Винтовой компрессор устройство и принцип работы: устройство, схема, преимущества, особенности эксплуатации. Как выбрать винтовой компрессор – принцип работы, преимущества и особенности обслуживания

Содержание

устройство, схема, преимущества, особенности эксплуатации. Как выбрать винтовой компрессор

Винтовым называется компрессор, понижение давления в котором достигается за счет вращения двух винтов (роторов). По конструкции такие устройства принадлежат к ротационному компрессорному оборудованию. Впервые винтовая модель была запатентована в 1934 г. На сегодня агрегаты данного типа являются наиболее распространенными в своем сегменте. Этому способствует их относительно небольшая масса и компактные габариты, надежность, способность функционировать в автономном режиме, экономичность в плане потребления электроэнергии и затрат на обслуживание. Невысокий уровень вибрации позволяет монтировать такие системы без обустройства специального фундамента, как в случае с поршневыми аналогами. В ряде направлений (судовые рефрижераторы, мобильные компрессорные станции и т. п.) роторные модели практически полностью вытеснили компрессоры других разновидностей. Такие устройства могут подавать воздух, сжатый до 15 атм., и обладать производительностью 1–100 м3/мин.

Преимущества винтовых компрессоров

По сравнению с центробежными и поршневыми моделями, устройства описываемого типа имеют следующие базовые преимущества.

  1. Крайне низкий (порядка 2–3 мг/м3) расход масла, что в разы меньше, чем у крупных поршневых моделей с лубрикаторной смазкой. Следовательно, воздух, подаваемый посредством винтовых агрегатов, будет намного качественнее и чище. Его можно применять для питания новейшего пневматического оборудования без установки фильтров дополнительной очистки.
  2. Пониженный уровень вибрации и шума (у некоторых моделей – соразмерный с шумностью бытовой техники). С учетом небольшого веса и габаритов это позволяет устанавливать описываемые устройства без специального фундамента непосредственно на производствах, где потребляется сжатый воздух, а также оснащать ими разноплановые мобильные комплексы.
  3. Наличие воздушного охлаждения. Во-первых, это устраняет необходимость устанавливать системы оборотного водоснабжения. Во-вторых, появляется возможность вторично использовать тепло, которое выделяется в результате функционирования компрессора, к примеру, для обогрева помещений.
  4. Надежность работы, безопасность и простота эксплуатации, способность длительное время функционировать без обслуживания. Это становится возможным благодаря наличию автоматических систем, посредством которых осуществляется управление и контроль над работой агрегата.

Устройство винтового компрессора

Стандартная модель состоит из следующих элементов.

  1. Фильтр, необходимый для очищения воздуха, поступающего в агрегат. Обычно состоит из первичного фильтра, монтируемого непосредственно на корпус в месте забора воздушных масс из атмосферы, и вторичного, который устанавливается перед клапаном 2.
  2. Всасывающий клапан. Позволяет предотвратить выброс масла и сжатого воздуха из компрессора в момент остановки последнего. Работает на пневматическом управлении. По конструкции представляет собой обычный подпружиненный клапан. Некоторые устройства оснащены аналогами пропорционального типа.
  3. Винтовой блок. Представляет собой основную рабочую часть агрегата. Состоит из двух винтов (роторов), изготовленных посредством высокоточной механической обработки и помещенных в корпус. Самый дорогой элемент устройства. Роторная пара оснащена датчиком термозащиты, вмонтированным возле патрубка 18. Данный контроллер выключает мотор, если температура на выходе роторов превысит отметку в 105 °С.
  4. Ременной привод (высокомощные модели оснащены прямой муфтовой передачей или редукторами). Задает скорость, с которой вращаются винты. Представляет собой 2 шкива, один из которых установлен на роторной паре, другой – на двигателе. Чем больше скорость, тем выше производительность компрессора, однако максимальное давление (рабочее) при этом снижается.
  5. Шкивы, размер которых задает скорость оборотов винтовой пары 4.
  6. Двигатель. Вращает роторы 4 посредством ременной передачи (в более новых моделях – муфты или редуктора). Оснащен датчиком термозащиты, который отключает мотор от сети при достижении максимально допустимых значений потребляемого электротока. Вместе с датчиком, описанным в пункте 3, обеспечивает безопасность функционирования устройства и защищает его от возникновения аварийных ситуаций.
  7. Масляный фильтр. Он очищает масло перед его возвратом в роторы.
  8. Маслоотделитель первичной очистки. Здесь воздух освобождается от масла под действием центробежной силы (поток закручивается, вследствие чего и отделяются частицы).
  9. Маслоотделительный фильтр. Обеспечивает второй этап очистки. Такой комплексный подход позволяет минимизировать остаточные масляные пары на выходе до 1,3 мг/м3, что является недостижимым значением для поршневых агрегатов.
  10. Предохранительный клапан. Необходим для обеспечения безопасности. Клапан срабатывает, если давление в маслоотделителе 8 превысит допустимый лимит.
  11. Термостат, обеспечивающий нужный температурный режим. Пропускает масляный состав, не разогретый до 72 °С, мимо охлаждающего радиатора 9. Это позволяет ускорить достижение оптимальной температуры.
  12. Маслоохладитель. После отделения от сжатого воздуха горячее масло попадает в данный резервуар, где охлаждается до нужной температуры.
  13. Воздухоохладитель. Перед подачей потребителю сжатый воздух охлаждается здесь до температуры, которая будет выше на 15–20 °С, чем окружающая среда.
  14. Вентилятор. Осуществляет забор воздуха, охлаждает рабочие элементы.
  15. Клапан холостого хода (электропневматический). Управляет функционированием всасывающего клапана 2.
  16. Реле давления. Обеспечивает работу агрегата в автоматическом режиме. В новых компрессорах реле заменено электронной системой управления.
  17. Манометр. Находится на лицевой панели, показывает давление внутри компрессора.
  18. Выходной патрубок.
  19. Прозрачное цилиндрическое утолщение на трубке, необходимое для визуального контроля над процессом возврата масла.
  20. Клапан минимального давления. Пока последнее не превышает 4 бар, он всегда будет закрытым. Также данный элемент выполняет функцию обратного клапана, поскольку отделяет пневмолинию и компрессор при остановке последнего или работе в холостом режиме.

Устройство помещено в корпус, который обычно изготавливается из стали. Он покрывается негорючим звукопоглощающим составом, устойчивым к маслу и прочим сходным веществам. Это конструкция наиболее распространенной модификации. В зависимости от модели и производителя схема и комплектация роторного компрессора может варьироваться.

Принцип действия компрессора

Через клапан 2 воздух из атмосферы, очищенный посредством фильтров 1, попадает в роторную пару 3. Здесь он смешивается с маслом. Последнее подается в резервуар сжатия для выполнения следующих задач.

  1. Уплотнить зазоры между винтами 3 и корпусом 16, а также между полостями роторов. Это позволяет минимизировать перетечки и утечки.
  2. Устранить касание винтов, обеспечив масляный клин между ними.
  3. Отводить тепло, которое индуцируется в процессе сжатия воздуха.

Сжатая в блоке 3 воздушно-масляная смесь подается в маслоотделитель 7, где разделяется на составляющие. Отсепарированное масло очищается на фильтре 6 и возвращается в блок 3. В зависимости от температуры предварительно оно может охлаждаться в радиаторе 9, что регулируется термостатом 8. В любом случае, масло будет циркулировать по замкнутому кругу. Воздух поступает в охлаждающий радиатор 13. После достижения нужной температуры он подается на выход компрессора.

Режимы работы

  • Пусковой (Start). Данный режим служит для оптимизации нагрузки на электросеть в момент запуска компрессора. Включение двигателя осуществляется по схеме «звезда», а через 2 секунды (отсчитываются по таймеру, который включается в момент нажатия на кнопку Start) он переключается на схему «треугольник», что соответствует рабочему режиму. Маломощные винтовые модели работают на прямом пуске.
  • Рабочий.
    В системе начинает увеличиваться давление. Для его контроля имеется 2 манометра. Первый находится на лицевой панели и показывает параметры внутри компрессора. Второй – на ресивере, он служит для контроля линии. После достижения максимально допустимого давления срабатывает соответствующее реле, в результате чего агрегат переходит на холостой ход из рабочего режима.
  • Холостой ход. Двигатель и роторы вращаются, перемещая газ по внутреннему контуру. Это необходимо для охлаждения воздушных масс. Данный режим служит для перевода компрессора в состояние ожидания или выступает в качестве подготовки перед полным выключением. В поршневых моделях холостого хода нет. Детальное описание работы устройства на таком режиме выглядит следующим образом. Реле 16 дает команду, запускающую пневмоклапан холостого хода и временное реле. Параметры последнего можно настроить. Пневмоклапан открывает канал между фильтром маслоотделителя 9 и всасывающим клапаном 2, вследствие чего давление внутри компрессора начинает снижаться с такой скоростью, чтобы достичь минимальной отметки (2,5 бар) в течение установленного времени. Это позволяет остановить двигатель без выброса масла в область фильтра 1. По истечении указанного периода реле времени дает команду отключить мотор. Система переходит в состояние ожидания. Если сжатие достигло минимальной величины раньше, чем сработало временное реле, снова включается рабочий ритм.
  • Ожидание. Продолжается, пока рабочее давление не опустится ниже минимальной отметки, после чего реле 16 вновь запускает механизм. Длительность данного режима зависит от скорости расходования воздуха.
  • Стоп (Stop). Служит для штатного выключения агрегата. Если при этом компрессор находился в рабочем ритме, он на некоторое время перейдет на холостой ход и только после этого отключится.
  • Alarmstop – экстренное выключение. Соответствующая кнопка находится на панели управления. Режим используется в случаях, если понадобилось срочно остановить двигатель. Агрегат выключается сразу, без промежуточного перехода на холостые обороты.

Разновидности винтовых компрессоров

Маслозаполненные. Один ротор в них является ведущим, второй – ведомым. Физический контакт между данными элементами предотвращается посредством впрыскиваемого масла (на 1 кВт мощности устройства подается 1 л/мин). Шумность работы подобного оборудования находится на уровне шума от бытовой техники – 60–80 Дб (при условии использования звукопоглощающих кожухов). Мощность двигателей может варьироваться в пределах 3–355 кВт, а объемные расходы – 0,4-54 м3/мин. Такое оборудование можно устанавливать непосредственно в рабочих цехах.

Безмасляные. Делятся на два подвида.

  • Компрессоры винтовые сухого сжатия. Оснащены синхронными электромоторами, которые приводят в движение оба винта, исключая контакт между ними. Они менее производительны по сравнению с моделями маслозаполненного типа. Из-за отсутствия масла нет и отвода тепла. Поэтому уровень сжатия достигает лишь 3,5 бар в одной ступени. Данный показатель можно поднять до 10 бар, если использовать вторую ступень и промежуточный рефрижератор. Но это, как и применение двух электромоторов вместо одного, увеличивает стоимость устройства.
  • Водозаполненные компрессоры. Самая технологичная модель, сочетающая все достоинства безмасляных и маслозаполненных вариантов. Водозаполненные агрегаты отличаются оптимальной производительностью и позволяют достигать сжатия 13 бар в одной ступени. Важным преимуществом подобных моделей является их экологичность, ведь традиционное компрессорное масло заменено на чистую, натуральную и не такую дорогостоящую воду. При этом обеспечивается внутреннее охлаждение. Вода обладает высокой удельной теплопроводностью и теплоемкостью. Вне зависимости от уровня конечного сжатия температура в ходе данного процесса повышается максимум на 12 °С. Этому способствует в том числе применение дозированного впрыска. Тепловая нагрузка на элементы устройства минимальна, следовательно, возрастает срок службы, надежность и безопасность агрегата в целом. Сжатый воздух не нуждается в дополнительном охлаждении. Циркулирующая в системе вода охлаждается до температуры окружающей среды. А влага, имеющаяся в сжатых воздушных массах, конденсируется и вновь возвращается в контур. В маслозаполненных моделях именно конденсат был загрязняющим веществом. Здесь же он используется в циркуляционном контуре за несколько часов (при нормальных условиях и непрерывной эксплуатации устройства). Следовательно, накопление отходов на станции практически нивелируется. Еще одно значимое достоинство водозаполненных компрессоров – возможность снизить на 20 % энергозатраты. Процесс сжатия в подобных устройствах приближается к идеальному изотермическому. Изготовление устройства обходится дешевле за счет отсутствия масляных фильтров, емкостей для отработанной масляной жидкости. Не приходится нести издержки и на переработку конденсата.

Безмаслянные модели используются в различных областях, но самые популярные сферы применения – пищевая, фармацевтическая и химическая промышленности.

Почему выгодно перейти на винтовое компрессорное оборудование

Как отмечалось выше, роторные модели постепенно вытесняют поршневые и центробежные варианты. Многие предприятия переходят именно на такие агрегаты, считая их более надежными, совершенными и экономичными. При этом стоимость роторных устройств выше, чем поршневых аналогов. Да и на замену оборудования (если речь идет именно о модернизации системы, а не о сборке новой установки) необходимо потратить определенную сумму. Разберемся более детально, в чем именно заключается выгода для предпринимателей, проведя сравнение винтовых и поршневых моделей. Но для начала необходимо понять, из каких статей расходов формируется стоимость любого компрессора. Окончательная сумма включает в себя следующие затраты.

  1. Приобретение агрегата.
  2. Оплата монтажных работ.
  3. Покупка расходных материалов.
  4. Оплата электроэнергии, потребляемой устройством.
  5. Ремонтные расходы.
  6. Покупка дополнительного оборудования. Например, это может быть очистительный комплекс для сжатого воздуха.
Расходы на приобретение агрегата

В этом плане более выгодными являются поршневые модели, цена которых на 20–40 % ниже стоимости винтовых аналогов. В то же время, это средства, затрачиваемые непосредственно на покупку оборудования. Но ведь его необходимо еще и установить. Поршневые модели имеют более значительные габариты и массу, в процессе работы они ощутимо вибрируют, поэтому нуждаются в обустройстве специального фундамента. Это существенно увеличивает стоимость монтажа. Если сравнивать общую сумму, которую необходимо потратить на покупку оборудования и его установку, то более выгодными оказываются именно роторные варианты.

Расходы на электроэнергию

КПД роторных компрессоров существенно больше. И чем выше производительность агрегата, тем более заметной будет эта разница. Имеет значение и тип устройства. Например, водозаполненные модели обеспечивают более высокую экономию энергоресурсов. Но даже маслозаполненные варианты низкой производительности, оснащенные традиционной схемой управления, на протяжении эксплуатационного периода несколько раз окупают свою стоимость за счет одной только экономии электричества. По критерию энергозатрат на генерирование одинакового объема сжатого воздуха поршневые агрегаты заметно проигрывают.

Некоторые винтовые модели позволяют еще больше увеличить экономию энергоресурсов. Речь идет о двухступенчатых агрегатах и устройствах с изменяемой частотой оборотов мотора. Подобное оборудование дает дополнительную экономию на 30 %. Важно и то, что имеется возможность регулировать производительность агрегата. Другими словами, компрессор будет генерировать столько сжатого воздуха, сколько потребляет оборудование в каждый конкретный момент. При таком режиме работы не возникнет ни переизбытка, ни дефицита. Оборудование будет функционировать с нужной производительностью, затрачивая энергоресурсы только на полезную работу.

Расходы на обслуживание и ремонт

Поршневые компрессоры нуждаются в регулярной замене колец поршней, клапанов, вкладышей и прочих элементов механизма. Роторные модели полностью избавляют пользователя от подобных проблем. В их механизме нет быстро изнашивающихся элементов. Потребность в ремонте возникает гораздо реже, а плановое обслуживание обходится гораздо дешевле. При соблюдении инструкции по эксплуатации такой агрегат способен прослужить около 20 лет, работая без ремонта в трехсменном режиме.

Удешевление обслуживания происходит еще и потому, что пропадает необходимость в постоянном присутствии рядом с оборудованием обслуживающего персонала. Роторные модели оснащены защитой, предотвращающей возникновение аварийных ситуаций. Например, оборудование отключается при перегреве или пиковых значениях электрического тока и способно работать в полностью автономном режиме.

В отличие от поршневых моделей, роторные аналоги поддерживают возможность комплектации блоками электронного управления, которые позволяют на программном уровне задать параметры функционирования агрегата на несколько недель вперед. Посредством электронного блока можно управлять и группой из нескольких механизмов, останавливая или запуская некоторые из них в зависимости от производственных потребностей в сжатом воздухе. Таким образом, комплекс функционирует с максимальной продуктивностью и без перерасхода ресурсов.

Покупка расходных материалов

Винтовые компрессоры имеют более эффективную систему маслоотделения, которая позволяет существенно снизить количество масляных фракций, смешивающихся со сжатым воздухом. Если уменьшается объем затрат основного расходного вещества, то снижается и стоимость его приобретения. Подобные агрегаты имеют более совершенную конструкцию (если сравнивать с поршневыми аналогами), которая позволяет установить современные СОЖ. Последние способны в несколько раз сократить частоту замены масляного состава.

Приобретение дополнительного оборудования

Поскольку в винтовых моделях масляные фракции отделяются эффективнее, нет необходимости покупать дополнительные комплексы очистки. А если сделать выбор в пользу более дешевого поршневого агрегата, придется приобрести еще и ресивер, который гасит возникающие в пневматической системе пульсации давления. Роторные аналоги не генерируют подобные пульсации. В большинстве случаев это позволяет избежать покупки дополнительных ресиверов.

Шумность работы винтовых агрегатов значительно ниже, чем у поршневых устройств. Посредством установки шумопогашающих кожухов можно еще сильнее снизить уровень звука и вибрацию, возникающие при функционировании компрессорного оборудования. Это позволяет монтировать его прямо в цехах, куда подается сжатый газ. Чем короче расстояние, на которое перемещается воздух, тем меньше появляется в нем конденсированной влаги и твердых фракций, которые способны серьезно навредить производственному превмооснащению.

Децентрализация компрессорного оборудования данного типа позволяет запускать только те единицы, которые понадобились в конкретный момент времени для обеспечения производства сжатым газом в необходимых объемах. Следует упомянуть и дополнительную выгоду, которая заключается в возможности задействования генерируемого компрессором тепла для нужд предприятия. Зачастую оно используется для отопления цехов.

Резюме

Роторные модели уступают поршневым аналогам равной производительности только по стоимости покупки. По всем остальным статьям (затраты на ремонт, закупку дополнительного оснащения и расходных материалов, оплату потребляемой энергии и работу обслуживающего персонала) они гораздо выгоднее и несколько раз окупают себя за эксплуатационный период. Таким образом, покупка винтового компрессорного оборудования – экономически оправданное и выгодное для предприятия решение.

Модели с частотным приводом

В середине 1990 гг. были созданы роторные компрессоры, оснащенные частотным приводом. Появление такого оборудования стало большим шагом к развитию и внедрению энергосберегающих технологий на производстве. Стоимость энергорессурсов постоянно увеличивается. Закономерно, что предприятия при модернизации своих мощностей стараются подобрать максимально экономичные варианты для замены устаревшего оснащения. И их выбор часто останавливается именно на роторных агрегатах с частотным приводом. Кроме надежности работы и способности функционировать в автономном режиме подобные агрегаты позволяют существенно оптимизировать энергозатраты.

Особенности конструкции и эксплуатации частотных приводов

Привод данного типа состоит из частотного преобразователя и асинхронного мотора. Последний преобразует электричество в механическую энергию, приводя в движение роторную пару. Частотный преобразователь служит для управления мотором. Он модифицирует переменный электроток одной частоты в переменный ток другой частоты.

В технической литературе чаще встречается термин «частотно-регулируемый электропривод». Подобное название обусловлено тем, что регулировка скорости оборотов мотора осуществляется посредством вариации частоты питающего напряжения, которое подается частотным преобразователем на двигатель. На сегодня подобные приводы широко применяются в различных сферах промышленности. Например, они задействованы в насосах, обеспечивающих дополнительную подкачку жидкости для сетей тепло- и водоснабжения.

Компрессорное оборудование с частотным приводом

Оснащение такого оборудования частотными приводами позволило получить агрегаты, обладающие рядом значимых достоинств по сравнению с простыми винтовыми моделями.

  • Плавный запуск. При включении обычного асинхронного электромотора возникают пусковые токи, превышающие номинальные в более чем 4 раза. Это провоцирует возникновение перегрузки в сети и накладывает ограничения на количество включений компрессорного оборудования в течение часа. Аналог с двигателем, оснащенным частотным преобразователем, запускается плавно, не провоцируя перегрузок в сети. Число пусковых операций у него будет меньше.
  • Способность поддерживать постоянное давление с высокой (до 0,1 бар) точностью, немедленное реагирование на все скачки данного параметра в сети. Каждый дополнительный бар нагнетания – это 6–8-процентное увеличение энергопотребления оборудования.
  • Обеспечение точного соответствия производительности компрессора и реальной потребности подключенного к нему оборудования в сжатом газе. Это позволяет минимизировать количество переходов агрегата в режим холостых оборотов. А ведь именно в моменты подобных переходов асинхронный электромотор обычной модели потребляет до 1/4 собственной номинальной мощности.

Посредством несложных расчетов получаем, что модель с частотным приводом за пятилетний период эксплуатации позволяет сэкономить до 25 % электроэнергии по сравнению с роторными моделями без частотного преобразователя. Некоторые производители обещают, что их оборудование способно сэкономить до 35 % ресурсов.

Другие способы оптимизации энергозатрат

На практике эффективность работы оборудования напрямую зависит от режима его функционирования. Нередко встречаются случаи, когда производители завышают показатели экономичности своего оборудования или в рекламных целях предоставляют неполную информацию. Пользователи компрессорных установок должны знать, что существуют и другие способы оптимизации энергозатрат, которые часто более просты и экономически выгодны. В качестве примера можно привести децентрализованный комплекс обеспечения сжатым газом. Он предусматривает установку нескольких компрессоров небольшой мощности вместо одного мощного агрегата, не всегда работающего на полную силу. Каждая единица подбирается в зависимости от объемов воздухопотребления конкретного оборудования. Поскольку не все производственные мощности могут быть задействованы в один момент времени, компрессорные агрегаты подключаются по мере необходимости.

Альтернативный вариант предусматривает монтаж нескольких винтовых моделей в единую сеть, которая оснащается одним пультом управления. Такая станция работает на 100 % своей мощности при пиковой нагрузке в сети. Как только потребность в сжатом газе снижается, ненужные мощности отключаются.

Кроме экономии энергоресурсов подобные мультикомпрессорные группы позволяют создать энергетический резерв. Если одна из единиц выйдет из строя, комплекс продолжит функционировать. Потеря мощности будет незначительной. Например, если в сеть входит 4 агрегата, то поломка одного из них снизит суммарную производительность только на 1/4.

Если же на предприятии будет установлен всего один, хоть и высокомощный агрегат, то его внезапная поломка может привести к полной остановке производственного цикла со всеми вытекающими убытками от простоя.

В настоящий момент степень изношенности компрессорного оборудования на многих предприятиях достиг критического уровня. Вопрос модернизации устройств подачи сжатого газа является очень актуальным. Надеемся, что данная статья поможет вам определиться с выбором компрессора, удовлетворяющего производственным потребностям вашего предприятия и современным требованиям к энергоэффективности, безопасности и надежности оборудования.

принцип работы, преимущества и особенности обслуживания

Сегодня устройства винтового действия практически полностью вытеснили другие типы компрессоров – особенно на предприятиях, использующих большое количество сжатого воздуха. Рассмотрим принцип работы винтовых компрессоров, их преимущества и тонкости обслуживания.

Винтовые компрессоры являются разновидностью ротационного оборудования. Принцип их работы основан на вращении двух роторов, которые и называют винтами.

Первый винтовой компрессор был разработан шведским ученым Элиотом Лисхольном, образец выпустили в 1934 году. С тех пор изобретение перетерпело множество изменений, но принцип его работы остался прежним.

Сегодня винтовые агрегаты практически полностью вытеснили другие типы компрессоров из пищевой, стекольной, химической промышленности, а также других отраслей производства, использующих большое количество сжатого воздуха.


Устройство и принцип работы винтового компрессора

Винтовой компрессор обеспечивает преобразование электрической энергии в воздушно-газовый толчок.

Основным узлом этого устройства является винтовой блок (см. рис. ниже). Он состоит из корпуса (1) и расположенной в нем винтовой пары (2 и 3) – ведущего и ведомого ротора.

Устройство винтового компрессора

В средней части роторов имеются утолщения, на которых нарезан винтовой профиль. Зубья ведущего ротора имеют выпуклую и широкую форму, ведомого – тонкую и вогнутую.

Роторная пара установлена на втулки или подшипники, между винтами предусмотрен минимальный зазор (от 0,1 до 0,4 мм). Роторы вращаются навстречу друг другу, соблюдая принцип ведомости. Их движение синхронизируется с помощью шестерен (4), закрепленных на валах роторов. Герметичность корпуса обеспечивают сальники и уплотнители.

В корпусе компрессора также предусмотрены полости для охлаждения (5), в которые, если это предусмотрено, подается жидкость (вода, масло).

Принцип работы винтового компрессора заключается в следующем.

После начала вращения роторной пары через впускное отверстие и регулятор всасывания начинает поступать воздух, который заполняет винтовые впадины по всей длине. Дальнейшее проворачивание винтов уменьшает объем рабочей камеры и увеличивает давление в ней. Когда впадины винта соединяются с выпускным отверстием компрессора, сжатая среда через радиатор охлаждения выходит через выпускное окно агрегата.

Принцип работы винтового компрессора

В масляной разновидности компрессора воздух на этапе попадания в роторный блок смешивается с очищенным маслом, которое поступает в него точно дозированными порциями. Перед выходом сжатая смесь проходит через картридж сепаратора. Масляные фракции отделяются от воздуха и снова поступают в роторный блок.

В безмасляных компрессорах (сухого сжатия) из-за сильного разогрева воздуха сжатие происходит в две ступени с промежуточным охлаждением. Компрессионный модуль таких устройств состоит из двух винтовых блоков на общей раме. Они оснащены каналами для подачи охлаждающей жидкости. Водно-гликолевый раствор принудительно нагнетается насосом, а затем охлаждается в теплообменнике. Чтобы обеспечить максимально возможную герметичность блока, роторы безмасляных компрессоров имеют повышенную частоту вращения (до 6 000 об/мин), что обеспечивается шестеренным мультипликатором.


Виды винтовых компрессоров

В настоящее время изготавливается множество различных типов винтовых компрессорных устройств. Они могут классифицироваться по различным критериям: по заполнению камеры, по сжимаемой среде, типу привода и т.д.

Двумя основными разновидностями винтовых компрессоров являются маслозаполненные модели и безмасляные устройства.

Маслозаполненные компрессоры чаще всего используются в производственных цехах. Процесс работы их роторов смягчается впрыскиванием масла. Оно же способствует отведению излишков тепла.

Безмасляные компрессоры применяются в тех сферах промышленности, которые требуют получения сжатого воздуха высокой степени чистоты: пищевой, фармацевтической, химической и прочих.

Безмасляный винтовой компрессор

Существуют безмасляные компрессоры сухого сжатия и водозаполненные устройства. Первые оснащаются двигателями синхронного типа, которые приводятся в движение обоими винтами. Они хуже, чем маслозаполненные, отводят тепло, поэтому имеют более низкую производительность.

Водозаполненные компрессоры используют вместо масла обычную воду, которая делает тепловую нагрузку на детали минимальной. Срок службы, надежность и безопасность таких устройств намного выше, чем у компрессоров сухого сжатия. При этом обходятся они дешевле, чем масляные – благодаря более низкому энергопотреблению и меньшим также затратам на обслуживание (замену масляных фильтров, емкостей для отработанной масляной жидкости и пр.).

По сжимаемой среде компрессоры бывают воздушными, газовыми и многоцелевыми, пот типу привода – ременными и прямыми, по виду используемой энергии – дизельными и электрическими.

В зависимости от степени сжатия воздуха/газа выделяют компрессоры низкого (до 1 Мн/м2), среднего (до 10 Мн/м2) и высокого (более 10 Мн/м2) давления.


Преимущества винтовых компрессоров

Основными преимуществами винтовых компрессоров являются компактные размеры, не слишком большой вес, надежность и долговечность.

Винтовые устройства:

  • Могут долгое время работать в автономном режиме
  • Оснащены системой автоматического отключения в случае аварии, перегрева или сбоя сети
  • Быстро монтируются в собственных рамах без специального фундамента
  • При работе создают минимум шума и вибраций благодаря изолирующим кожухам
  • Оснащены цифровыми блоками управления, которые позволяют легко менять давление, программировать циклы и регулировать энергопотребление
  • За счет использования винтовых блоков последних поколений и автоматического управления подачей воздуха существенно экономят электроэнергию (до 30 %)
  • Не требуют частого обслуживания (для сравнения, поршневые устройства подлежат осмотру через каждые 500 часов работы, винтовые – через 4000-8000 часов)

Отличная работоспособность винтового оборудования объясняется отсутствием клапанов, простой системой смазки и охлаждения. Практика показывает, что за время эксплуатации одного винтового компрессора предприятие может поменять около 5 устройств поршневого типа.

Обслуживание безмасляного винтового компрессора

В первую очередь, необходимо отметить, что роторные компрессоры любого типа, а безмасляные – в первую очередь, не предназначены для сильно запыленных помещений.

Абразивные частицы, попадающие внутрь винтового блока, повреждают поверхности роторов и нарушают геометрию их форм. В результате вращающиеся винты начинают соприкасаться, что вызывает повышенное трение, образование задиров и схватываний.

Многие производители в целях защиты от износа и коррозии наносят на роторы специальные защитные покрытия.

Первыми это начали делать зарубежные производители. Обработка роторов специальными полимерными составами позволяла не только снизить вероятность их контакта с последующим образованием задиров, но и сократить затраты на точную механическую обработку поверхностей.

За счет включения мельчайших частиц твердых смазочных материалов полимерные покрытия имеют высокие антифрикционные свойства, что позволяет им эффективно снижать трение и препятствовать образованию задиров.

Покрытия выравнивают поверхности роторов, чем упрощают их приработку и обеспечивают динамическое уплотнение. Защитный слой, который создают эти материалы на винтовой паре, предотвращает коррозию металла, которую может вызвать попадание воды или агрессивных охлаждающих растворов.

Со временем заводские покрытия изнашиваются, и чтобы решить вопрос их восстановления, необходимо пользоваться готовыми антифрикционными материалами. Ранее такие составы были исключительно импортными, однако сегодня их производство налажено и в нашей стране.

Российская компания ООО «Моделирование и инжиниринг» разработала серию антифрикционных твердосмазочных покрытий (АТСП) для винтовых компрессоров, которые могут применяться как при производстве, так и при ремонте роторов.

АТСП MODENGY наносятся на поверхности деталей слоем до 100 мкм, затем, после приработки, толщина уменьшается в 2-2,5 раза и становится оптимальной.

Полимерная матрица покрытия прочно удерживает в своих ячейках частицы твердых смазочных материалов, выполняющие антифрикционную и противозадирную функции.

Структура АТСП

Покрытия MODENGY, которые применяются при обслуживании безмасляных винтовых компрессоров, и некоторые их характеристики приведены в таблице ниже.

Марка покрытия Твердые смазочные компоненты Цвет  Диапазон рабочих температур Несущая способность (тест SRV) Защита от коррозии (тест в соляном тумане) Температура и время полимеризации
MODENGY 1066 Графит, дисульфид молибдена Серо-черный -70…+315 °С 1940 МПа >300 ч +220 ºС, 40 минут
MODENGY 1014 ПТФЭ, дисульфид молибдена Серый -75…+255 °С 2700 МПа >672 ч

+220 ºС, 40 минут

Перед нанесением АТСП с поверхностей роторов удаляются остатки старого покрытия, пыль и другие загрязнения. Для полной очистки и обезжиривания винтовой пары используется Специальный очиститель-активатор MODENGY. Его применение способствует высокой адгезии будущего покрытия и гарантирует долгий срок его службы.

Антифрикционные материалы наносятся на роторы в несколько слоев, затем детали подвергаются нагреву для отверждения АТСП.

Роторы с покрытием MODENGY в дальнейшем не требуют повторной обработки – правильно нанесенный защитный слой не стирается, так как не дает винтовым поверхностям вступать в контакт.

Роторы винтового компрессора до и после нанесения покрытия MODENGY


Признаки необходимости ремонта масляных винтовых компрессоров

Масляный винтовой компрессор нуждается в ремонте, если наблюдаются:

  • Сложности с его запуском
  • Отсутствие сжатого воздуха в выходном патрубке агрегата
  • Снижение производительности устройства
  • Чрезмерный расход масла
  • Непроизвольное срабатывание предохранительного клапана
  • Отключение аппарата термостатом или прерывателем сети
  • Поломка роторного блока
  • Повышенное давление в компрессоре

Ремонт винтового компрессора

Причиной трудности с запуском винтового компрессора может быть низкая температура окружающего воздуха. Проблема решается после его прогрева.

Если устройство не перезапускается, необходимо проверить состояние всасывающего клапана – скорее всего, он загрязнен и плохо закрывается. В таком случае требуется прочистка или замена детали.

Отсутствие сжатого воздуха в выходном отверстии аппарата – признак закрытия регулятора. Чтобы устранить эту неисправность, потребуется проверить работоспособность реле давления, который подает питание на электромагнитный клапан, связанный, в свою очередь, с регулятором.

Понижение производительности компрессорного оборудования чаще всего связано с засорением регулятора. Чтобы демонтировать его для очистки, потребуется снять всасывающий фильтр.

Большой расход масла в компрессоре может быть вызван поломкой фильтра маслоотделителя или нарушением герметичности уплотнений этого фильтра. В обоих случаях проблема решается заменой деталей.

Если фильтр маслоотделителя засорился, предохранительный клапан может начать открываться непроизвольно. В таком случае требуется проверить, существует ли перепад давления между резервуаром масляного сепаратора и трубопроводом, в котором находится сжатый воздух. Если проблема есть, она решается заменой фильтра.

Отключение компрессора термостатом может происходить по несколькими причинами:

  • Температура окружающей среды слишком высока: таком случае ее следует снизить с помощью хорошей вентиляции, после чего перезагрузить аппарат
  • Охладитель масла засорился: требуется прочистить его с применением растворяющей жидкости
  • Недостаточно масла: следует долить необходимое количество
  • Термостат неисправен: деталь следует заменить на новую

При постоянном срабатывании прерывателя сети и отключении двигателя следует проверить напряжение и, если показатели в норме, перезапустить аппарат.

Прерыватель цепи может также срабатывать при перегреве двигателя. Если при этом режим отвода тепла не нарушен, необходимо перезапустить оборудование.

Ремонт роторного блока при его поломке возможен только в случае выхода из строя подшипников. В случае заклинивания роторов ремонт следует доверить специалистам.

Проблема повышенного давления в компрессоре может быть вызвана отсутствием команды на закрытие регулятора. В первую очередь, необходимо проверить эту деталь, а также состояние электромагнитного клапана (он должен быть закрыт). При необходимости их следует заменить.

Описание и принцип работы винтового компрессора

Общее описание винтовых компрессоров

Винтовой компрессор представляет собой агрегат промышленного назначения, нагнетающий воздух посредством винтовой пары. Данный тип оборудования широко применяют в промышленности при необходимости непрерывно поставлять сжатый воздух пневматическим системам. Винтовое компрессорное оборудование является экономичным и современным оборудованием, которое характеризуется умеренным потреблением электрической энергии, простотой обслуживания и управления, а также долговечностью.

Винтовой компрессорный агрегат оснащается воздушной, жидкостной, либо масляной системой охлаждения. В результате прохождения процедуры охлаждения, воздух может содержать масляные капли, твердые частицы, а также водяные пары, что способствует износу оборудования. Поэтому, на производствах, где необходимо поддерживать высокие стандарты чистоты сжатого воздуха, используются воздушные и жидкостные системы охлаждения. Существуют также модели компрессоров, оснащенных ресивером и осушителем, которые наряду с очищением от примесей воздуха, обеспечивают его равномерную подачу и экономию электроэнергии. Такие модели являются хорошим решением для компактных производств.

Винтовые компрессорные установки активируются посредством электродвигателя. Перемещение определенного объема охлаждающего вещества (хладагента) в форме газа, позволяет точно отслеживать процесс охлаждения в компрессоре. Золотник, которым оснащен компрессор, обеспечивает снижение уровня притока газа и мощности.

Винтовой компрессор способен работать в режиме холостого хода, что позволяет снизить потребление электроэнергии в пять раз, а также максимально сократить износ деталей по причине отсутствия лишних включений электрического двигателя.

Данный вид компрессора, в отличие от поршневых компрессорных установок, не выбрасывает лишний воздух. Кроме того, винтовой компрессор производит сжатый воздух умеренной температуры, так как на конце сжатия температура низкая.

Впервые компрессоры винтового типа были запатентованы в 1930-х г. Вследствие того, что они достойно конкурировали с другими видами объемных компрессорных систем, их популярность и сфера применения росли. Сейчас винтовые компрессоры активно функционируют в самых разных областях производства. По техническим характеристикам они сравнимы с поршневыми агрегатами промышленного класса и актуальны для  предприятий, на которых необходимо поддерживать непрерывный процесс производства.

Принцип работы винтовых компрессоров

Винтовые компрессорные установки оснащены двумя винтами, один из которых имеет вогнутую поверхность, второй – выпуклую.

Винты и корпус компрессора вместе образуют объем рабочей камеры. В процессе вращения винтов размер камеры растет, а по мере удаления выступов на роторах от впадин осуществляется всасывание. При максимальном объеме камер процесс всасывания прекращается. Камеры оказываются в изолированном положении относительно патрубков. Далее, во впадину ведомого ротора входит выступ ведущего ротора (внедрение происходит с самого начала ротора и до нагнетательного отверстия). В определенный момент две поверхности образуют общий объем, который постепенно сокращается в результате движения элементов в направлении отверстия нагнетания. Происходит вытеснение газа.

В типичной конструкции винтовой компрессорной установки масло в рабочую зону не поступает. Винты находятся внутри корпуса, который оснащен разъемами (одним или несколькими), расточками, уплотнениями и камерами (нагнетания и всасывания). В данных системах используются подшипники скольжения (упорные и опорные) вследствие высокой частоты вращательных движений, которые совершает винтовая пара.

Попадание масла из подшипниковых узлов в сжатый газ и камеры подшипников, предотвращается благодаря использованию запирающего газа. Он подается в узлы уплотнений, которые представлены группой колец между винтами и камерами подшипников.

Винтовые компрессорные агрегаты используются в самых разных областях производства, т.к. их компактность и экономичность соответствует самым высоким стандартам.

Основные детали и конструктивные особенности винтовых компрессоров

Винтовые компрессорные установки оснащены винтовой парой (двумя роторами с лопостями). Один из винтов имеет вогнутую поверхность, поверхность второго выпуклая. По мере того, как винты совершают разнонаправленные вращательные движения, происходит сжатие газа. Сжатие осуществляется до предельного момента, после чего некоторый объем вытесняется через нагнетательное отверстие торцевой стенки.

Классическая модификация такого компрессора это конструкция, оснащенная двумя винтами. Существуют также одновинтовые модели, где работает один несущий винт, а приводом служит электрический двигатель.

Основными элементами конструкции данного вида агрегатов выступают корпус компрессора, электродвигатель, вентилятор, блок (в котором располагаются винты), фильтры (масляный и всасывающий), устройства для охлаждения и отделения масла, концевой охладитель воздуха, система управления и контроля, трубопроводы (воздушный и масляный). Вспомогательные элементы представлены реле давления, термостатом, предохранительным клапаном и др.

Винтовой компрессор по аналогии с поршневым агрегатом может оснащаться ресивером (или воздухосборником), что способствует стабилизации режима функционирования, повышению качества и охлаждению сжатого воздуха. Регулируемый привод в целом повышает общую эффективность работы компрессорных систем. Электронные системы управления на основе новейших микропроцессоров позволяют контролировать ключевые параметры эксплуатации.

Типы винтовых компрессорных установок

Классическая модель данного вида компрессоров оснащена двумя винтами (с выпуклой и вогнутой поверхностью). Тем не менее, существует два типа винтовых компрессорных агрегатов: одновинтовой и двухвинтовой. В классическом варианте, винтовая пара совершает разнонаправленные вращательные движения, в результате чего осуществляется сжатие газа. В одновинтовом агрегате есть один несущий винт, который приводится в действие электрическим двигателем.

Существует деление компрессорных установок на типы в соответствии с видом привода: агрегаты, оснащенные ременным и прямым приводом.

В компрессорах с ременным приводом имеются два шкива (один непосредственно на двигателе, второй расположен на винтовой паре), которые задают роторам вращение. Чем выше скорость вращательных движений, тем выше уровень производительности, но ниже уровень рабочего давления. В агрегатах с прямой передачей используется редуктор, либо прямой способ передачи посредством муфты.

В зависимости от параметра заполняемости маслом резервуара, где вращаются винты компрессора, и в которой происходит фактическое сжатие агрегаты подразделяются на:

Маслозаполненные винтовые компрессоры

Широко применимый тип компрессоров. Ведущим обычно является один винт. Ведомый ротор вращается вслед за ротором, приводящим в движение. Масло участвует в отводе тепла, которое образуется в процессе сжатия воздуха. Масло впоследствии удаляется сепаратором, давая на выходе чистый сжатый воздух. Хотя 99,9% масла остается внутри компрессора, всегда остается немного масла, которое проникает через сепаратор и покидает компрессор в сжатом воздухе, так называемый вынос масла. Поэтому эти компрессоры не могут быть использованы там, где требуется сжатый воздух без примеси масла.

Но для большинства заводов, цехов и машиностроения незначительное содержание масла не критично.  По сути это предотвращает образование ржавчины (внутри системы сжимающей воздух) и помогает машине работать плавно.

Преимущества:

  • тихая работа
  • высокий поток воздуха, равномерный поток
  • подходит для непрерывной работы

Недостатки:

  • дорогой по сравнению с поршневым типом компрессора
  • не подходит для длительных простоев
  • унос масла

Безмасляные винтовые компрессоры

Основной принцип работы такой же как у масляных компрессоров, только в этом случае здесь не используется масло, только воздух! Т.к здесь не впрыскивается масло во время сжатия, сжатие производится обычно в две стадии. Потому что если мы будем сжимать воздух в одну стадию например с 1 до 7бар, он станет очень горячим.

Ступень 1 сжимает воздух до нескольких бар (например 2,5бар). Воздух здесь очень горячий, поэтому он подается сначала через промежуточный охладитель прежде чем поступить во вторую ступень. Ступень 2 сжимает воздух дальше с 2,5бар до требуемой величины, например до 7 бар.

Обычно 2 ступени встроены на 1 редукторе с 1м эл. двигателем который приводит их в движение одновременно.

Если вам нужен 100% безмасляный воздух и в большом количестве, безмасляный винтовой компрессор то что вам нужно. Конечно же, здесь речь и о большой цене, но если Вам действительно нужен 100% безмасляный воздух, то у Вас нет выбора.

Преимущества:

  • 100% воздух без масла

Недостатки:

  • Более дорогой, чем масляный тип.
  • Обслуживание/ремонт более сложный процесс и более дорогой, чем у масляного типа компрессора.
  • Более шумный, чем масляный тип.

Безмасляные компрессоры имеют много областей применения. Это пищевая, химическая промышленность, фармацевтика, радиоэлектроника и производство полупроводников,. Винтовые безмасляные компрессоры можно подразделить на безмасляные компрессоры с впрыском воды в камеру сжатия, винтовые компрессоры сухого сжатия.

Водозаполненные винтовые компрессоры

Винтовые компрессоры с впрыском воды единственные компрессоры с мощностью ниже 55кВт достигающие 13бар. Вне зависимости от уровня конечного сжатия при дозированном впрыске температура не повышается более чем на 12°. Тепловая нагрузка на элементы устройства незначительна. следовательно, возрастает срок службы, надежность и безопасность агрегата в целом. При помощи этой технологии, отличная охлаждающая способность воды обеспечивает эффективный отвод тепла на источник.

Винтовые компрессоры с впрыскиваемой жидкостью обычно не требуют, чтобы два вращающихся в противоположные стороны ротора были в надлежащем зацеплении. Вода является слоем, который разделяет 2 винтовых профиля даже если один ротор «приводит в движение» другой. Этот тип компрессоров может быть очень выгодным для потребителя, т.к дает следующие преимущества:

  • впрыскиваемая жидкость обеспечивает внутреннее охлаждение. Некоторые газы в таком случае не полимеризуются, не работают во взрывоопасных температурах.
  • водозаполненные винтовые компрессоры достигают значительно большей степени сжатия.

Типичное применение водозаполненных винтовых компрессоров: рециркуляционные газы, окись этилена, угольный газ и очень специфичные газы, как например хлорсодержащий газ.

Конструкция винтового компрессора | НПП Ковинт

В данной статье мы расскажем об основных элементах конструкции винтового компрессора и о его устройстве.

В настоящее время производством винтовых компрессоров занимается достаточно большое количество компаний по всему миру. Однако, как автомобиль состоит из кузова, двигателя и трансмиссии, так и винтовой компрессор разных производителей состоит из компонентов, имеющих различия в конструкции, но выполняющих одну и ту же задачу при работе агрегата.

Любой винтовой компрессор может быть схематично представлен следующим образом:

Основные элементы винтового компрессора

1 – входной фильтр

2 – всасывающий клапан

3 – винтовой блок

4 – электродвигатель

5 – масляный резервуар

6 – сепаратор

7 – клапан минимального давления

8 – термостат

9 – масляный фильтр

10 – воздушный радиатор

11 – масляный радиатор

12 – вентилятор

13 – обратный клапан

14 – сетчатый фильтр

15 – выход сжатого воздуха

Входной фильтр

На входе винтового компрессора обязательно устанавливается фильтр, задачей которого является предотвращение проникновения в компрессор вместе с засасываемым воздухом пыли и твердых механических частиц.

Он представляет собой, как правило, цилиндрический патрон из гофрированной бумаги и может устанавливаться как открыто, так и в корпусе.

Воздушный фильтр винтового компрессора

Размер ячейки входного фильтра в большинстве случаев составляет 10 мкм, а площадь его поверхности соответствует производительности компрессора.

Всасывающий клапан

Наличие на входе винтового компрессора всасывающего клапана (иногда его еще называют регулятором всасывания) является отличительной особенностью компрессоров данного типа. Закрытие и открытие всасывающего клапана позволяет легко переводить компрессор в режим холостого хода и работы под нагрузкой соответственно.

Запорный элемент всасывающего клапана имеет вид поворотного (заслонки) или поступательно двигающегося диска с уплотнением. Положение запорного элемента изменяется под действием сжатого воздуха, подаваемого во внутренний или внешний пневмоцилиндр из масляного резервуара через управляющий электромагнитный клапан.

Всасывающий клапан винтового компрессора

 

Всасывающий клапан винтового компрессора

Запуск винтового компрессора всегда происходит при закрытом всасывающем клапане. Но для того, чтобы в масляном резервуаре произошло накопление сжатого воздуха с давлением, достаточным для последующего воздействия на поршень управляющего пневмоцилиндра, всасывающий клапан имеет канал небольшого сечения с обратным клапаном.

Обратный клапан

Винтовой блок

Основным рабочим элементом компрессора является винтовой блок, в котором собственно и происходит процесс сжатия всасываемого через входной фильтр воздуха.

Винтовой блок

В корпусе винтового блока расположены два вращающихся ротора – ведущий и ведомый. При их вращении происходит движение воздуха от всасывающей стороны к нагнетающей с одновременным уменьшением объема межроторных полостей, т.е. сжатие.

Принцип сжатия воздуха в винтовом блоке

Зазор между роторами уплотняется находящимся в корпусе винтового блока маслом. Масло также служит для смазывания подшипников и отвода тепла, образующегося при сжатии воздуха.

Также существуют безмасляные винтовые компрессоры классического исполнения (без уплотняющей жидкости) и с водяным впрыском в камеру сжатия вместо масла.

Электродвигатель

Для передачи вращения ведущему ротору винтового блока, как правило, используется обычный трехфазный асинхронный электродвигатель.

Электродвигатель

Исключение составляют мобильные винтовые компрессоры, в которых в качестве источника вращения используется дизельный двигатель.

Дизельный компрессор

Вращение от вала двигателя ведущему ротору винтового блока может передаваться как при помощи клиноременной передачи:

Ременной привод

или через муфту с эластичным элементом (так называемый «прямой привод»).

Муфта эластичная

В некоторых случаях применяется шестеренчатый привод (в компрессорах большой производительности).

Нередко бывает необходимо регулировать производительность винтового компрессора, изменяя частоту вращения вала двигателя. В этом случае электропитание двигателя осуществляют при помощи специального устройства – частотного преобразователя.

Частотный преобразователь

Применение частотного преобразователя позволяет в широких пределах регулировать производительность винтового компрессора в зависимости от реальной потребности в сжатом воздухе, не прибегая к переводу агрегата в режим холостого хода закрытием всасывающего клапана.

Масляный резервуар

Масляный резервуар играет очень важную роль в работе винтового компрессора:

  • выполняет роль первичного аккумулятора сжатого воздуха;
  • увеличивает объем масляной системы компрессора и, соответственно, количества масла, необходимого для эффективного отвода тепла, образовывающегося при сжатии воздуха;
  • работает, как отделитель основной массы масла от сжатого воздуха, т.к. масло-воздушный поток попадает в резервуар из винтового блока по касательной к его цилиндрической поверхности – как бы «закручивается».

Масляный резервуар

 

Масляный резервуар

Сепаратор

Для того, чтобы выходящий из винтового компрессора сжатый воздух содержал минимальное количество масла, в его конструкции обязательно применяется сепаратор.

Сепаратор может быть внешним (в компрессорах небольшой мощности) и встроенным в масляный резервуар.

Внешний вид встроенного сепаратора:

Сепаратор встроенный

Сепаратор внешний:

Сепаратор внешний

Сепаратор в разрезе с указанием потока масла и воздуха:

Сепаратор в разрезе

Благодаря наличию в конструкции винтового компрессора сепаратора содержание масла в сжатом воздухе на выходе не превышает 3 мг/м3.

Клапан минимального давления

Для нормальной циркуляции масла при работе винтового компрессора необходимо, чтобы давление в масляном резервуаре не опускалось ниже определенного минимально необходимого уровня.

Когда в магистрали, на которую работает винтовой компрессор, уже присутствует давление, это условие выполняется. А вот в случае, когда компрессор используется для заполнения пустого воздухосборника, для создания в масляном резервуаре повышенного давления используется клапан минимального давления.

Клапан минимального давления

Клапан минимального давления в разрезе:

Клапан минимального давления в разрезе

Этот клапан открывается при давлении на его входе, превышающем определенное значение, которое задается регулировкой сжатия закрывающей клапан пружины. Типичным для винтовых компрессоров давлением открытия клапана является значение 4÷4,5 бар.

Термостат

В винтовом компрессоре, как и в двигателе автомобиля, существует два круга системы охлаждения – малый и большой.

Сразу после запуска компрессора масло в нем циркулирует по малому кругу, что обеспечивает довольно быстрый рост температуры. Это необходимо, чтобы при сжатии воздуха не происходило выпадение конденсата и смешивание его с маслом, значительно ухудшающее его эксплуатационные свойства.

Малый круг охлаждения

После достижения определенного значения температуры масла термостат открывается, направляя поток циркуляции по большому кругу – через охлаждаемый вентилятором радиатор.

Большой круг охлаждения

Как правило, открытие термостата начинается при температуре масла +55°С и полностью завершается при температуре +70°С.

Масляный фильтр

В процессе работы винтового компрессора в масле могут присутствовать механические примеси – продукты износа движущихся частей и частицы пыли, размер которых меньше размера ячейки входного фильтра.

Для очистки масла от этих примесей в циркуляционный контур компрессора включается масляный фильтр.

Масляный фильтр в разрезе

Воздушный радиатор / Масляный радиатор / Вентилятор

Для охлаждения сжимаемого винтовым компрессором воздуха его пропускают через радиатор, который обдувается вентилятором. Температура сжатого воздуха на выходе компрессора, как правило, превышает температуру окружающей среды не более, чем на 20÷30 °С.

Для охлаждения циркулирующего в компрессоре масла служит масляный радиатор. Обычно воздушный и масляный радиаторы объединены в единый блок и обдуваются одним вентилятором (двумя в компрессорах большой мощности).

Обычно вентилятор приводится в действие отдельным электродвигателем.

Вентиляторы охлаждения

В небольших компрессорах зачастую для обдува радиаторов используется вентилятор, входящий в состав приводного двигателя.

Вентилятор охлаждения на двигателе

Обратный клапан / Сетчатый фильтр

Масло, отделяемое от сжатого воздуха в сепараторе, требуется вернуть в циркуляционный контур компрессора. Для этого используется специальная масловозвратная линия, имеющая в своем составе обратный клапан и сетчатый фильтр.

Масловозвратная линия

Для того, чтобы процесс возврата масла можно было наблюдать в реальном времени (это необходимо в диагностических целях), некоторые детали масловозвратной линии выполняют прозрачными.

Масловозвратная линия

Выход сжатого воздуха

На выходной патрубок винтового компрессора необходимо установить запорный кран, позволяющий отключить компрессор от магистрали сжатого воздуха на время проведения технического обслуживания или ремонта.

Также для соединения выхода компрессора с магистралью рекомендуется использовать гибкое соединение (металлорукав) для устранения влияния температурных и вибрационных деформаций трубопровода на соединение.

Шаровый кран и металлорукав

На этом все.

Мы рассмотрели основные компоненты конструкции винтового компрессора и их назначение. В следующих статьях мы рассмотрим устройство данных узлов более подробно.

Все возникшие вопросы вы можете задать в форме ниже. Мы ответим в течение 1-2 рабочих дней.

 

С уважением,

Константин Широких & Сергей Борисюк

Вернуться в раздел Полезная информация

Еще по теме:

Винтовые компрессоры. Общая информация

Принцип работы винтового компрессора

Конструкция/устройство винтового компрессора

Конструкция винтового газового компрессора. Видео

Конструкция винтового блока компрессора

Конструкция всасывающего клапана (регулятора всасывания) винтового компрессора

Конструкция термостата. Назначение термостата в винтовом компрессоре

Конструкция клапана минимального давления (КМД). Назначение КМД в винтовом компрессоре

Конструкция масляного резервуара. Назначение и принцип действия

Конструкция сепаратора тонкой очистки. Назначение и функции в винтовом компрессоре

Схема управления работой винтового компрессора. Общая информация

Силовая часть схемы управления винтового компрессора

Винтовой компрессор: устройство и принцип работы

В данной статье мы расскажем об основных элементах конструкции винтового компрессора и о его устройстве.

В настоящее время производством винтовых компрессоров занимается достаточно большое количество компаний по всему миру. Однако, как автомобиль состоит из кузова, двигателя и трансмиссии, так и винтовой компрессор разных производителей состоит из компонентов, имеющих различия в конструкции, но выполняющих одну и ту же задачу при работе агрегата.

Любой винтовой компрессор может быть схематично представлен следующим образом:

Основные элементы винтового компрессора

1 – входной фильтр

2 – всасывающий клапан

3 – винтовой блок

4 – электродвигатель

5 – масляный резервуар

6 – сепаратор

7 – клапан минимального давления

8 – термостат

9 – масляный фильтр

10 – воздушный радиатор

11 – масляный радиатор

12 – вентилятор

13 – обратный клапан

14 – сетчатый фильтр

15 – выход сжатого воздуха

Входной фильтр

На входе винтового компрессора обязательно устанавливается фильтр, задачей которого является предотвращение проникновения в компрессор вместе с засасываемым воздухом пыли и твердых механических частиц.

Он представляет собой, как правило, цилиндрический патрон из гофрированной бумаги и может устанавливаться как открыто, так и в корпусе.

Воздушный фильтр винтового компрессора

Размер ячейки входного фильтра в большинстве случаев составляет 10 мкм, а площадь его поверхности соответствует производительности компрессора.

Всасывающий клапан

Наличие на входе винтового компрессора всасывающего клапана (иногда его еще называют регулятором всасывания) является отличительной особенностью компрессоров данного типа. Закрытие и открытие всасывающего клапана позволяет легко переводить компрессор в режим холостого хода и работы под нагрузкой соответственно.

Запорный элемент всасывающего клапана имеет вид поворотного (заслонки) или поступательно двигающегося диска с уплотнением. Положение запорного элемента изменяется под действием сжатого воздуха, подаваемого во внутренний или внешний пневмоцилиндр из масляного резервуара через управляющий электромагнитный клапан.

Всасывающий клапан винтового компрессора

 

Всасывающий клапан винтового компрессора

Запуск винтового компрессора всегда происходит при закрытом всасывающем клапане. Но для того, чтобы в масляном резервуаре произошло накопление сжатого воздуха с давлением, достаточным для последующего воздействия на поршень управляющего пневмоцилиндра, всасывающий клапан имеет канал небольшого сечения с обратным клапаном.

Обратный клапан

Винтовой блок

Основным рабочим элементом компрессора является винтовой блок, в котором собственно и происходит процесс сжатия всасываемого через входной фильтр воздуха.

Винтовой блок

В корпусе винтового блока расположены два вращающихся ротора – ведущий и ведомый. При их вращении происходит движение воздуха от всасывающей стороны к нагнетающей с одновременным уменьшением объема межроторных полостей, т.е. сжатие.

Принцип сжатия воздуха в винтовом блоке

Зазор между роторами уплотняется находящимся в корпусе винтового блока маслом. Масло также служит для смазывания подшипников и отвода тепла, образующегося при сжатии воздуха.

Также существуют безмасляные винтовые компрессоры классического исполнения (без уплотняющей жидкости) и с водяным впрыском в камеру сжатия вместо масла.

Электродвигатель

Для передачи вращения ведущему ротору винтового блока, как правило, используется обычный трехфазный асинхронный электродвигатель.

Электродвигатель

Исключение составляют мобильные винтовые компрессоры, в которых в качестве источника вращения используется дизельный двигатель.

Дизельный компрессор

Вращение от вала двигателя ведущему ротору винтового блока может передаваться как при помощи клиноременной передачи:

Ременной привод

или через муфту с эластичным элементом (так называемый «прямой привод»).

Муфта эластичная

В некоторых случаях применяется шестеренчатый привод (в компрессорах большой производительности).

Нередко бывает необходимо регулировать производительность винтового компрессора, изменяя частоту вращения вала двигателя. В этом случае электропитание двигателя осуществляют при помощи специального устройства – частотного преобразователя.

Частотный преобразователь

Применение частотного преобразователя позволяет в широких пределах регулировать производительность винтового компрессора в зависимости от реальной потребности в сжатом воздухе, не прибегая к переводу агрегата в режим холостого хода закрытием всасывающего клапана.

Масляный резервуар

Масляный резервуар играет очень важную роль в работе винтового компрессора:

  • выполняет роль первичного аккумулятора сжатого воздуха;
  • увеличивает объем масляной системы компрессора и, соответственно, количества масла, необходимого для эффективного отвода тепла, образовывающегося при сжатии воздуха;
  • работает, как отделитель основной массы масла от сжатого воздуха, т.к. масло-воздушный поток попадает в резервуар из винтового блока по касательной к его цилиндрической поверхности – как бы «закручивается».

Масляный резервуар

 

Масляный резервуар

Сепаратор

Для того, чтобы выходящий из винтового компрессора сжатый воздух содержал минимальное количество масла, в его конструкции обязательно применяется сепаратор.

Сепаратор может быть внешним (в компрессорах небольшой мощности) и встроенным в масляный резервуар.

Внешний вид встроенного сепаратора:

Сепаратор встроенный

Сепаратор внешний:

Сепаратор внешний

Сепаратор в разрезе с указанием потока масла и воздуха:

Сепаратор в разрезе

Благодаря наличию в конструкции винтового компрессора сепаратора содержание масла в сжатом воздухе на выходе не превышает 3 мг/м3.

Клапан минимального давления

Для нормальной циркуляции масла при работе винтового компрессора необходимо, чтобы давление в масляном резервуаре не опускалось ниже определенного минимально необходимого уровня.

Когда в магистрали, на которую работает винтовой компрессор, уже присутствует давление, это условие выполняется. А вот в случае, когда компрессор используется для заполнения пустого воздухосборника, для создания в масляном резервуаре повышенного давления используется клапан минимального давления.

Клапан минимального давления

Клапан минимального давления в разрезе:

Клапан минимального давления в разрезе

Этот клапан открывается при давлении на его входе, превышающем определенное значение, которое задается регулировкой сжатия закрывающей клапан пружины. Типичным для винтовых компрессоров давлением открытия клапана является значение 4÷4,5 бар.

Термостат

В винтовом компрессоре, как и в двигателе автомобиля, существует два круга системы охлаждения – малый и большой.

Сразу после запуска компрессора масло в нем циркулирует по малому кругу, что обеспечивает довольно быстрый рост температуры. Это необходимо, чтобы при сжатии воздуха не происходило выпадение конденсата и смешивание его с маслом, значительно ухудшающее его эксплуатационные свойства.

Малый круг охлаждения

После достижения определенного значения температуры масла термостат открывается, направляя поток циркуляции по большому кругу – через охлаждаемый вентилятором радиатор.

Большой круг охлаждения

Как правило, открытие термостата начинается при температуре масла +55°С и полностью завершается при температуре +70°С.

Масляный фильтр

В процессе работы винтового компрессора в масле могут присутствовать механические примеси – продукты износа движущихся частей и частицы пыли, размер которых меньше размера ячейки входного фильтра.

Для очистки масла от этих примесей в циркуляционный контур компрессора включается масляный фильтр.

Масляный фильтр в разрезе

Воздушный радиатор / Масляный радиатор / Вентилятор

Для охлаждения сжимаемого винтовым компрессором воздуха его пропускают через радиатор, который обдувается вентилятором. Температура сжатого воздуха на выходе компрессора, как правило, превышает температуру окружающей среды не более, чем на 20÷30 °С.

Для охлаждения циркулирующего в компрессоре масла служит масляный радиатор. Обычно воздушный и масляный радиаторы объединены в единый блок и обдуваются одним вентилятором (двумя в компрессорах большой мощности).

Обычно вентилятор приводится в действие отдельным электродвигателем.

Вентиляторы охлаждения

В небольших компрессорах зачастую для обдува радиаторов используется вентилятор, входящий в состав приводного двигателя.

Вентилятор охлаждения на двигателе

Обратный клапан / Сетчатый фильтр

Масло, отделяемое от сжатого воздуха в сепараторе, требуется вернуть в циркуляционный контур компрессора. Для этого используется специальная масловозвратная линия, имеющая в своем составе обратный клапан и сетчатый фильтр.

Масловозвратная линия

Для того, чтобы процесс возврата масла можно было наблюдать в реальном времени (это необходимо в диагностических целях), некоторые детали масловозвратной линии выполняют прозрачными.

Масловозвратная линия

Выход сжатого воздуха

На выходной патрубок винтового компрессора необходимо установить запорный кран, позволяющий отключить компрессор от магистрали сжатого воздуха на время проведения технического обслуживания или ремонта.

Также для соединения выхода компрессора с магистралью рекомендуется использовать гибкое соединение (металлорукав) для устранения влияния температурных и вибрационных деформаций трубопровода на соединение.

Шаровый кран и металлорукав

На этом все.

Мы рассмотрели основные компоненты конструкции винтового компрессора и их назначение. В следующих статьях мы рассмотрим устройство данных узлов более подробно.

Все возникшие вопросы вы можете задать в форме ниже. Мы ответим в течение 1-2 рабочих дней.

 

С уважением,

Константин Широких & Сергей Борисюк

Вернуться в раздел Полезная информация

Еще по теме:

Винтовые компрессоры. Общая информация

Принцип работы винтового компрессора

Конструкция/устройство винтового компрессора

Конструкция винтового газового компрессора. Видео

Конструкция винтового блока компрессора

Конструкция всасывающего клапана (регулятора всасывания) винтового компрессора

Конструкция термостата. Назначение термостата в винтовом компрессоре

Конструкция клапана минимального давления (КМД). Назначение КМД в винтовом компрессоре

Конструкция масляного резервуара. Назначение и принцип действия

Конструкция сепаратора тонкой очистки. Назначение и функции в винтовом компрессоре

Схема управления работой винтового компрессора. Общая информация

Силовая часть схемы управления винтового компрессора

Принцип работы (действия) винтового компрессора

 

В данной статье затронем вопрос о принципе работы (действия) винтового компрессора.

 

Повторюсь, что винтовой компрессор относится к компрессорам объемного действия, где сжатие воздуха/газа происходит за счет изменения полости сжатия.

 

Типичная конструкция винтового компрессора показана на рисунке ниже:

 

Конструкция винтового компрессора

 

Цифрами на рисунке обозначены:

 

1 – входной фильтр

2 – всасывающий клапан

3 – винтовой блок

4 – приводной ремень

5 – шкивы ременной передачи

6 – электродвигатель

7 – масляный фильтр

8 – масляный резервуар

9 – сепаратор

10 – клапан минимального давления

11 – термостат

12 – масляный радиатор

13 – воздушный радиатор

14 – вентилятор

 

В винтовых компрессорах существует два основных потока (или контура): воздушный/газовый поток и масляный поток.

 

Рассмотрим их подробнее на примере воздушного компрессора.

 

Воздушный поток

 

Всасываемый воздух через входной фильтр 1 и всасывающий клапан 2 попадает в винтовой блок 3. Именно в винтовом блоке, который является «сердцем» компрессора, происходит сжатие воздуха.

Основными компонентами винтового блока являются ведущий (ему передается вращение от электродвигателя 6, приводной ремень 4 и шкивы 5) и ведомый роторы:

 

Винтовой блок

 

Принцип сжатия воздуха в винтовом блоке наглядно показан на рисунке ниже:

 

Принцип сжатия воздуха в винтовом блоке

 

Следует отметить, что вращение к ведущему ротору может передаваться не только через ременную передачу, но и «напрямую» через эластичную муфту:

 

Муфта эластичная

 

Наличие всасывающего клапана 2 позволяет компрессору работать в двух основных режимах:

 

  • холостой ход (клапан закрыт)
  • нагрузка (клапан открыт)

 

Это отличает винтовой компрессор от, например, поршневого. Наличие режима холостого хода позволяет сократить число пусков двигателя компрессора и, тем самым, увеличить его надежность и срок службы. Ведь частые пуски отрицательно влияют как на сами двигатели, так и на систему энергоснабжения предприятия в целом.

 

Смесь сжатого роторами воздуха и масла попадает в масляный резервуар 8.

 

Наличие масла в винтовом блоке необходимо по ряду причин:

 

  • отвод тепла, образующегося при сжатии воздуха
  • смазка подшипников винтового блока
  • уплотнение камер сжатия за счет образования пленки на поверхности роторов

 

В масляном резервуаре 8 происходит первичное отделение масла от сжатого воздуха (за счет вращательного движения потока).

 

Остатки масла отделяются от сжатого воздуха в сепараторе 9 и возвращаются в винтовой блок 3 по специальному каналу.

 

Очищенный от масла сжатый воздух через клапан минимального давления 10 и охлаждаемый вентилятором 14 воздушный радиатор 13 подается потребителю.

 

Клапан минимального давления 10 необходим для поддержания в масляном резервуаре 8 давления, требуемого для нормальной циркуляции масла независимо от давления в сети потребителя.

 

Как правило, клапан минимального давления открывается при давлении на его входе на уровне 4-4,5 бар.

 

Вентилятор 14 может располагаться как на валу электродвигателя 6, так и приводиться в действие собственным электродвигателем.

 

Производительность вентилятора и площадь охлаждаемой поверхности радиатора 13 рассчитываются таким образом, чтобы обеспечить температуру сжатого воздуха на выходе компрессора, не превышающую температуру окружающей среды более, чем на 10 °С.

 

Следует отметить, что система охлаждения винтового компрессора может быть и водяной. В этом случае радиаторы 12 и 13 компрессора представляют собой трубчатые теплообменники, в которых охлаждение рабочей среды (масло, сжатый воздух) обеспечивается циркуляцией воды (или другого охлаждающего агента) в межтрубном пространстве теплообменника.

 

Теплообменник винтового компрессора с водяным охлаждением

 

Применение водяного охлаждения позволяет:

 

  • снизить уровень шума, производимого компрессором при работе;
  • отказаться от монтажа вентиляционных коробов для отвода от компрессора горячего охлаждающего воздуха.

 

Масляный контур

 

Масло из нижней части масляного резервуара 8 возвращается в винтовой блок 3 под действием давления, поддерживаемого внутри резервуара, благодаря наличию клапана минимального давления 10.

 

В зависимости от температуры масло может двигаться либо по «малому» контуру (масляный резервуар 8 – термостат 11 – масляный фильтр 7 – винтовой блок 3), либо по «большому» (масляный резервуар 8 – термостат 11 – масляный радиатор 12 – масляный фильтр 7 – винтовой блок 3).

 

Температура масла очень важна для длительной безотказной работы компрессора.

 

Слишком низкая температура может вызвать выделение конденсата из воздуха еще на этапе сжатия и «эмульгирование» масла, которое значительно ухудшит его эксплуатационные качества. Слишком высокая температура значительно снижает срок службы масла, а также вызывает чрезмерные температурные деформации роторов компрессора, которые могут привести, в худшем случае, даже к заклиниванию компрессора.

 

Как видите, ничего сложного в устройстве винтового компрессора нет. Современные винтовые компрессоры являются, бесспорно, надежными и эффективными для производства сжатого воздуха как на больших промышленных предприятиях, так и на предприятиях малого бизнеса.  

 

На этом все.

 

Если у вас остались вопросы, то вы можете задать их в форме ниже.

 

Мы ответим в течение 1-2 рабочих дней.

 

С уважением,

Константин Широких & Сергей Борисюк

Вернуться в раздел Все статьи

Еще по теме:

 

Винтовой компрессор. Общая информация

Принцип работы винтового компрессора

Конструкция/устройство винтового компрессора

Конструкция винтового газового компрессора. Видео

Конструкция винтового блока компрессора

Конструкция всасывающего клапана (регулятора всасывания) винтового компрессора

Конструкция термостата. Назначение термостата в винтовом компрессоре

Конструкция клапана минимального давления (КМД). Назначение КМД в винтовом компрессоре

Конструкция масляного резервуара. Назначение и принцип действия

Конструкция сепаратора тонкой очистки. Назначение и функции в винтовом компрессоре

Схема управления работой винтового компрессора. Общая информация

Силовая часть схемы управления винтового компрессора

 

Принцип работы винтового компрессора | НПП Ковинт

В данной статье затронем вопрос о принципе работы винтового компрессора.

Повторюсь, что винтовой компрессор относится к компрессорам объемного действия, где сжатие воздуха/газа происходит за счет изменения полости сжатия.

Типичная конструкция винтового компрессора показана на рисунке ниже:

Конструкция винтового компрессора

Цифрами на рисунке обозначены:

1 – входной фильтр

2 – всасывающий клапан

3 – винтовой блок

4 – приводной ремень

5 – шкивы ременной передачи

6 – электродвигатель

7 – масляный фильтр

8 – масляный резервуар

9 – сепаратор

10 – клапан минимального давления

11 – термостат

12 – масляный радиатор

13 – воздушный радиатор

14 – вентилятор

В винтовых компрессорах существует два основных потока (или контура): воздушный/газовый поток и масляный поток.

Рассмотрим их подробнее на примере воздушного компрессора.

Воздушный поток

Всасываемый воздух через входной фильтр 1 и всасывающий клапан 2 попадает в винтовой блок 3. Именно в винтовом блоке, который является «сердцем» компрессора, происходит сжатие воздуха.

Основными компонентами винтового блока являются ведущий (ему передается вращение от электродвигателя 6, приводной ремень 4 и шкивы 5) и ведомый роторы:

Винтовой блок

Принцип сжатия воздуха в винтовом блоке наглядно показан на рисунке ниже:

Принцип сжатия воздуха в винтовом блоке

Следует отметить, что вращение к ведущему ротору может передаваться не только через ременную передачу, но и «напрямую» через эластичную муфту:

Муфта эластичная

Наличие всасывающего клапана 2 позволяет компрессору работать в двух основных режимах:

  • холостой ход (клапан закрыт)
  • нагрузка (клапан открыт)

Это отличает винтовой компрессор от, например, поршневого. Наличие режима холостого хода позволяет сократить число пусков двигателя компрессора и, тем самым, увеличить его надежность и срок службы. Ведь частые пуски отрицательно влияют как на сами двигатели, так и на систему энергоснабжения предприятия в целом.

Смесь сжатого роторами воздуха и масла попадает в масляный резервуар 8.

Наличие масла в винтовом блоке необходимо по ряду причин:

  • отвод тепла, образующегося при сжатии воздуха
  • смазка подшипников винтового блока
  • уплотнение камер сжатия за счет образования пленки на поверхности роторов

В масляном резервуаре 8 происходит первичное отделение масла от сжатого воздуха (за счет вращательного движения потока).

Остатки масла отделяются от сжатого воздуха в сепараторе 9 и возвращаются в винтовой блок 3 по специальному каналу.

Очищенный от масла сжатый воздух через клапан минимального давления 10 и охлаждаемый вентилятором 14 воздушный радиатор 13 подается потребителю.

Клапан минимального давления 10 необходим для поддержания в масляном резервуаре 8 давления, требуемого для нормальной циркуляции масла независимо от давления в сети потребителя.

Как правило, клапан минимального давления открывается при давлении на его входе на уровне 4-4,5 бар.

Вентилятор 14 может располагаться как на валу электродвигателя 6, так и приводиться в действие собственным электродвигателем.

Производительность вентилятора и площадь охлаждаемой поверхности радиатора 13 рассчитываются таким образом, чтобы обеспечить температуру сжатого воздуха на выходе компрессора, не превышающую температуру окружающей среды более, чем на 10 °С.

Следует отметить, что система охлаждения винтового компрессора может быть и водяной. В этом случае радиаторы 12 и 13 компрессора представляют собой трубчатые теплообменники, в которых охлаждение рабочей среды (масло, сжатый воздух) обеспечивается циркуляцией воды (или другого охлаждающего агента) в межтрубном пространстве теплообменника.

Теплообменник винтового компрессора с водяным охлаждением

Применение водяного охлаждения позволяет:

  • снизить уровень шума, производимого компрессором при работе;
  • отказаться от монтажа вентиляционных коробов для отвода от компрессора горячего охлаждающего воздуха.

Масляный контур

Масло из нижней части масляного резервуара 8 возвращается в винтовой блок 3 под действием давления, поддерживаемого внутри резервуара, благодаря наличию клапана минимального давления 10.

В зависимости от температуры масло может двигаться либо по «малому» контуру (масляный резервуар 8 – термостат 11 – масляный фильтр 7 – винтовой блок 3), либо по «большому» (масляный резервуар 8 – термостат 11 – масляный радиатор 12 – масляный фильтр 7 – винтовой блок 3).

Температура масла очень важна для длительной безотказной работы компрессора.

Слишком низкая температура может вызвать выделение конденсата из воздуха еще на этапе сжатия и «эмульгирование» масла, которое значительно ухудшит его эксплуатационные качества. Слишком высокая температура значительно снижает срок службы масла, а также вызывает чрезмерные температурные деформации роторов компрессора, которые могут привести, в худшем случае, даже к заклиниванию компрессора.

Как видите, ничего сложного в устройстве винтового компрессора нет. Современные винтовые компрессоры являются, бесспорно, надежными и эффективными для производства сжатого воздуха как на больших промышленных предприятиях, так и на предприятиях малого бизнеса.  

На этом все.

Если у вас остались вопросы, то вы можете задать их в форме ниже. Мы ответим в течение 1-2 рабочих дней.

 

С уважением,

Константин Широких & Сергей Борисюк

Вернуться в раздел Полезная информация

Еще по теме:

Винтовые компрессоры. Общая информация

Принцип работы винтового компрессора

Конструкция/устройство винтового компрессора

Конструкция винтового газового компрессора. Видео

Конструкция винтового блока компрессора

Конструкция всасывающего клапана (регулятора всасывания) винтового компрессора

Конструкция термостата. Назначение термостата в винтовом компрессоре

Конструкция клапана минимального давления (КМД). Назначение КМД в винтовом компрессоре

Конструкция масляного резервуара. Назначение и принцип действия

Конструкция сепаратора тонкой очистки. Назначение и функции в винтовом компрессоре

Схема управления работой винтового компрессора. Общая информация

Силовая часть схемы управления винтового компрессора

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *