А;

на фиг.3 — то же, поперечный разрез В-В;

на фиг.4 — то же, поперечный разрез С-С.

Аксиально-поршневой двигатель внутреннего сгорания содержит:

— блок цилиндров 1 рабочей секции с попарно диаметрально противоположно расположенными цилиндрами 2 с поршнями 3, шатунами 4 и шарнирами 5 с шатунными шейками 6 в каждом;

— блок цилиндров 7 компрессорной секции с попарно диаметрально противоположно расположенными цилиндрами 8 с поршнями 9, шатунами 10 и шарнирами 11 с шатунными шейками 12 в каждом;

— коренной вал 13 с жестко закрепленными на нем наклонными дисками 14, 15;

— распределительный вал 16, продолжающий коренной вал 13, с кулачками 17;

— пространственно-качающиеся шайбы 18, 19 по одной на каждую пару цилиндров 2, 8 с цапфами 20, 21, установленные через подшипники 22, 23 на наружной поверхности наклонных дисков 14, 15;

— опоры 24 с рычагами 25;

— головку цилиндров 26 рабочей секции с камерами сгорания изменяющегося объема 27, с обратными клапанами 28, удерживаемыми в закрытом положении давлением воздуха из канала 29, с выпускными 30 и впускными 31 клапанами с разгрузочными полостями 32, соединенными с выпускными коллекторами 33 каналами 34, с форсунками 35, толкателями 36, штангами 37, коромыслами 38;

— головку цилиндров 39 компрессорной секции с обратными клапанами 40 на входе и обратными клапанами 41 на нагнетании воздуха, соединенными трубопроводами 42 с обратными клапанами 28 на входе воздуха в камеры сгорания 27;

— впускные коллектора 43;

— компрессор 44;

— топливный насос 45.

Двигатель дополнительно содержит расположенные в головке цилиндров 26 рабочей секции поршни 46 и камеры противодавления 47, соединенные между собой каналами 48.

Рычаги 25 жестко соединены с шарнирами 5, 11, ограничивая их вращение и перемещение относительно осей цапф 20, 21.

Аксиально-поршневой двигатель работает следующим образом. При движении поршней 9 в цилиндрах 8 блока цилиндров 7 от В.М.Т. к Н.М.Т. через расположенные в головке цилиндров 39 компрессорной секции впускные коллектора 43, обратные клапаны 40 происходит наполнение цилиндров 8 воздухом. Цикл впуска. При движении поршней 9 от Н.М.Т. к В.М.Т. происходит сжатие воздуха в цилиндрах 8. При достижении давления, равного давлению в трубопроводах 42, воздух вытесняется через обратные клапаны 41, трубопроводы 42, обратные клапаны 28 в расположенные в головке цилиндров 26 рабочей секции камеры сгорания 27, и при достижении поршнями 9 В.М.Т. обратные клапаны 41, обратные клапаны 28 закрываются. Обратные клапаны 28 удерживаются в закрытом положении давлением воздуха в каналах 29. На период запуска двигателя для предотвращения выпуска воздуха из трубопроводов 42 через открытые впускные клапаны 31 в цилиндры 2 давление воздуха в каналах 29 повышается. При этом открытие обратных клапанов 28 происходит после закрытия впускных клапанов 31. Через форсунки 35 топливным насосом 45 впрыскивается топливо и воспламеняется. При повышении давления в камерах сгорания 27 выше заданного поршни 46 перемещаются из исходного положения в сторону камер противодавления 47, соединенных между собой каналами 48, предотвращая повышение давления в камере сгорания 27 выше заданного. Давление в камерах противодавления 47 и каналах 29 поддерживается компрессором 44 (на чертеже не показан). Цикл сжатия. В то же время при приближении поршней 3 к В.М.Т. открываются впускные клапаны 31, начинается подача рабочего газа из камер сгорания 27 в цилиндры 2 блока цилиндров 1. Разгрузочные полости 32 с каналами 34 служат для предотвращения повышения давления с внутренней стороны впускных клапанов 31, создающего усилия, направленные на открытие впускных клапанов 31. Начало цикла рабочего хода. По мере движения поршней 3 от В.М.Т. к Н.М.Т. поршни 46 перемещаются в исходное положение, поддерживая давление в камерах сгорания 27 и рабочих цилиндрах 2 неизменным. При достижении поршнями 46 исходного положения начинается снижение давления в камерах сгорания 27 и рабочих цилиндрах 2. При выравнивании давления в камерах сгорания 27 и трубопроводах 42 начинается продувка камер сгорания 27 от выхлопных газов воздухом из трубопроводов 42 в рабочие цилиндры 2. По окончании продувки впускные клапаны 31 закрываются. При приближении поршней 3 к Н.М.Т. открываются выпускные клапаны 30. Окончание цикла рабочего хода и начало цикла выпуска. При движении поршней 3 от Н.М.Т. к В.М.Т. через выпускные клапаны 30, выпускные коллектора 33 происходит удаление выхлопных газов. При приближении поршней 3 к В.М.Т. закрываются выпускные клапаны 30. Окончание цикла выпуска. Усилие поршней 3 через шатуны 4, шатунные шейки 6, шарниры 5 передается на цапфы 20 качающихся шайб 18, которые через подшипники 22 воздействуют на сбегающую сторону наклонного диска 14, вращая его с коренным валом 13 и распределительным валом 16. Вращающийся с коренным валом 13 наклонный диск 15 через подшипники 23, качающиеся шайбы 19, цапфы 21, передает усилие на шарниры 11, шатунные шейки 12, шатуны 10, поршни 9, обеспечивая их возвратно-поступательное движение в цилиндрах 8 блока цилиндров 7. Рычаги 25, жестко соединенные с шарнирами 5, 11, качающиеся в опорах 24 препятствуют вращению качающихся шайб 18, 19. Управление впускными 31 и выпускными 30 клапанами осуществляется расположенными на распределительном валу 16 кулачками 17 через толкатели 36, штанги 37, коромысла 38.

Заявленное изобретение позволит уменьшить нагрузки на детали двигателя при сохранении мощности.

Аксиально-поршневой двигатель, содержащий: блок цилиндров рабочей секции с попарно диаметрально противоположно расположенными цилиндрами с поршнями, шатунами и шарнирами с шатунными шейками в каждом; блок цилиндров компрессорной секции с попарно диаметрально противоположно расположенными цилиндрами с поршнями, шатунами и шарнирами с шатунными шейками в каждом; коренной вал с наклонными дисками; распределительный вал с кулачками; пространственно-качающиеся шайбы по одной на каждую пару цилиндров с цапфами; опоры с рычагами; головку цилиндров рабочей секции с камерами сгорания изменяющегося объема, с обратными клапанами, удерживаемыми в закрытом состоянии давлением воздуха из канала, с выпускными и впускными клапанами с разгрузочными полостями, соединенными с выпускными коллекторами, с форсунками, толкателями, штангами, коромыслами; головку цилиндров компрессорной секции с обратными клапанами на входе и обратными клапанами на нагнетании воздуха, соединенными трубопроводами с обратными клапанами на входе воздуха в камеры сгорания; впускные коллектора; компрессор; топливный насос, отличающийся тем, что рычаги жестко соединены с шарнирами, ограничивая их вращение и перемещение относительно осей цапф, двигатель дополнительно содержит расположенные в головке цилиндров рабочей секции камеры противодавления, соединенные каналами, и поршни, перемещающиеся внутрь камер противодавления, увеличивая объем камер сгорания и предотвращая рост давления в них, и возвращающиеся в исходное положение при снижении давления в камерах сгорания.

Аксиально-поршневые гидромоторы. Альфа-Гидравлика — дистрибьютор Danfoss

Для гидростатических трансмиссий различного типа и мощности компания Sauer-Danfoss предлагает 5 серий аксиально-поршневых гидромоторов: L/K, 40, 51, 90, Н1.

Гидромоторы Sauer-Danfoss указанных серий бывают регулируемыми и нерегулируемыми и выпускаются в двух вариантах — с наклонным диском или с наклонным блоком.
К регулируемым гидромоторам с наклонным диском относятся две серии — 40 и 90. Максимальный объем гидравлических моторов 40 серии — 46 см3, а серии 90 — 130 см3. В 90 серии существуют модели гидромоторов с гидравлически регулируемым рабочим объемом.

Линейка регулируемых гидравлических моторов с наклонным блоком представлена более широкой номенклатурой выпускаемых серий, модели которых также обладают различными типоразмерами рабочих объемов.

К самым малым и компактным гидромоторам относятся серии L/K. Гидравлические моторы данной серии в номинальных режимах могут работать при относительно низком уровне давления для аксиально-поршневых моторов — до 210 бар, и с высокой скоростью вращения — до 5000 об/мин. Регулирование в серии L/K осуществляется гидравлически в двух положениях, обеспечивая минимальный или максимальный рабочий объем.

Самыми большими типоразмерами — до 250 см3 — обладают гидромоторы с наклонным блоком серий 51, 51-1 и h2. Их уровень давления в гидрообъемной трансмиссии составляет до 510 бар. В гидромоторах этих серий реализована возможность выбора вариантов регулирования — от гидравлического до пропорционального электроуправления.

В гидравлических моторах предусмотрено применение датчиков скорости для работы в сложных системах управления колесной и гусеничной техники, промывочные клапаны для обеспечения нормальной температуры масла.

Различные варианты исполнения фланцев и валов обеспечивают оптимальное соединение с редукторами различных производителей.

Аксиально-поршневые гидромоторы применяются в системах, которые различаются по сложности и мощности. Это буровые установки, бульдозеры, трактора, вездеходы, комбайны, погрузчики —машины и механизмы, в гидростатических трансмиссиях которых один или несколько моторов работают от реверсивного насоса или насосной установки. В некоторых гидрообъемных трансмиссиях с открытым контуром реализуется установка гидромоторов, работающих в связке с секционными распределителями PVG.

Используя аксиально-поршневые гидромоторы Sauer-Danfoss, можно создавать гидроприводы различной сложности, а совместное применение регулирующей электроники позволяет реализовывать самые сложные и передовые схемы управления.

аксиально-поршневой регулируемый мотор — патент РФ 2293875

Изобретение относится к области регулируемых гидромашин, а именно к аксиально-поршневым регулируемым моторам с переменным рабочим объемом. Аксиально-поршневой регулируемый мотор содержит качающий узел и механизм регулирования, включающий дифференциальный поршень управления, установленный в корпусе механизма регулирования и кинематически связанный с качающим узлом. Между торцевой поверхностью меньшего диаметра поршня управления и корпусом механизма регулирования образована штоковая полость. Между торцевой поверхностью большего диаметра поршня управления и корпусом механизма регулирования образована поршневая полость. Мотор содержит установленные в корпусе механизма регулирования два блока клапанов. Каждый из блоков включает размещенные в корпусе блока предохранительный клапан прямого действия и обратный клапан. В корпусе механизма регулирования выполнены два отверстия для обеспечения подвода/отвода рабочей среды. В корпусе механизма регулирования выполнены первый канал, второй канал и третий канал. Вход обратного клапана первого блока клапанов соединен с первым отверстием для подвода/отвода рабочей среды. Выход обратного клапана первого блока соединен с первым и вторым каналами. Вход предохранительного клапана первого блока соединен со вторым каналом. Выход предохранительного клапана первого блока соединен с первым отверстием для подвода/отвода рабочей среды. Вход обратного клапана второго блока клапанов соединен со вторым отверстием для подвода/отвода рабочей среды. Выход обратного клапана второго блока соединен с третьим каналом. Вход предохранительного клапана второго блока соединен с третьим каналом. Выход предохранительного клапана второго блока соединен со вторым отверстием для подвода/отвода рабочей среды. Первый канал с другой стороны соединен с гидравлическим распределителем, предназначенным для регулирования давления в поршневой полости, а второй и третий каналы соединены со штоковой полостью. Упрощается конструкция, снижается удельная масса и габаритные размеры. 2 з.п. ф-лы. 3 ил.

Рисунки к патенту РФ 2293875

Изобретение относится к области регулируемых гидромашин, а именно к аксиально-поршневым регулируемым моторам с переменным рабочим объемом.

Известна аксиально-поршневая машина, содержащая качающий узел, включающий установленный в корпусе на подшипниках вал качающего узла. Фланец вала шарнирно соединен с центральной цапфой и поршнями, входящими в цилиндры наклонного блока. Наклонный блок вращается на центральной цапфе и опирается на распределитель, который является регулируемым звеном машины. Распределитель соединен пальцем с силовым дифференциальным поршнем, расположенным в корпусе механизма регулирования. Дифференциальный поршень управляется через клапан регулирования давления в поршневой полости поршня, при этом штоковая полость соединена через обратные клапана и клапан регулирования с входом и выходом машины. Клапан регулирования, кроме того, соединен с поршневой полостью и со сливом, а каналы входа и выхода машины соединены между собой через два предохранительно-подпитывающие клапана (Каталог Бош Рексрот AG RE 91 606/05/99 I A 6 VE, 2005-03-17; сайт www.boschrexroth.com).

Недостатками известной регулируемой машины, выбранной за прототип, являются:

— сложность конструкции, обусловленная наличием обратных клапанов одновременно с наличием предохранительно-подпиточных клапанов; наличием длинных каналов с обратными клапанами для подвода рабочей среды к клапану регулирования; наличием двух каналов, проходящих от клапана регулирования через весь корпус механизма регулирования до поршневой и штоковой полостей. Все эти факторы значительно усложняют процесс изготовления известной машины и являются причиной ее дороговизны;

— недостаточная надежность конструкции и чувствительность машины, обусловленные тем, что наличие длинных каналов, проходящих через весь корпус механизма регулирования, значительно снижают качество регулирования и увеличивают цикл регулирования;

— значительные габариты машины, обусловленные увеличенной толщиной корпуса механизма регулирования по сравнению с регулируемыми машинами без предохранительно-подпиточных клапанов.

Задача, решаемая предлагаемым изобретением, — упрощение конструкции, снижение удельной массы и габаритных размеров аксиально-поршневого регулируемого мотора.

Поставленная задача решается тем, что в аксиально-поршневом регулируемом моторе, содержащем качающий узел и механизм регулирования, включающий дифференциальный поршень управления, установленный в корпусе механизма регулирования и кинематически связанный с качающим узлом, между торцевой поверхностью меньшего диаметра поршня управления и корпусом механизма регулирования образована штоковая полость, между торцевой поверхностью большего диаметра поршня управления и корпусом механизма регулирования образована поршневая полость, согласно изобретению мотор содержит установленные в корпусе механизма регулирования два блока клапанов, каждый из блоков включает размещенные в корпусе блока предохранительный клапан и обратный клапан; в корпусе механизма регулирования выполнены два отверстия для обеспечения подвода/отвода рабочей среды, в корпусе механизма регулирования выполнены первый канал, второй канал и третий канал; вход обратного клапана первого блока клапанов соединен с первым отверстием для подвода/отвода рабочей среды, а выход обратного клапана первого блока соединен с первым и вторым каналами, вход предохранительного клапана первого блока соединен со вторым каналом, а выход предохранительного клапана первого блока соединен с первым отверстием для подвода/отвода рабочей среды; вход обратного клапана второго блока клапанов соединен со вторым отверстием для подвода/отвода рабочей среды, а выход обратного клапана второго блока соединен с третьим каналом, вход предохранительного клапана второго блока соединен с третьим каналом, а выход предохранительного клапана второго блока соединен со вторым отверстием для подвода/отвода рабочей среды; при этом первый канал с другой стороны соединен с гидравлическим распределителем, предназначенным для регулирования давления в поршневой полости, а второй и третий каналы соединены со штоковой полостью.

Штоковая полость может быть выполнена с расширяющимся диаметром в месте ее соединения со вторым и третьим каналами.

Блок клапанов может быть выполнен в виде обратно-предохранительного клапана.

Заявляемый аксиально-поршневой регулируемый мотор функционально состоит из двух основных узлов — качающего узла и механизма регулирования.

Качающий узел содержит установленные в корпусе мотора вал с подшипниками, вращающийся на центральной цапфе наклонный блок, опирающийся на распределитель, кинематически связанный с дифференциальным поршнем управления.

Механизм регулирования содержит установленный в корпусе механизма регулирования дифференциальный поршень управления (далее — поршень управления), кинематически связанный с распределителем качающего узла посредством пальца. По разные стороны пальца поршень управления имеет разные диаметры — больший и меньший. Между торцевой поверхностью меньшего диаметра поршня управления и корпусом механизма регулирования образована штоковая полость; между торцевой поверхностью большего диаметра поршня управления и корпусом механизма регулирования образована поршневая полость. Штоковая полость в процессе работы мотора соединена с линией рабочего давления. Поршневая полость в процессе работы мотора соединена с линией рабочего давления через гидравлический распределитель.

Регулирование мотора осуществляется при подаче от линии рабочего давления соответствующего давления в поршневую полость механизма регулирования. Подача давления в поршневую полость вызывает перемещение поршня управления. При перемещении поршня управления изменяется положение распределителя, кинематически связанного с поршнем управления. Изменение положения распределителя вызывает изменение положения наклонного блока, опирающегося на распределитель, что приводит к изменению рабочего объема мотора.

Заявляемый мотор содержит установленные в корпусе механизма регулирования два блока клапанов, каждый из которых включает размещенные в корпусе блока предохранительный клапан и обратный клапан.

Предохранительный клапан обеспечивает ограничение высокого давления в регулируемых пределах потока рабочей среды, поступающего на вход клапана.

Обратный клапан пропускает поток рабочей среды, поступающий на вход клапана, и не пропускает поток рабочей среды обратного направления.

В корпусе механизма регулирования заявляемого мотора выполнен первый канал, соединенный с одной стороны с выходом обратного клапана первого блока клапанов, а с другой стороны — с гидравлическим распределителем. Обратный клапан первого блока клапанов пропускает поток рабочей среды, поступающий на его вход из линии А (первое отверстие для обеспечения подвода/отвода рабочей среды), обеспечивая соединение линии А с первым каналом, поскольку вход обратного клапана первого блока клапанов соединен с первым отверстием.

Линия В (второе отверстие для подвода/отвода рабочей среды) соединена со входом обратного клапана второго блока клапанов.

В корпусе механизма регулирования заявляемого мотора выполнены два канала (соответственно второй и третий), соединяющие линию А с линией В через штоковую полость. При этом второй канал соединен со штоковой полостью и со входом предохранительного клапана первого блока клапанов, а третий канал соединен со штоковой полостью и соответственно со входом предохранительного клапана второго блока клапанов.

Таким образом, линии А и В соединяются через клапаны обоих блоков клапанов, второй и третий каналы и штоковую полость.

В случае, когда по линии А подается поток рабочей среды под рабочим (высоким) давлением, а через линию В соответственно идет поток низкого давления, поток рабочей среды из линии А поступает на вход обратного клапана первого блока клапанов, который, пропуская этот поток, обеспечивает соединение линии А с первым каналом. Рабочая среда из линии А рабочего давления через первый канал подается к гидравлическому распределителю, а от него — к поршневой полости. Гидравлический распределитель регулирует давление в поршневой полости, пропуская определенный поток рабочей среды из первого канала, величина которого задается в зависимости от необходимого уровня давления в поршневой полости. Управление положением гидравлического распределителя осуществляется от внешнего органа управления. Одновременно рабочая среда из линии А рабочего давления по второму каналу поступает в штоковую полость и в третий канал. При превышении давления в третьем канале заданного уровня срабатывает предохранительный клапан второго блока клапанов и рабочая среда из третьего канала сливается в линию В. Порог срабатывания предохранительного клапана второго блока клапанов задается в зависимости от уровня давления в третьем канале, которое, в свою очередь, определяется уровнем давления в штоковой полости.

В случае, когда через линию А идет поток низкого давления, а по линии В поступает поток высокого (рабочего) давления. Рабочая среда из линии В высокого давления поступает на вход обратного клапана второго блока клапанов, который, пропуская данный поток, обеспечивает соединение линии В и третьего канала. Рабочая среда поступает через третий канал в штоковую полость и во второй канал. Из второго канала рабочая среда поступает на вход предохранительного клапана первого блока клапанов и при превышении давления в третьем канале заданного уровня, предохранительный клапан срабатывает, рабочая среда из второго канала сливается в линию А, являющуюся линией низкого давления. Порог срабатывания предохранительного клапана первого блока клапанов задается в зависимости от уровня давления во втором канале, которое, в свою очередь, также определяется уровнем давления в штоковой полости.

Таким образом, обратный и предохранительный клапаны каждого блока клапанов пропускают потоки противоположных направлений — обратные клапаны пропускают потоки, поступающие на их входы соответственно по направлению из линии А или В, а предохранительные клапаны при превышении уровня давления во втором или третьем каналах пропускают потоки противоположного направления, поступающие на входы предохранительных клапанов соответственно из второго или третьего каналов по направлению в линию А или В.

Для того, чтобы обеспечить пропускание полного потока рабочей среды через второй и третий каналы, штоковая полость в месте подхода указанных каналов имеет расширение диаметра.

В заявляемом моторе линии высокого и низкого давления (первое и второе отверстия для подвода/отвода рабочей среды) соединены между собой посредством каналов (второй и третий), выполненных в корпусе механизма регулирования и соединяющих обе линии через штоковую полость. Такое выполнение указанных каналов позволяет минимизировать их длину, не требует дополнительных конструктивных элементов и места для их размещения. Для упрощения конструкции и минимизации габаритов заявляемого мотора в нем используются не отдельные виды клапанов (обратные и предохранительные), а блоки клапанов, совмещающие в одном корпусе предохранительный и обратный клапаны, указанные блоки клапанов установлены непосредственно в корпусе механизма регулирования. Надлежащее функционирование блоков клапанов обеспечивается тем, что второй и третий каналы соединены со входами соответствующих предохранительных клапанов, линии А и В соединены со входами соответствующих обратных клапанов, а выход обратного клапана первого обратно-предохранительного клапана соединен с первым каналом, соединенным также с гидравлическим распределителем. Таким образом, через первый канал осуществляется подача рабочей среды из линии А в поршневую полость.

Таким образом, соединение обеих линий (А и В) в заявляемом моторе посредством каналов, выполненных в корпусе механизма регулирования и проходящих через штоковую полость, позволяет исключить из его конструкции длинные каналы, что обеспечивает повышение качества и надежности работы мотора в целом, сокращение времени цикла регулирования. Кроме того, такое конструктивное выполнение заявляемого мотора позволяет исключить из его конструкции дополнительные устройства, обеспечивающие слив рабочей среды из штоковой полости при поднятии давления в поршневой полости. При движении поршня управления вверх рабочая среда из штоковой полости сливается соответственно в третий канал, а оттуда через предохранительный клапана второго блока клапанов в линию В (когда линия В — линия низкого давления), или — во второй канал, а оттуда — через предохранительный клапан первого блока клапанов в линию А (когда линия А — линия низкого давления).

Использование в заявляемом моторе клапанов (обратных и предохранительных), размещенных попарно в соответствующих блоках клапанов, установленных непосредственно в корпусе механизма регулирования позволяет упростить конструкцию мотора и, следовательно, также повысить надежность его работы; позволяет снизить удельную массу и габариты мотора.

Соединение второго и третьего каналов через штоковую полость обеспечивает поступление рабочей среды в штоковую полость при любом направлении рабочей среды (из линии А в линию В и наоборот). Необходимый уровень давления в штоковой полости обеспечивается путем задания соответствующего уровня срабатывания предохранительных клапанов обоих блоков клапанов.

Таким образом, соединение линий А и В и питание штоковой полости обеспечивается по одним и тем же каналам, что исключает необходимость выполнения специальных каналов, по которым будет обеспечена подача рабочей среды из линии А или В в штоковую полость и соединение обеих линий.

Для еще большего снижения массогабаритных показателей и упрощения конструкции в заявляемом моторе целесообразно в качестве блока клапанов использовать непосредственно обратно-предохранительные клапаны, совмещающие функции обратного и предохранительного клапанов.

Обратно-предохранительные клапаны обеспечивают пропуск потока рабочей среды одного направления (в режиме обратного клапана), а в режиме предохранительного клапана обеспечивают пропуск потока рабочей среды противоположного направления при превышении давления рабочей среды в соответствующем канале или полости заданного уровня.

При использовании обратно-предохранительных клапанов устанавливать их следует таким образом, чтобы поток, поступающий из линии А (первое отверстие для подвода/отвода рабочей среды), проходил через первый обратно-предохранительный клапан, работающий в режиме обратного клапана, в первый и второй каналы, и далее через второй канал, штоковую полость и в третий канал, из третьего канала поток будет поступать во второй обратно-предохранительный клапан, работающий в режиме предохранительного клапана и пропускающий соответственно поток — в линию В (второе отверстие для подвода/отвода рабочей среды). Таким образом, установленные в моторе два обратно-предохранительных клапана будут работать в противоположных режимах: если первый обратно-предохранительный клапан работает в режиме обратного клапана, второй обратно-предохранительный клапан будет работать соответственно в режиме предохранительного клапана и наоборот.

В случае, когда поток рабочей среды будет поступать из линии В, второй обратно-предохранительный клапан в режиме обратного клапана должен обеспечивать соединение линии В с линией А через третий и второй каналы и штоковую полость, т.е. обеспечивать пропуск потока рабочей среды из линии В в третий канал, далее — во второй канал, из второго канала поток должен быть пропущен первым обратно-предохранительным клапаном, работающим в режиме предохранительного клапана, в линию А.

Т.е. при использовании обратно-предохранительных клапанов они должны быть установлены с возможностью обеспечения соединения линии А с первым и вторым каналами через первый обратно-предохранительный клапан, работающий в режиме обратного клапана, и соединения третьего канала с линией В через второй обратно-предохранительный клапан, работающий в режиме предохранительного клапана для пропуска потока, поступающего из линии А в линию В. И наоборот: для пропуска потока, поступающего из линии В в линию А, обратно-предохранительные клапаны должны быть установлены с возможностью соединения линии А со вторым каналом через первый обратно-предохранительный клапан, работающий в режиме предохранительного клапана, и соединения линии В с третьим каналом через второй обратно-предохранительным клапаном, работающий в режиме обратного клапана.

На фиг.1 представлен заявляемый аксиально-поршневой регулируемый мотор.

на фиг.2 — разрез Д;

на фиг.3 — гидравлическая схема мотора.

Аксиально-поршневой мотор с регулируемым рабочим объемом содержит корпус 1, в котором на подшипниках 2 установлен вал 3 с фланцем 4. Фланец 4 шарнирно соединен с поршнями 5 и центральной цапфой 6. Поршни 5 расположены в цилиндрах 7 вращающегося вокруг оси центральной цапфы 6 наклонного блока 8, который приводится во вращение фланцем 4 вала 3 и поршнями 5. Ход поршней 5 определяется углом поворота, образованным осью вращения блока 8 и осью вращения вала 3. Блок 8 опирается на распределитель 9, прилегающий по опорной поверхности вращения к корпусу 10 механизма регулирования. Распределитель прижимается к корпусу 10 под действием усилия пружины 11 и гидравлического давления в цилиндрах 7 блока 8.

Регулирование рабочего объема мотора обеспечивается скольжением распределителя 9 по опорной поверхности вращения корпуса 10 вдоль направляющих 12. Перемещение распределителя 9 по опорной поверхности вращения корпуса 10 осуществляется дифференциальным (ступенчатым) поршнем 13 управления посредством пальца 14, входящего в отверстие 15 распределителя 9. Поршень 13 управления выполнен состоящим из двух продольных участков — большего и меньшего диаметра, участок меньшего диаметра поршня 13 размещен в полости 16 — штоковой полости, участок поршня 13 большего диаметра размещен в полости 17 — поршневой полости. Полости 16 и 17 выполнены в корпусе 10 механизма регулирования.

Полости 16 и 17 поршня 13 расположены в противоположных сторонах по отношению к пальцу 14. Штоковая полость 16 посредством обратных клапанов 18, 19 блоков клапанов (обратно-предохранительных клапанов) 20 и 21 постоянно соединена каналами 22 или 23 с линией А (соединенной со входом мотора) или линией В (соединенной с выходом мотора). Линия А и линия В — выполнены в виде соответствующих отверстий (первого и второго) в корпусе 10. В качестве обратно-предохранительных клапанов может быть использован клапан по патенту РФ № 2028531 «Обратно-предохранительный клапан».

Корпус 10 со стороны поршневой полости 17 закрыт крышкой 24, в которой установлен гидравлический распределитель, содержащий клапан регулирования 25, содержащий золотник 26. Крышка 24 и клапан регулирования 25 имеет канал 27, соединенный с поршневой полостью 17. Клапан регулирования 25 через канал 28 в крышке 24 и канал 29 (первый канал согласно формуле изобретения) в корпусе 10 соединен с полостью 30 первого обратно-предохранительного клапана 21. В крышке 24 имеется канал 31, соединенный с баком 32, для слива рабочей среды из поршневой полости.

Линия А и линия В соединены между собой обратно-предохранительными клапанами 20 и 21 каналами 22, 23 (соответственно вторым и третьим каналами согласно формуле изобретения), проходящими через штоковую полость 16 поршня 13. Для прохождения полного потока от клапанов штоковая полость 16 имеет расширение 33 в диаметре вместе подхода к ней каналов 22, 23.

Аксиально-поршневой регулируемый мотор по заявленному решению имеет меньшие габаритные размеры и массу и имеет более простое устройство.

Заявляемый мотор работает следующим образом.

Мотор функционально состоит из двух узлов: качающего узла и механизма регулирования. Качающий узел состоит из вала 3 с подшипниками 2 и вращающегося на центральной цапфе 6 наклонного блока цилиндров 8 с поршнями 5 и распределителя 9 кинематически связанного с поршнем 13.

Механизм регулирования предназначен для изменения рабочего объема поршневого мотора за счет изменения угла наклона блока 8 к оси вала 3.

Регулятор включает палец 14, входящий в отверстие 15 распределителя 9 и установленный поперечно в поршне 13, имеющего полости 16 и 17, расположенные по разные стороны от пальца 14. Клапан регулирования 25, расположенный в крышке 24 в зависимости от управляющего воздействия на золотник 26, может регулировать давление в поршневой полости 17.

В нейтральном положении золотника 26 обеспечивается равновесие сил давления, действующих на дифференциальный поршень 13. В процессе работы при изменении величины управляющего воздействия на золотник 26, приводящее к изменению положения золотника, 26 меняется давления в поршневой полости 17 поршня 13, меняющее соотношение сил на поршень 13, что вызывает перемещение последнего. При перемещении поршня 13, связанного с распределителем 9 пальцем 14, происходит изменение угла наклона блока 8 к оси вала 3 и изменение рабочего объема мотора.

В случае, когда из линии А поступает поток рабочей среды под высоким давлением, тогда через линию В идет поток рабочей среды под низким давлением. Рабочая среда из линии А через обратно-предохранительный клапан 21, работающий в режиме обратного клапана, поступает в канал 29 и в канал 23. Из канала 23 рабочая среда поступает в штоковую полость 33 и в канал 22. При превышении давления рабочей среды в канале 22 выше заданного значения, рабочая среда через обратно-предохранительный клапан 20, работающий в режиме предохранительного клапана, поступает в линию В на слив. Одновременно из линии А рабочая среда поступает в канал 29, а оттуда — через гидравлический распределитель в поршневую полость 17 для осуществления процесса регулирования мотора.

Далее в процессе регулирования мотора при повышении давления в поршневой полости 17 поршень 13 движется вверх, уменьшая объем штоковой полости 33. При этом рабочая среда из полости 33 сливается через канал 22 и обратно-предохранительный клапан 20, работающий в режиме обратного клапана, в линию В, обеспечивая таким образом необходимый уровень давления в штоковой полости.

При необходимости снизить в процессе регулирования мотора давление в поршневой полости 17, рабочая среда из поршневой полости 17 сливается через канал 31, поршень 13 движется вниз, увеличивая объем штоковой полости 33. Поддержание давления в штоковой полости 33 обеспечивается подачей рабочей среды из линии А через канал 23 в штоковую полость 33.

Аналогично работает мотор в случае, когда рабочая среда под высоким давлением поступает из линии В. Только в этом случае из линии В рабочая среда через обратно-предохранительный клапан 20, работающий в режиме обратного клапана, поступает через канал 22 в штоковую полость 33 и далее — в канал 23. Из канала 23 рабочая среда сливается в линию А при превышении давления рабочей среды в канале 23 заданного уровня.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Аксиально-поршневой регулируемый мотор, содержащий качающий узел и механизм регулирования, включающий дифференциальный поршень управления, установленный в корпусе механизма регулирования и кинематически связанный с качающим узлом, между торцевой поверхностью меньшего диаметра поршня управления и корпусом механизма регулирования образована штоковая полость, между торцевой поверхностью большего диаметра поршня управления и корпусом механизма регулирования образована поршневая полость, отличающийся тем, что мотор содержит установленные в корпусе механизма регулирования два блока клапанов, каждый из блоков включает размещенные в корпусе блока предохранительный клапан и обратный клапан; в корпусе механизма регулирования выполнены два отверстия для обеспечения подвода/отвода рабочей среды, в корпусе механизма регулирования выполнены первый канал, второй канал и третий канал; вход обратного клапана первого блока клапанов соединен с первым отверстием для подвода/отвода рабочей среды, а выход обратного клапана первого блока соединен с первым и вторым каналами, вход предохранительного клапана первого блока соединен со вторым каналом, а выход предохранительного клапана первого блока соединен с первым отверстием для подвода/отвода рабочей среды; вход обратного клапана второго блока клапанов соединен со вторым отверстием для подвода/отвода рабочей среды, а выход обратного клапана второго блока соединен с третьим каналом, вход предохранительного клапана второго блока соединен с третьим каналом, а выход предохранительного клапана второго блока соединен со вторым отверстием для подвода/отвода рабочей среды; при этом первый канал с другой стороны соединен с гидравлическим распределителем, предназначенным для регулирования давления в поршневой полости, а второй и третий каналы соединены со штоковой полостью.

2. Аксиально-поршневой регулируемый мотор по п.1, отличающийся тем, что штоковая полость выполнена с расширяющимся диаметром в месте ее соединения со вторым и третьим каналами.

3. Аксиально-поршневой регулируемый мотор по п.1, отличающийся тем, что блок клапанов выполнен в виде обратно-предохранительного клапана.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *