Турбо двигатель: Что такое турбодвигатели, и надежны ли они Пост для новичков

Содержание

чего все боятся и как избежать проблем :: Autonews

Автопроизводители в последние годы все активнее переходят на турбированные двигатели: с одной стороны давят экологи, которые постоянно ужесточают нормы по выбросам, а с другой — конкуренты. Современный автомобиль должен быть не только мощным и быстрым, но еще и экономичным, чего атмосферные двигатели предложить уже не в состоянии.

В России переход на турбированные моторы многими автомобилистами воспринимается болезненно: такие двигатели более требовательны к качеству топлива, их нужно чаще обслуживать и, в конце концов, они сложнее и дороже в ремонте. Особенно это касается малообъемных двигателей с высоким КПД — современные технологии позволяют снять с мотора объемом 1,4-1,5 л до 200 лошадиных сил. У наддувного агрегата, безусловно, есть масса преимуществ, но важно помнить о нюансах его эксплуатации, чтобы избежать проблем.

Почему турбированные моторы считаются менее надежными?

Турбина под капотом уже давно не повод автоматически считать малообъемный мотор ненадежным.

Часто наддувные двигатели выхаживают без серьезного ремонта такой же ресурс, что и атмосферники. Проблема — в феномене Low Speed Pre Ignition (LSPI), то есть преждевременном воспламенении смеси в цилиндре. Эффект изучают на разных уровнях более 15 лет — по сути это главный «ограничитель» удельной мощности современных моторов с турбиной.

Чем опасно преждевременное воспламенение?

Чаще всего проблема касается двигателей с непосредственным впрыском топлива, причем она может возникать не только на высоких оборотах, когда мотор фактически работает на пределе, но и в обычных условиях эксплуатации. Инженеры определили три этапа LSPI: предварительное зажигание в цилиндре, последующее распространение пламени и индуцированный суперстук в несгоревшей топливно-воздушной смеси. Все это приводит к повышенным нагрузкам на блок цилиндров и, как следствие, ведет к преждевременному выходу из строя. Чаще всего ломаются поршни — а это долгий и дорогостоящий ремонт.

Как решить проблему?

Советы вроде «не крутите мотор до отсечки» и «переключайтесь на низких оборотах» явно не панацея от LSPI. Эта проблема может возникнуть даже у самых аккуратных и неторопливых автомобилистов: не редки случаи, когда поршни ломались даже на трассе при движении с равномерной скоростью. Над решением феномена преждевременного воспламенения смеси в цилиндре работают инженеры ведущих автопроизводителей по всему миру. Преуспел в этом направлении и концерн General Motors, специалисты которого пришли к выводу, что необходимо экспериментировать в том числе с моторным маслом: именно правильно подобранное масло сможет снизить вероятность возникновения LSPI. В результате после многочисленных тестов GM начал использовать в своих моторах новый стандарт масла Dexos1 — GEN2.

Какое масло подходит под этот стандарт?

Сразу после разработки новой спецификации специалисты компании Motul изменили формулу моторного масла из флагманской линейки продуктов 8100 ECO-lite 5W30 в соответствии с новыми требованиями. Кроме того что масло Motul помогает снизить риск возникновения LSPI, оно еще уменьшает расход топлива и снижает уровень токсичности отработанных газов, что тоже очень важно. Моторное масло Motul ECO-lite 5W30 подходит для всех турбированных бензиновых двигателей.

Турбированные моторы & атмосферные: устройства и принцип работы | Справочная информация

Классические бензиновые и дизельные силовые агрегаты в последние несколько лет стали сдавать позиции лидеров в автомобилестроении. На смену им и в дополнение приходят турбированные и атмосферные двигатели, которые всего пару десятилетий назад можно было встретить только на гоночных болидах.

Сегодня очень часто при выборе современных моделей транспортных средств, автолюбители не знают, на каком силовом агрегате лучше всего остановиться — купить автомобиль с «атмосферником» или турбиной? У каждого из этих механизмов есть свои специфические особенности, а также плюсы и минусы в эксплуатации.

Устройство и принцип работы турбированного двигателя

Турбированный силовой агрегат считается одним из самых старых среди двигателей внутреннего сгорания, так как был придуман почти столетие назад.

Принцип его работы заключается в том, в цилиндры подается увеличенное количество воздуха, для этого используется нагнетающее устройство – турбокомпрессор («турбина»). Это создает лучшие условия для сгорания топлива и, соответственно, увеличивает мощность двигателя.

По принципу работы турбированный двигатель не отличается от обычного атмосферного двигателя. А нагнетание дополнительного воздуха позволяет эффективнее использовать полный объем поступающей горючей смеси, что положительно сказывается на динамических характеристиках автомобиля.

Турбокомпрессор использует для работы энергию выхлопных газов. Он подсоединяется к выхлопной системе, в результате чего часть отработанных газов поступает на лопасти турбины и вращает крыльчатку компрессора.

Для охлаждения силового агрегата с турбокомпрессором используют интеркуллер. Это обычный радиатор, но вместо охлаждающей жидкости в нем циркулирует воздух.

Достоинства турбодвигателя

Главный козырь турбированных силовых агрегатов — это, конечно же, их высокая мощность. Двигатели с турбокомпрессором по динамике разгона значительно превосходят своих атмосферных «собратьев» при одинаковом объеме. При этом потребление топлива увеличивается ненамного, так как турбина использует энергию уже отработавших газов, а не тратит горючее на создание новых.

Еще одно достоинство турбированного агрегата – снижение содержания вредных газов в выхлопе, поскольку топливовоздушная смесь сгорает значительно эффективнее. Кроме того, мотор с турбокомпрессором работает менее шумно, чем «атмосферник».

Недостатки турбодвигателя

В отличие от атмосферного двигателя, турбодвигатель очень привередлив к качеству потребляемого горючего. Если не контролировать этот вопрос, то турбина очень скоро может выйти из строя. Кроме того, из-за специфики конструкции двигатели с турбонаддувом следует прогревать в любое время года.

Этот тип силовых агрегатов нуждается в особой заботе в вопросах использования смазочных материалов. Обычные минеральные и синтетические масла категорически запрещается заливать в двигатель с турбиной. Для них предназначаются специальные виды масел, которые достаточно дорого стоят. Кроме того, как отмечают специалисты автосервиса Favorit Motors, замена масла рекомендуется каждые 10 тысяч километров (при эксплуатации в городских условиях).

Устройство и принцип работы атмосферного двигателя

Система запитывания атмосферного двигателя основана на инжекторном или карбюраторном механизме. Топливовоздушная смесь формируется в строгой пропорции: 1 часть бензина + 14 частей воздуха.

Принцип работы «атмосферника» заключается в том, что топливо впрыскивается в цилиндр без сопротивления. Это стало возможным благодаря сложным и тонким настройкам в распределительном валу, который открывает впускающий клапан. После впрыска смесь сгорает, а выделившиеся газы приводят в движение поршни.

Атмосферный двигательный аппарат назван так потому, что давление воздуха при попадании в мотор, равняется одной атмосфере. В его конструкции не используются турбонагнетатели, он функционирует при стандартном атмосферном давлении.

Преимущество в использовании атмосферного двигателя заключается в том, что на каких бы оборотах он не работал в данный момент, у него всегда будет определенный запас мощности. Это позволяет максимально быстро ускоряться при любой начальной скорости движения. До максимально возможного количества оборотов атмосферный силовой агрегат «раскрутится» за считанные секунды.

Достоинства атмосферного двигателя

Рано или поздно даже самый надежный мотор может потребовать вложений и качественного ремонта. Атмосферный агрегат имеет более простое строение, чем турбированный мотор, а потому и проведение ремонтных работ обойдется дешевле.

Срок службы атмосферника гораздо выше, чем у турбированного мотора. Это обусловлено более мягкими условиями эксплуатации и отсутствием повышенных нагрузок. Поэтому рабочий ресурс атмосферного двигателя в среднем вдвое выше, чем у турбины.

В качестве приятного бонуса для автовладельцев специалисты ГК Favorit Motors могут привести следующий факт. Атмосферные агрегаты не требуют постоянно контроля смазки и менее требовательны к качеству используемых масел. В их конструкции отсутствуют устройства, которые нуждаются в дополнительной смазке. Это же касается и выбора топлива: атмосферный двигательный агрегат менее требователен к качеству горючего. Кроме того, замена смазочной жидкости производится реже — каждые 15-20 тысяч километров пробега.

И еще один плюс «атмосферника». Российские водители уже смогли убедиться, что атмосферный силовой агрегат даже зимой прогревается быстрее, чем его турбированный собрат.

Недостатки атмосферного двигателя

Самым главным минусом такого двигателя можно считать отсутствие высоких крутящих моментов. Атмосферный агрегат проигрывает турбированному в плане мощности. Такой автомобиль будет идеальным для неспешных поездок по городу, но в качестве трассового авто для молодежных гонок явно не подойдет.

Расход топлива для такого двигателя будет достаточно высок. Как отмечают специалисты ГК Favorit Motors, в среднем автомобиль с атмосферным двигателем потребляет не менее 11-12 литров горючего на 100 километров пути.

Итоги

Выбирать автомобиль с турбированным или атмосферным агрегатом стоит, исходя из своих личных предпочтений и возможностей. У каждого из этих типов моторов есть свои плюсы и минусы. Турбодвигатель будет мощнее и динамичнее, однако требователен в уходе и обходится дороже. Атмосферный двигатель не такой мощный, зато гораздо дешевле в плане эксплуатации и ремонта.

В наличии в компании Favorit Motors имеется множество разных моделей автомобилей как с атмосферными двигателями, так и с турбированными. Компетентный персонал поможет подобрать автомобиль, исходя из пожеланий и предпочтений каждого клиента.

Как турбированный, так и атмосферный силовой агрегат со временем может начать работать с перебоями или вообще отказать. Современные модели автомобилей оснащены высокотехнологичными электронными системами управления двигателем, поэтому диагностику и ремонт моторов следует выполнять только в специализированных автосервисах.

Автосервис Favorit Motors оснащен полным комплексом диагностического и ремонтного оборудования для диагностики и устранения неисправностей турбированных и атмосферных силовых агрегатов. Для обслуживания и ремонта здесь используются только качественные сертифицированные запчасти, а мастера техцентра обладают многолетним опытом работ. Все операции выполняются в соответствии с технологическими картами заводов-изготовителей, что обеспечивает высокое качество и сжатые сроки ремонта. На все детали и ремонтно-восстановительные работы предоставляется гарантия.

Специалисты компании Favorit Motors напоминают, что своевременное регламентное обслуживание способно значительно продлить срок эксплуатации силового агрегата. Необходимо регулярно менять масло в соответствии с пробегом и устранять выявленные неисправности.

Подборка б/у автомобилей Skoda Octavia

Турбо ВАЗ, тюнинг автомобиля ВАЗ

Как собрать оптимальный для города турбо мотор.

В последнее время многие владельцы автомобилей ВАЗ интересуются, как собрать оптимальный для города турбо мотор. В связи с этим мы решили предоставить вам конкретные рекомендации, как собрать его наиболее грамотно и без лишних затрат.

Основой нашего будущего турбо-двигателя будет служить весьма популярный в настоящее время ВАЗовский шестнадцатиклапанник с индексом 21126 от автомобиля Лада-Приора. Но наше руководство можно считать универсальным, ведь следуя ему, вы сможете собрать турбо мотор на любой другой базе. Ключевым моментом выступает не столько специфика отдельных двигателей, сколько сам подход и объём будущих их трансформаций.

И так, первым делом нужно разобрать двигатель и оценить его состояние. Если двигатель «с хорошим пробегом», то блок цилиндров отдаётся на расточку под следующий ремонтный размер. При сборке блока используются так называемые турбо-поршни. Самый распространённый и хорошо зарекомендовавший себя вариант – это турбо-поршни, доработанные из заводских «Нивских» поршней. Они отличаются увеличенной (до 20 куб. см) камерой сгорания и цековками под шестнадцатиклапанную ГБЦ. Штатные «Приоровские» шатуны также не подойдут для двигателя с турбонаддувом. Лучшей их заменой станут стандартные шатуны ВАЗ 2110. А вот коленчатый вал остаётся «родной» – 75,6 мм. В результате мы получаем двигатель с прежним объёмом (1.6L), но с уменьшенной до 7.6:1 степенью сжатия. Подобные конфигурации «низа» активно используются при построении турбо моторов с мощностью до 400 л.с.

На следующем этапе нужно определиться с самой турбиной. На наш взгляд наиболее подходящим для повседневной эксплуатации является турбокомпрессор TD04L (штатный для Subaru Impreza WRX), ему свойственен ранний подхват и достаточно широкий рабочий диапазон – прекрасный выбор для езды в условиях города. Максимальная мощность порядка 250 л.с., что в том числе позволит демонстрировать достойные результаты в любительских соревнованиях Drag-racing. Хотите больше мощности, тогда выбирайте турбокомпрессор TD05 или же GT28. Для выбранной турбины понадобится соответствующий турбоколлектор. Также к турбине нужно подвести масло и реализовать масло-слив, организовать подачу и слив охлаждающей жидкости. Очень важно использовать армированную маслоподачу и силиконовые армированные тосольные магистрали. Именно армирование этих узлов позволит вам навсегда забыть о возможных с ними проблемах.

Выбирая интеркулер, помните, что обдув со штатным бампером весьма плох. При установке большого интеркулера, обдув радиатора окажется совсем неэффективным, а значит, постоянный перегрев вам гарантирован. Для эксплуатации в городе можно ограничиться интеркулером 450х180х65. Он подходит под стандартный бампер, полностью удовлетворяя потребности в охлаждении. К тому же лучше не создавать воздушную магистраль с большим диаметром в автомобиле для города. Не стоит усложнять себе процесс установки и получить в результате турболаг – это медленная реакция мотора с турбонаддувом на нажатие педали газа из-за потребности в увеличении давления в самой воздушной магистрали. Исходя из этого, чем меньше её объём, тем меньше будет турболаг. Используйте алюминиевый пайпинг-кит диаметром 51 мм – это лучший выбор для установки воздушной магистрали. Если же вы строите мотор с мощностью под 300 л.с. и планируете довольно часто участвовать в соревнованиях, выбирайте интеркулер 550х230х65 и пайпинг диаметром 57 мм.

Штатный ресивер потребуется заменить специальным турбо-ресивером, отличающимся от атмосферных версий маленьким объёмом и изменённой геометрией. Желательно заменить и стандартный дроссельный патрубок. Наиболее подходящим является патрубок с диаметром заслонки 54 мм. Перед заслонкой на воздушную магистраль устанавливается клапан сброса избыточного давления, другими словами блоу-офф. Именно эта деталь издаёт эффектный «пшик» при переключении передач, т.е. при отпускании педали газа.

Не забудьте правильно подобрать топливные форсунки. Делать это нужно исходя из мощности мотора, ведь возросшее количество воздуха важно обеспечить в нужном объёме подачей топлива. Планируемая мощность двигателя 200 л.с. – остановитесь на форсунках ACCEL 378 cc. Для нужд мотора в 250 л.с. следует использовать форсунки с производительность 432 см3/мин от FORD RACING или ACCEL 462 см3/мин. А вот для движка более 300 л.с. рекомендуются форсунки Siemens Deka 630 cc/min.

Вместе с форсунками меняем и топливный насос, так же отличающийся большей производительностью. Например, для бензонасоса Walbro характерно то, что он может выдержать нагрузки мощнейших двигателей, которые можно встретить на большинстве гоночных автомобилей.

Кроме подачи топлива доработайте и саму систему управления двигателем. В частности, лучше не использовать традиционный датчик массового расхода воздуха (ДМРВ), его обычно заменяют датчиком абсолютного давления (ДАД) и датчиком температуры воздуха (ДТВ). Таким образом, вы обеспечите себе надёжность и возможность работать со всеми сверхсовременными программами, контролирующими работу мотора.

Подбирая датчик абсолютного давления, остановитесь на модели, верхний диапазон которого наиболее всего близок к рабочим характеристикам. Другими словами, если в ваших планах использовать давление в турбо моторе приблизительно в один бар, то нецелесообразно применять ДАД с верхним значением в 3 бара, иначе вам не удастся точно настроить турбо мотор. Решая проблему выбора оптимальных вариантов для датчиков и форсунок, рациональнее всего будет воспользоваться советами мастера, который будет заниматься настройкой собранного турбо мотора.

Ещё один ответственный момент – подбор распределительных валов. Вся сложность в том, что их выбор индивидуален для отдельного турбо мотора. Так, для простого проекта хватит и стандартных распредвалов. Но их придётся заменить, если планируется рост мощности в самом верхнем диапазоне. Наш совет — установка распределительных валов, разработанных специально для турбо-двигателей. Такие турбо-распредвалы позволяют отлично работать мотору, как в городском цикле, так и в условиях соревнований.

Сборка турбо-двигателя затрагивает и вопросы ГБЦ. Так, для езды по городу можно ограничиться стандартной головкой блока. Но если вы планируете выжать из мотора по максимуму, и автомобиль готовится для участия в дрэг-рейсинге, то целесообразна установка головки блока цилиндров с увеличенными каналами и клапанами. Это позволит получить большую мощность и переместит полку момента на более высокие обороты.

Отдача турбодвигателя будет максимальной при увеличении диаметра выпускной магистрали, начиная от самого даунпайпа и до оконечной банки. Помните, что заузив магистраль хотя бы в одном месте, вы уменьшите весь её диаметр. Для двигателей с мощностью от 200 л.с. оптимальным считается использование выхлопной системы с диаметром трубы 60 мм. В качестве готового решения можно смело использовать резонатор, гиб и универсальный глушитель из нержавеющей стали от Российского производителя MG-RACE. Эти элементы выпускной системы отлично себя зарекомендовали и часто используются нами на практике.

Сцепление для турбомотора, в частности городского – особенно важный момент. Мы рекомендуем использовать комплект PILENGA Sport с металлокерамическим ведомым диском с демпфером. Конечно, использование такого сцепления в условиях городских пробок доставляет некоторые неудобства, но зато оно отлично справляется с передачей крутящего момента двигателя мощностью до 300 л.с.

Из всего вышесказанного можно сделать важный вывод, что переоборудовать стандартный двигатель в турбо мотор гораздо проще, дешевле и выгоднее, чем работать с моделью, прошедшей полноценный атмосферный тюнинг, т.к. замене подвергаются практически все элементы двигателя. Тщательно подбирайте комплектующие, при сборке уделяйте внимание каждой мелочи, не экономьте на квалифицированной настройке собранного турбо мотора – именно это гарантирует высокий ресурс и мощностные характеристики вашего двигателя. 

Для вашего удобства мы добавили в каталог полноценные турбо киты, включающие в себя все необходимые детали для сборки турбо-двигателя. Приобретая такой комплект, вы существенно экономите своё время и деньги.

Турбированный и атмосферный двигатели

ДВИГАТЕЛЬ

ТУРБИРОВАННЫЙ

Турбированный двигатель – ДВС, который отличается наличием систтемы турбонадува (состоит из турбины, турбокомпрессора и промежуточного охладителя). Она создает принудительное давление с помощью выхлопных газов. В результате в цилиндры через инжектор закачивается большее количество воздуха, который смешиваясь с топливом, сгорает более эффективно. Как результат — выделяется больше энергии, приводящей в движение рабочие части двигателя

 

АТМОСФЕРНЫЙ

Атмосферный двигатель — это классический ДВС, в котором подаваемый через инжектор (или карбюратор) воздух участвует в образовании топливной смеси в цилиндрах. Топливная смесь, воспламеняясь, создает энергию, приводящую в движение рабочие части двигателя.

1,0 л.

Чтобы развить максимальную мощность 125 л.с., условному турбированному двигателю может быть достаточно объема 1,0 л

 

 

1,6 л.

Чтобы развить максимальную мощность, например, 125 л. с., условный двигатель должен иметь рабочий объем не менее 1,6 л.

При одной и той же мощности турбомоторы отличаются чуть лучшей динамикой и несколько меньшим расходом топлива.

 

Помимо, того что двигатель весит больше, он не способен поддерживать высокую мощность при езде в гористой местности с разреженным воздухом.

150 000
километров

Турбированный двигатель подвергается большим нагрузкам и потому изнашивается быстрее. При его правильной эксплуатации пробег до капитального ремонта может составлять 150 тыс. километров.

 

от 300 000 до 500 000
километров

Из-за простой конструкции срок ресурсной эксплуатации «атмосферников» может исчисляться сотнями тысяч километров пробега. Известны случаи, когда некоторые американские атмосферные двигатели «выхаживали» по 300-500 тыс. километров без капитального ремонта.

Нужно заправляться только качественным топливом, правильно запускать и останавливать мотор, следить за уровнем и качеством заливаемого масла. Смазка в турбодвигателе имеет большое значение, благодаря ему эффективно работают подшипники и другие важные элементы. Если уровень масла падает, он ибыстрее изнашиваются и выходят из строя. Поэтому масло необходимо своевременно доливать, а при его слишком быстром расходе — оперативно устранять неполадку, из-за которой это происходит.

 

Атмосферные двигатели более «лояльны» к качеству топлива и моторного масла. Хотя этими особенностями не стоит злоупотреблять, стоит отметить, что «атмосферники» отличаются высокой ремонтоспособностью, устранение возникающих неполакдок к них обойдется гораздо дешевле.

Моторное масло TOTAL QUARTZ 9000 5W-40 Высококачественное универсальное моторное масло, производимое по синтетической технологи, подходит как для атмосферных, так и для турбированных двигателей. API SN. Самая последняя спецификация по API — уровень SN. Характеризуется улучшенной защитой от высокотемпературных отложений на поршнях, более жесткими требованиями к контролю сажи и совместимости с уплотнителями. TOTAL QUARTZ 9000 5W-40 обладает исключительными антиокислительными свойствамии особенно рекомендуется к применению в турбированных и мультиклапанных двигателях, а ткже в двигателях с непосредственным впрыском.


Подбор масла

Особенности двигателя TSI в автомобилях Volkswagen

Силовыми агрегатами TSI комплектуются все современные модели Volkswagen. Аббревиатура от Turbo Stratified Injection обозначает двигатель, в котором впрыск топлива происходит непосредственно в цилиндр, а воздух нагнетается двойным турбонаддувом.

В результате эксплуатационные характеристики мотора более высокие, чем у двигателя с обычной турбиной, но из-за этого ему требуется более качественное обслуживание, которое нереально осуществить в кустарных условиях.

Этот тип двигателя самый популярный среди автомобилей Volkswagen. На Passat В8, Passat СС, Tiguan устанавливают сейчас (2016 года) только двигатели типа TSI. На  Golf и Jetta кроме TSI устанавливают также MPI. Единственная модель, которая не комплектуется TSI — Туарег.

Каким образом работает двойной турбонаддув?

Для понимания принципа действия двойного турбонаддува стоит рассмотреть, как формируется воздушно-топливная смесь на разных оборотах:

  • до 2 400 об/мин работает исключительно механический компрессор, а турбокомпрессор простаивает, поскольку нет необходимости в дополнительной мощности и недостаточно давления выхлопных газов;
  • от 2 400 до 3 500 об/мин для нагнетания воздуха подключается турбокомпрессор, но только если электроника регистрирует очень динамичное увеличение потребности в мощности, к примеру, при резком старте с места;
  • от 3 500 об/мин и выше заслонка турбокомпрессора полностью открыта и он один работает на нагнетание воздуха.

В результате такого комплексного подхода становится возможным тонкое изменение мощности двигателя в большом диапазоне оборотов. Практически отсутствует «турбояма», которая характерна для силовых агрегатов с классической турбиной. В механическом нагнетателе используется редуктор, благодаря которому скорость вращения компрессора достигает 17 500 об/мин для наиболее эффективного давления в системе подачи воздуха.

Особенности охлаждения моторов TSI

Здесь применяется система охлаждения из двух контуров: один для головки блока цилиндров, а второй для самого блока. Количество охлаждающей жидкости в 2 раза больше в головке цилиндров, чтобы быстрее выполнялся прогрев и снижалась вероятность её перегрева, поскольку она изначально нагревается более интенсивно, чем блок цилиндров. Дополнительно система оснащена двумя термостатами, которые срабатывают при температуре в 80 и 95 °C.

Для охлаждения турбины используется еще более интересная схема. Дополнительный водяной насос с электроприводом охлаждает её в течение еще 15 мин. после остановки двигателя. В результате сложный механизм никогда не перегревается, что увеличивает его ресурс.

Недостатки технологии

Наибольшим минусом этих двигателей является их относительно плохой прогрев в холодное время года. Классическая схема разогрева на холостых оборотах в минусовую температуру малоэффективна — вам придётся долго ожидать тепла из дефлектора отопителя. В такую погоду на рабочую температуру мотор выходит достаточно долго даже при езде. К сожалению, такая плата за отменные рабочие параметры этих силовых агрегатов.

Рекомендации по эксплуатации

Любая вещь, созданная человеком, рано или поздно придёт в негодность и даже такие качественные двигатели не вечны. Однако если вы будете использовать качественные расходники и уделите пристальное внимание на состояние цепи ГРМ, то детище немецких инженеров не будет расстраивать вас форс-мажорными поломками в течение многих десятков тысяч километров.

Нюанс с долгим прогревом можно просто решить. Достаточно установить автономный предпусковой подогреватель мотора. Ведь такие приспособления уже не первое десятилетие используются в грузовиках и в нашем случае они помогут вам не мёрзнуть во время коротких зимних поездок.

Как не убить в мороз турбированный мотор — Российская газета

Турбированные моторы предпочитают многие автовладельцы. Причина — в их экономичности, высокой мощности и доступности. Однако сильные морозы способны сильно навредить таким двигателям.

Как пишет aif.ru, все дело в том, что во время работы турбонаддув разогревается до 1000 градусов. Горячий газ выхлопной системы проходит через «улитку» и раскручивает ее до более чем десятка тысяч оборотов. Во время ночной стоянки на морозе сильно охлаждается, масло отстаивается и на рабочих поверхностях остается небольшое его количество.

Холодный пуск, езда на непрогретой машине чревата активным износом турбины. Обороты мотора поднимаются выше 2,5 тысячи, «улитка» резко нагревается, детали из-за высокой температуры расширяются. Зазоры между трущимися поверхностями могут меняться до нескольких микрон, из-за этого появляется риск разрыва масляной пленки. Рабочие поверхности могут повредиться.

Определить, что турбонаддув поврежден, можно благодаря нетипичным шумам, которые появляются после запуска двигателя. Это посторонний гул и свист; кроме того, из выхлопной трубы идет сизый дым, масло начинает расходоваться выше нормы. На поверхностях образуется нагар, который разрушает подшипники и другие детали.

Что делать? Прогревать мотор, даже если вы недавно уже ездили на автомобиле. Но особым образом. После запуска турбодвигателя в холодное время года нужно подождать около пяти минут. За это время масло прокачается ко всем узлам и агрегатам. После этого можно ехать, но в щадящем режиме: не раскручивая мотор больше 2,3-2,5 тысячи оборотов. В противном случае активируется наддув и холодная турбина испытает повышенные нагрузки из-за температурного дисбаланса.

Такой щадящий режим нужно выдержать около 15 минут. Когда из печки пойдет горячий воздух, а температура охлаждающей жидкости повысится до 90 градусов, можно ехать в обычном режиме.

После активной езды на морозе, перед выключением зажигания, нужно обязательно дать мотору поработать около двух минут на холостых оборотах. Это делается для того, чтобы масло, прокачиваемое через турбину, успело ее охладить. Иначе на поверхности вала турбины могут образоваться микротрещины и выщербины. И она быстро придет в негодность.

Ранее эксперты рассказали, что следует иметь в виду при переходе на зимний дизель, а также что делать, если машину ударили во дворе и скрылись.

переменная степень сжатия по рецепту… НАМИ! — Авторевю

Будет ли серийный кроссовер Infiniti QX50 нового поколения похож на концепт-кар QX Sport Inspiration? Теперь это не столь важно: свое место в энциклопедиях Infiniti займет как первый автомобиль, оснащенный серийным двигателем с переменной степенью сжатия. Спроектированным по рецепту. .. НАМИ!

Таким концепт-кар Infiniti QX Sport Inspiration был показан этой весной на автосалоне в Пекине, серийный QX50 унаследует многие его черты

На обычную рядную «четверку» мотор 2.0 VC-T (Variable Compression Turbo) похож лишь «до пояса», а ниже у него хитроумный рычажный механизм. Шатун каждого цилиндра соединен с коленвалом не напрямую, а через подвижное коромысло — траверсу, которая своим противоположным концом связана с тягой электроактуатора. Перемещение этой тяги меняет наклон траверсы и, соответственно, расстояние между поршнем и шатунной шейкой коленвала, варьируя положение верхней мертвой точки (ВМТ).

Что это дает? Чем выше поднимается поршень, тем меньше объем камеры сгорания над ним. Топливовоздушная смесь сжимается сильнее, а сгорая и расширяясь, совершает бо́льшую работу. Соотношение между объемом камеры сгорания и полным объемом цилиндра как раз и есть степень сжатия. Чем она выше, тем больше теоретически достижимая эффективность сгорания топ­лива. Однако попутно растет и риск возникновения взрывного сгорания, то есть детонации, — особенно при высоких нагрузках. Именно поэтому применение наддува заставляет не повышать, а наоборот, понижать степень сжатия.

Новый турбомотор 2.0 VC-T при крайнем верхнем положении траверсы способен достигать очень высокой степени сжатия 14,0:1 — как у атмосферных «четверок» Skyactiv компании Mazda. Но если маздовские моторы так работают во всех режимах, то двигатель Nissan — только на малых оборотах при небольших нагрузках. При их увеличении механизм переходит в промежуточные положения, понижая степень сжатия, а на высоких оборотах или под полным дросселем автоматика сдвигает ВМТ вниз — и степень сжатия падает до минимума: 8,0:1.

Мотор 2.0 VC-T ­немного крупнее и тяжелее обычных турбочетверок, но существенно компакт­нее двигателей V6, которые он должен заменить

Интересно, что двигатель по неофициальной информации выдает примерно 270 л.с. и 390 Нм крутящего момента — то есть форсирован на уровне обычных двухлитровых турбомоторов «заряженных» машин. Куда важнее, что агрегат 2.0 VC-T сулит сокращение расхода топлива на 27% по сравнению с атмосферной «шестеркой» Nissan 3.5 серии VQ, — которую, судя по всему, и призван заменить. А еще мотористы компании Nissan уверяют, что такие двигатели с изменяемой степенью сжатия станут альтернативой дизелям: ведь при схожей экономичности они требуют менее сложных систем очистки выхлопа и легче впишутся в строгие экологические нормативы.

Почему же раньше японцев никто не довел такие двигатели до серийного воплощения на легковушках? Ведь впервые эту идею еще в 20-х годах прошлого века предложил британский инженер Гарри Рикардо. Полвека назад в Америке выпускали «переменный» танковый дизель Continental AVCR-1100, а в конце 90-х аналогичные исследования вели Daimler, Volvo, Audi, Porsche, Honda, Ford, Suzuki, Peugeot и Citroen, Lotus, российский институт НАМИ, немецкая компания FEV…

Но за это время не появилось даже единого мнения, какой механизм считать наиболее эффективным. Вариант с раздвижными поршнями (как на дизеле AVCR-1100) грозит сложнос­тями со смазкой и не позволяет точно контролировать степень сжатия. Телескопичес­кие шатуны или щеки коленвала снижают надежность. Вспомогательные поршни, которые открывают дополнительные полости в стенках камеры сгорания, варьируя ее объем, ставят под угрозу герметичность. Эксцент­рики в нижних или верхних головках шатунов осложняют индивидуальное управление цилиндрами, а смещение коленвала относительно всего блока цилиндров требует еще и «переходников» в трансмиссии.

В ниссановском двигателе траверса (а) вращается вместе с коленвалом, а дополнительная система рычагов (б) с приводом от электроактуатора (в) контролирует ее наклон. Когда необходим переход на высокую степень сжатия, актуатор поворачивается по часовой стрелке, меняя положение эксцентрикового вала, который в свою очередь опускает правое плечо траверсы, а та своим противоположным плечом смещает поршень (г) и шатун вверх. При переходе на низкую степень сжатия механизм работает в обратной последовательности — и ВМТ уходит вниз

Ну а Saab 16 лет назад даже приглашал журналистов на тесты компрессорной «пятерки» 1. 6 SVC (АР №21, 2000) с наклонным моноблоком, который смещался относительно коленвала. Мотор получился темпераментным (225 л.с.), но шумным и капризным на низах. А главное — дорогим и сложным. Поэтому до конвейера дело тоже не дошло.

Под конец 2000-х надежды подавал еще и французский двигатель ­MCE-5 для автомобилей Peugeot и Citroen: в нем поршень с «шатуном» были монолитны и толкали кривошип через зубчатую передачу и коромысло, положение которого корректировал сервопривод. Но все достоинства этого механизма нивелировала невозможность унифицировать такой мотор с традиционными двигателями.

А схему с траверсой и управляющей тягой, которую собирается применить Nissan, в конце 80-х запатентовали в… советском институте НАМИ! Самый же ранний патент компании Nissan датирован 2001 годом — и описывает очень похожий механизм, хотя и переосмысленный: с иной геометрией расположения элементов и нижним креплением управляющего рычага.

В саабовском двигателе SVC эксцент­риковый вал приподнимал или опускал опоры одной из сторон моноблока, в который были объединены блок цилиндров и его головка. Объем камеры сгорания менялся, но попутно менялось и положение верхней части двигателя под капотом, что требовало доработки впускной и выпускной систем. Интересно, что Saab тоже предлагал изменять степень сжатия в диапазоне от 8,0:1 до 14,0:1, однако при самой высокой степени мотор работал как атмосферник: муфта отключала привод компрессора

Кстати, еще раньше на работы ­НАМИ обратил внимание концерн Daimler: в 2002—2003 годах из России в Штутгарт были отправлены три «траверсных» мотора на основе мерседесовского дизеля OM611 (2,15 л) и бензиновой двухлитровой «четверки» М111. Российский механизм позволял менять степень сжатия в пределах от 7,5:1 до 14,0:1, но очень скоро Daimler и НАМИ обнаружили, что выгода от него весьма эфемерна: эффективность повышалась на 20% при переходе от минимальной степени сжатия к обычной (10,0:1), а дальнейшее повышение до 14,0:1 давало всего 3,5% выигрыша.

Почему же Nissan с оптимизмом смот­рит на серийную перспективу? Несмотря на сложность нового кривошипно-шатунного механизма с возросшими потерями на трение, на прибавку лишних десяти килограммов и на ограничения по унификации, в производство двигатели 2. 0 VC-T должны пойти в конце 2017 года. Возможно, потому, что надежда на гибриды не оправдалась: в Америке за этот год продано всего 2,5 тысячи гибридомобилей Nissan и Infiniti. Делать ставку на дизели после скандала с концерном Volkswagen тоже не вариант. А «переменный» мотор поможет не только отказаться от закупки двухлитровых турбочетверок у концерна Daimler, но и прибавит козырей по части имиджевой рекламы. Ведь таких агрегатов действительно не делает никто в мире!

Кстати, мотор с переменной степенью сжатия как нельзя лучше подходит для ездового цикла по измерению расхода топлива. И это тоже козырь. 

5 недостатков двигателя с турбонаддувом

Раньше безнаддувные двигатели были обычным явлением, а двигатели с турбонаддувом были реже. Это изменилось. Теперь все наоборот: малоразмерные двигатели с турбонаддувом являются обычным явлением, а двигатели без наддува встречаются реже и пользуются большим спросом.

Дискуссия о том, что лучше, аналогична дискуссии о разнице между электрическими и бензиновыми автомобилями. Все сводится к предпочтениям, но у каждого есть свои особенности.Посмотрите видео с объяснением технических требований ниже, чтобы получить подробное объяснение некоторых недостатков двигателей с турбонаддувом.

Недостатки двигателя с турбонаддувом

В этом типе двигателей используется принудительная индукция для повышения эффективности и выходной мощности двигателя за счет нагнетания дополнительного воздуха в камеру сгорания. Поскольку компрессор может нагнетать больше воздуха в камеру сгорания, чем двигатель, использующий только атмосферное давление, он также может подавать больше топлива в двигатель, давая ему большую потенциальную мощность.Однако есть причины не покупать возросший в настоящее время интерес к двигателям с турбонаддувом. Ниже перечислены пять недостатков двигателей с турбонаддувом.

Отклик дроссельной заслонки

Ford Mustang Ecoboost 2019 года | Ford

Реакция дроссельной заслонки — это мера реакции автомобиля, которая определяет, насколько быстро двигатель может увеличить выходную мощность в ответ на запрос водителя на ускорение. С турбодвигателем вы ждете, пока он наберет обороты, чтобы создать крутящий момент или мощность для двигателя.Чем больше крутящий момент выдает двигатель, тем тяжелее будет работать машина. В некоторых автомобилях при 50% дроссельной заслонке вы можете использовать полный наддув, что делает педаль бессмысленной, поскольку вы работаете на полном наддуве и не можете модулировать или регулировать крутящий момент.

Идеальным откликом дроссельной заслонки было бы линейное положение, но с автомобилем с турбонаддувом вы ждете наддува и имеете периоды отсутствия дополнительного крутящего момента. У вас турбо-лаг. Поскольку вы не ждете реакции тормозов или рулевого управления, зачем вам ждать реакции дроссельной заслонки? Хотя некоторые люди могут подумать, что отставать и получать «бац!» Повышения — это круто, задержка никогда не бывает хорошей. Вам нужна сила, когда вы ее просите.

Кривая крутящего момента

Hyundai Veloster N 2020 года | Hyundai

В то время как кривая крутящего момента сейчас лучше в современных автомобилях с турбонаддувом, и вы по-прежнему получаете ровный пик на кривой крутящего момента, когда мощность сохраняется, участки до и после пика не подходят. Например, это как если бы у вас был 2,5-литровый двигатель, затем во время пика был 5-литровый, а затем снова упал до 2,5-литрового.

Он непостоянен, как двигатель без наддува, который постоянно работает.И хотя двигатели с турбонаддувом сейчас улучшены, вам часто приходится выбирать между небольшим турбонаддувом с лучшим временем отклика или большим турбонаддувом с большей мощностью. Как правило, крутящий момент уменьшается с увеличением частоты вращения, создавая период ожидания для повышения и чувство потери мощности после этого.

Надежность и стоимость

Subaru WRX | Двигатели Subaru

Turbo требуют больше денег, чтобы сделать их более надежными. Безнаддувные двигатели могут обойтись меньшими затратами, потому что создается меньшее внутреннее давление.Например, 15 фунтов на квадратный дюйм — это вдвое больше воздуха в каждом цилиндре, поэтому давление и температура выше. Пси повышается от атмосферного к турбированному дизельному двигателю с турбонаддувом, поэтому дизельные двигатели с турбонаддувом так дороги. Они должны быть более прочными, чтобы выдерживать давление, к которому они стремятся.

Тепло также играет важную роль. В двигателях с турбонаддувом масло подвергается более высоким температурам внутри цилиндров, и двигатель становится более горячим. Он охлаждается маслом, поэтому масло подвергается сильному нагреву и готовится.Маслу сложно ухаживать за турбодвигателями из-за требований, предъявляемых к маслу. Это всего лишь несколько вещей, которые делают автомобиль надежным, но они имеют значение, когда речь идет об автомобилях с турбонаддувом.

Топливная эффективность

Ford Ranger 2019 года | Ford

Для борьбы с топливной экономичностью новой нормой стали уменьшенные в размерах двигатели с турбонаддувом. Меньшие двигатели потребляют меньше топлива, но турбонаддув увеличивает давление, что может привести к более высоким температурам и детонации двигателя, что приведет к его повреждению. Чтобы этого избежать, нужно иметь меньшую степень сжатия.Тепловой КПД и степень сжатия напрямую связаны. Чтобы снизить температуру, вы должны слить больше топлива, чтобы защитить двигатель с более высоким соотношением топлива к воздуху, и ваша экономия топлива резко возрастет. Поэтому, когда вы запрашиваете полную мощность, двигатели с турбонаддувом не так эффективны из-за высокой топливно-воздушной смеси, необходимой для защиты двигателя.

Звук

Альфа Ромео Джулия Ti 2019 года | Alfa Romeo

Качество звука двигателя — вопрос субъективный, но есть некоторые объективные причины.Расположение турбонагнетателя находится между двигателем и атмосферой в виде выхлопной трубы. Турбо забирает всю энергию из двигателя, чтобы произвести дополнительный наддув. Это убирает шум двигателя, даже если вы все еще слышите турбо. Кроме того, двигатель с турбонаддувом обеспечивает большую мощность, что позволяет использовать меньшие двигатели, которые не издают столько коры, потому что у них меньше срабатывающих цилиндров. Большее количество цилиндров дает лучшее качество звука: двигатель V8 срабатывает в два раза чаще, чем 4-цилиндровый двигатель, и звучит лучше.

Стоит ли двигатель с турбонаддувом?

Вы будете единственным, кто определит, какой двигатель вам подходит, но двигатели с турбонаддувом все чаще становятся вторым выбором по сравнению с более чистыми и плавно работающими автомобилями с безнаддувным двигателем.

Выберите правильный турбокомпрессор Garrett

Пример

У меня 6,6-литровый дизельный двигатель, который развивает заявленную мощность на маховике в 325 лошадиных сил (около 275 лошадиных сил, измеренных на динамометрическом стенде шасси).Хочу сделать колесо 425 л.с. увеличение на 150 лошадиных сил. Подставляя эти числа в формулу и используя данные AFR и BSFC, указанные выше:

Отзыв из Turbo Tech 103:

    Где,
  • Wa = фактический воздушный поток (фунт / мин)
  • HP = Целевая мощность в лошадиных силах (маховик)
  • A / F = соотношение воздух / топливо
  • BSFC / 60 = удельный расход топлива при торможении (фунт / (л. с. * час)) / 60 (для перевода часов в минуты)

Таким образом, нам нужно будет выбрать карту компрессоров, которая имеет мощность не менее 59.Производительность воздушного потока 2 фунта в минуту. Далее, какое давление наддува потребуется?

Рассчитайте давление в коллекторе, необходимое для достижения целевой мощности.

    Где,
  • MAPreq = Абсолютное давление в коллекторе (psia), необходимое для достижения целевой мощности
  • Wa = фактический воздушный поток (фунт / мин)
  • R = Газовая постоянная = 639,6
  • Tm = температура впускного коллектора (градусы F)
  • VE = объемный КПД
  • N = частота вращения двигателя (об / мин)
  • Vd = объем двигателя (кубические дюймы, преобразовать из литров в CI умножением на 61, например.2,0 литра * 61 = 122 КИ)
    Для двигателя нашего проекта:
  • Wa = 59,2 фунт / мин, как было рассчитано ранее
  • Tm = 130 градусов F
  • VE = 98%
  • Н = 3300 об / мин
  • Vd = 6,6 литра * 61 = 400 CI

= 34,5 фунтов на квадратный дюйм (помните, что это абсолютное давление; вычтите атмосферное давление, чтобы получить манометрическое давление, 34,5 фунтов на квадратный дюйм — 14,7 фунтов на квадратный дюйм (на уровне моря) = 19,8 фунтов на квадратный дюйм)

Итак, теперь у нас есть Mass Flow и Manifold Pressure . Мы почти готовы нанести данные на карту компрессора. Следующим шагом является определение того, какая потеря давления существует между компрессором и коллектором. Лучший способ сделать это — измерить падение давления с помощью системы сбора данных, но во многих случаях это нецелесообразно. В зависимости от расхода и размера охладителя наддувочного воздуха, размера трубопровода и количества / качества изгибов, ограничения корпуса дроссельной заслонки и т. Д. Вы можете оценить от 1 фунта на квадратный дюйм (или меньше) до 4 фунтов на квадратный дюйм (или выше). Для наших примеров мы оценим, что имеется потеря 2 фунта на квадратный дюйм.Следовательно, нам нужно будет добавить 2 фунта на кв. Дюйм к давлению в коллекторе, чтобы определить давление нагнетания компрессора (P2c).

    • Где,
    • P2c = Давление нагнетания компрессора (psia)
    • MAP = абсолютное давление в коллекторе (psia)
    • = Потеря давления между компрессором и коллектором (фунт / кв. Дюйм)

Чтобы получить правильное состояние всасывания, теперь необходимо оценить воздушный фильтр или другие ограничения.Ранее при обсуждении коэффициента давления мы говорили, что типичное значение может составлять 1 фунт / кв.дюйм, так что это то, что будет использоваться в этом расчете. Кроме того, мы предполагаем, что мы находимся на уровне моря, поэтому мы будем использовать атмосферное давление 14,7 фунтов на квадратный дюйм. Нам нужно будет вычесть потерю давления на 1 фунт / кв. Дюйм из давления окружающей среды, чтобы определить давление на входе компрессора (P1) .

    • Где:
    • = Давление на входе компрессора (psia)
    • = Давление окружающего воздуха (фунт / кв. Дюйм)
    • = Потеря давления из-за воздушного фильтра / трубопровода (фунт / кв. Дюйм)

Таким образом, мы можем рассчитать коэффициент давления () по формуле.
Для двигателя 2,0 л:

= 2,7

Что значит «с турбонаддувом»? — Доу Хонда

2014 Honda Транспортные средства 29 августа 2016 г.

Что такое двигатель с турбонаддувом?

Двигатель с турбонаддувом — это двигатель, в котором для приведения в действие транспортного средства используется метод принудительной индукции с турбинным приводом.Этот метод заставляет переработанные автомобильные выхлопные газы попадать в камеру сгорания двигателя. В двигателе с турбонаддувом может проходить на 50% больше воздуха, чем в традиционном двигателе. Это означает, что двигатели с турбонаддувом могут быть меньше традиционных двигателей, но при этом производить такую ​​же мощность. Это то, что дает автомобилям с турбонаддувом способность быстро и мощно ускоряться.

Как работает двигатель с турбонаддувом?

Турбокомпрессор подключен к выпускному коллектору двигателя.Выхлопные газы попадают в турбокомпрессор и раскручивают турбины внутри. Затем он всасывается в компрессор, который нагнетает воздух в цилиндры двигателя. Чем больше воздуха проходит через цилиндры, тем большую мощность может выдавать двигатель. На рисунке выше показано, как турбокомпрессор работает с двигателем Honda VTEC Turbo.

Если вы хотите увидеть образец Honda с турбонаддувом, нажмите здесь, чтобы увидеть Civic EX-T 2016 года в выставочном зале Dow Honda!

Если вы хотите увидеть двигатель с турбонаддувом в действии, нажмите здесь, чтобы заказать тест-драйв!

Если у вас есть вопросы, нажмите здесь, чтобы связаться с нами!

Посмотрите видео ниже, чтобы узнать о Honda 1.5л турбомотор!

с турбонаддувом в безнаддувном двигателе?

Распространено заблуждение, что установить турбокомпрессор так же просто, как прикрутить его болтами!

Некоторые думают, что в 99% случаев, будь то бензиновый или дизельный, двигатель просто никогда не был рассчитан на такое увеличение мощности и крутящего момента. Итак, прежде чем вы начнете думать о подборе и установке турбокомпрессора, вы должны сначала подумать о двигателе.

Основные различия между безнаддувным двигателем и двигателем с турбонаддувом: степень сжатия, профиль распределительного вала, заправка топливом, момент зажигания, тип поршней и прочность некоторых вращающихся частей.

Турбокомпрессор в качестве компонента двигателя может довольно легко увеличить выходную мощность на 30%, а в некоторых случаях — до 100%. Поэтому первое, на что стоит обратить внимание, — это сам двигатель.

Способен ли двигатель выдерживать такое увеличение в его нынешнем состоянии? Была ли она способна, когда была новой? Точно так же сцепление, трансмиссия и тормоза подходят для работы?

Чтобы провести переоборудование двигателя без наддува, для эффективного завершения модернизации потребуются следующие модификации двигателя:

Распределители и поршни

Изготовление впускного и выпускного коллекторов для конкретного применения. Степень сжатия двигателя следует проверить и при необходимости снизить, в идеале она должна составлять от 7,5: 1 до 8,5: 1 (обычно), чтобы можно было использовать любое значительное давление наддува.

Это может быть достигнуто в одном из трех способов: преимущественно фитинг кованых поршней низкого сжатия, обработки верхней части стандартных поршней или установки более толстой прокладка головки или распорной пластины.

Спецификация распределительного вала

Следует также проверить спецификацию распределительного вала, чтобы убедиться, что продолжительность и перекрытие клапанов не слишком велики для данного применения.В идеале это должен быть распредвал небольшой продолжительности и перекрытия.

Топливная система

, то есть форсунки, топливный насос, давление и отображение системы зажигания также должны быть изменены с учетом повышенных требований турбонагнетателя. При повышении давления наддува необходимо замедлить момент зажигания.

Чтобы указать подходящий турбокомпрессор для области применения, нам потребуется следующая основная информация:

a) Объем двигателя
b) Максимальная частота вращения
c) Применение или использование i.е. трамвай / дрэг / гонка и т. д.
d) Предполагаемые требования к мощности и крутящему моменту
e) Требования к давлению наддува
f) Если двигатель должен иметь промежуточное или наддувное охлаждение

Если вы твердо намерены продолжить работу над турбонаддувом вашего автомобиля, вам необходимо сначала найти специалиста по переоборудованию и посоветоваться с ним.

Turbo Dynamics не выполняет этот тип работ, а просто предоставляет консультации, подбор и поставку турбокомпрессора, а также некоторые вспомогательные продукты (например, входные и выходные фланцы турбины; маслопроводы, фитинги и фланцы; силиконовые шланги высокого давления длины и колена; дамп клапаны. ..)

Мы можем предоставить чертежи фланцев с указанием размеров для изготовления коллектора. Преобразование может быть очень дорогостоящим (обычно от 2500 до 5000 фунтов стерлингов), поэтому получите предложение у своего специалиста по конверсии, прежде чем рассматривать проект дальше.

Что такое компоновка двигателя Hot V Turbo и какие у него преимущества?

Впервые представленные в рамках программы Ferrari Formula 1 в начале 1980-х годов, горячие V-двигатели с турбонаддувом возродились в таких мощных автомобилях, как Mercedes-AMG GT и Porsche Panamera.Так что же такое горячий V-образный двигатель и как он влияет на принудительную индукцию?

Недавно обнаруженный в новом Porsche Panamera горячий V-образный двигатель имеет выхлопные отверстия, направленные внутрь; направление, противоположное обычной установке. Порты указывают на центральную линию блока цилиндров, а турбокомпрессоры аккуратно размещены между двумя рядами цилиндров.Это означает, что турбины расположены гораздо ближе к месту сгорания в двигателе, а не прикреплены болтами к внешним сторонам блока цилиндров. Так зачем использовать эту настройку вместо макета соглашения? Позвольте познакомить вас с этим:

1. Тепло

Турбокомпрессоры питаются выхлопными газами двигателя, и поэтому они полагаются на скорость газов для правильного нагнетания.При снижении температуры выхлопных газов скорость уменьшается из-за отсутствия давления, что снижает скорость раскрутки турбокомпрессора. Итак, как правило, вы хотите, чтобы турбокомпрессор находился в теплой зоне моторного отсека. Большинству компонентов автомобиля обычно способствует охлаждение, поэтому турбокомпрессор следует размещать в таком месте, где другие близлежащие компоненты не подвергаются воздействию тепла. Для этого обычно используются дополнительные трубопроводы, но установка горячего V устраняет эту необходимость.

Меньшее расстояние до турбонагнетателей означает меньшую потерю тепла выхлопными газами.Каталитические нейтрализаторы (которые обычно находятся под автомобилем) также расположены внутри буквы V, поскольку они также лучше всего работают в горячем состоянии. Высокая температура между рядами поршней позволяет турбокомпрессорам и котлам повысить эффективность по сравнению с более традиционной подвесной системой.

2.Упаковка

В целом, чем меньше двигатель может быть в чистом размере при сохранении высокой выходной мощности, тем лучше. Поскольку производители пытаются сократить расходы, такие компании, как BMW, стремятся разработать один базовый блок двигателя, который используется во многих его моделях, с небольшими изменениями, чтобы различать варианты моделей. Плотный корпус, создаваемый горячей V-образной установкой, позволяет легко переносить трансмиссию с одного типа шасси на другой, а эта универсальность делает двигатель удобным для использования в модельном ряду компании.

Более компактная установка двигателя также значительно упрощает управление двигателем в моторном отсеке. Вместо турбонагнетателей и других вспомогательных компонентов, свешивающихся сбоку от блока цилиндров, горячий V-образный узел удерживает большую часть веса двигателя в плотном корпусе, что делает его колебания более предсказуемыми.

3.

Управление турбонагнетателем Стандартный блок цилиндров с двойным турбонаддувом и обычными турбинами, закрепленными на концах двигателя.

Поскольку турбины расположены намного ближе к выхлопным отверстиям, управление турбонагнетателем может быть более точным. Двигатели, ориентированные V-образно, имеют порядок включения, который может затруднить управление турбонаддувом, поскольку рабочее колесо вращается нерегулярно.

Чтобы устранить эту неисправность в стандартной системе с турбонаддувом, необходимо установить большое количество избыточных трубопроводов, чтобы изменение скорости вращения рабочего колеса было более предсказуемым. Благодаря тому, что баланс между двигателем и турбокомпрессорами можно лучше контролировать из-за их непосредственной близости в горячем V-образном двигателе, отклик дроссельной заслонки намного резче, что значительно упрощает управление автомобилем.

Популярность модели Hot V в последнее время среди производителей выросла, и AMG выпустила ее 4.0-литровый V8 для AMG GT, C63 и вскоре E63 с горячими двойными турбонаддувом, а также Porsche, представляющий концепт своей новой Panamera. Турбонаддув изменился со времен неуклюжей мощности, таких как Ferrari F40, с двигателями, которые почти не ощущаются турбонаддувом с почти идеальной линейностью. Внедрение горячих V-образных двигателей продвинуло этот путь по пути «невидимого» турбонаддува, и скоро это автомобильное колдовство распространится на большинство V-образных двигателей с принудительным впуском.

Как ухаживать за автомобилем с турбонаддувом

Советы по уходу за автомобилем с турбонаддувом в наши дни становятся все более востребованными.

Это неудивительно. В рамках глобального стремления к повышению эффективности автомобилей турбонаддув стал почти синонимом современной конструкции двигателя. На дорогах гораздо больше машин с турбинами под капотом, чем раньше.

Это привело к появлению большого количества статей и видео, которые дают советы по уходу за автомобилем с турбонаддувом, дают советы по прогреву и охлаждению двигателя до и после поездки, чтобы убедиться, что вы используете топливо с правильным октановым числом, соблюдая осторожность. на дроссельной заслонке и убедитесь, что вы выбрали правильную передачу. Они предупреждают, что невыполнение этого требования может привести к повреждению турбины и двигателя.

Но подавляющее большинство людей не просматривают сайты, подобные этому, в поисках совета по уходу за турбиной.Так что же с этим делают производители? Действительно ли несоблюдение этого совета приведет к повреждению современных автомобилей, или все эти советы устарели с развитием современных технологий?

По общему мнению производителей, современные автомобили испытывают до такой степени, что мало что можно сделать с новым двигателем с турбонаддувом, что могло бы вызвать какие-либо проблемы. Для старых автомобилей многие из приведенных выше советов верны, но сегодня программные системы таковы, что они нейтрализуют любые действия водителя, которые могут начать измельчать внутренние компоненты под капотом.

«Раньше мы давали консультации по автомобилям с турбонаддувом», — заявила представитель BMW. «Однако мы больше не предлагаем конкретных советов нашим клиентам, которые водят эти автомобили».

Представитель Audi

согласился, хотя и более осторожно. «Современные двигатели Audi с турбонаддувом не требуют особых мер предосторожности или рабочих процедур, которые были необходимы для старых двигателей», — сказал он. «Но мы, конечно же, рекомендуем владельцам соблюдать общие правила по минимизации износа, а также выбросов, которые в основном применимы ко всем двигателям.”

Такие правила обычно можно охарактеризовать как «должным образом ухаживайте за своей машиной». Несмотря на то, что технологии прошли долгий путь, автомобили по-прежнему представляют собой сложные части оборудования со сложными механическими компонентами, и они нуждаются в регулярном обслуживании и TLC. Подробности этого будут перечислены в руководстве к автомобилю, но основные моменты включают соблюдение рекомендуемых интервалов обслуживания и проверку и замену жидкостей по мере необходимости.

Но когда речь идет конкретно о турбинах, не о чем беспокоиться, как объясняет менеджер по техническим операциям Citroen по запасным частям и обслуживанию в Великобритании Ян Седжвик.

«За прошедшие годы в области технологий управления двигателем и турбонагнетателей был достигнут значительный прогресс. Двигатели THP Performance оснащены отдельными системами охлаждения, которые помогают поглощать тепло, поэтому нет необходимости оставлять двигатели на холостом ходу для рассеивания тепла — система автоматически работает, когда автомобиль выключен. Турбины с электронным управлением помогают контролировать нагрузку на двигатель и турбонагнетатель, что позволяет лучше управлять стилем вождения и потребляемой мощностью ».

Рикардо Мартинес-Ботас — профессор турбомашиностроения факультета машиностроения Имперского колледжа Лондона и мировой авторитет в области турбо-технологий. Он говорит, что, хотя современные технологии означают, что современные водители автомобилей могут просто сесть в машину и поехать, это изменится, если автомобиль будет изменен по сравнению со стандартным.

«Системы управления двигателем и современные конструкции двигателей позаботятся обо всем», — говорит он. «Но если вы измените систему, это сразу же изменит замысел конструкции, и вы можете выйти за рамки предполагаемого использования устройства. Если вы вносите изменения, вам действительно нужно быть предельно осторожным.

Турбокомпрессор — обзор | Темы ScienceDirect

1 ВВЕДЕНИЕ

Турбокомпрессоры обычно оснащаются опорными подшипниками для поддержки турбин и узла ротора.Однако шарикоподшипники стали популярными в качестве замены опорных подшипников в турбонагнетателях. Ван (1) в своем обзоре технологии керамических подшипников указывает, что гибридные керамические подшипники могут обеспечить лучшую реакцию на ускорение, более низкие требования к крутящему моменту, более низкие вибрации и меньшее повышение температуры, чем опорные подшипники. Гибридные керамические шарикоподшипники содержат стальные внутреннюю и внешнюю обоймы, керамические шарики и обычно обработанный сепаратор. Керамические шарики по сравнению со стальными противоположными частями легче, гладче, жестче, тверже, устойчивы к коррозии и электрически.Эти основополагающие характеристики позволяют значительно повысить производительность системы подшипникового ротора. Керамические шарики особенно хорошо подходят для использования в суровых, высоких температурах и / или коррозионных средах. Таким образом, гибридные керамические подшипники идеально подходят для турбонагнетателей. Miyashita et al. (2), Keller et al. (3) и Tanimoto et al. (4) использовали шарикоподшипники в небольших автомобильных турбокомпрессорах. Тем не менее, проблемы все еще остаются для высокоскоростных турбонагнетателей с большой мощностью, для которых требуются подшипники с большим внутренним диаметром, работающие с номинальным диаметром более 2 миллионов.По мере увеличения размера подшипника динамика роторной системы подшипников становится критической для комплексного проектирования и удовлетворительной работы турбокомпрессора.

Исследователи попытались аналитически проанализировать динамику роторной системы турбокомпрессора. San Andrés et al. (5,6,7) представили комплексные модели для прогнозирования динамики турбокомпрессора. Включение полной модели подшипника с жидкостной пленкой позволило понять влияние динамики подшипника на динамику турбокомпрессора.Bou-Said et al. (8) также исследовали динамику ротора турбокомпрессора с линейными и нелинейными аэродинамическими моделями подшипников. Петтинато и др. (9) продемонстрировали преимущества таких динамических моделей ротора турбокомпрессора, используя их для улучшения конструкции подшипников, используемых в турбокомпрессоре. Бонелло (10) реализовал нелинейную модель для исследования динамики турбокомпрессора на полностью плавающих и полуплавающих кольцевых подшипниках. Однако большая часть работы над динамическими моделями ротора турбокомпрессора была сосредоточена на турбокомпрессорах с опорными подшипниками.Следовательно, эти модели не могут предсказать динамику ротора турбонагнетателей, в которых используются подшипники качения. Тем не менее, исследователи попытались разработать аналитические модели для изучения динамики простых роторных систем с подшипниками качения. Гупта (11-13) был одним из первых, кто представил трехмерную динамическую модель подшипника. Разработанная модель была способна анализировать движение всех компонентов подшипника. Meyer et al. (14) представили влияние дефектов на подшипник и продемонстрировали характер колебаний, связанных с дефектами.Saheta et al. (15) и Ghaisas et al. (16) представили полностью динамическую модель дискретных элементов с шестью степенями свободы. В их моделях компоненты подшипника рассматриваются как части сфер и цилиндров, что значительно сокращает вычислительные затраты, связанные с динамическим моделированием подшипников. Sopanen et al. (17, 18) разработали модель подшипника, которая учитывала влияние включений. Однако в их анализе динамика клетки и центробежные нагрузки не учитывались. Аштекар и др. (19, 20) разработали модель подшипника с шестью степенями свободы, которая учитывала эффекты дефектов поверхности подшипника. В целом предыдущие исследователи сосредоточились на динамике подшипников и проигнорировали сложное взаимодействие роликовых подшипников с системой вал / ротор. Однако для полного понимания и изучения высокоскоростных турбонагнетателей с большой выходной мощностью критически важно объединить влияние подшипников и динамики вала / ротора. В высокоскоростных приложениях ротор претерпевает различные формы колебаний, что приводит к сложному движению несущей системы ротора. Lim et al. (21) и Hendrikx et al. (22) разработали модель подшипника, учитывающую эффекты гибкости ротора; однако они пренебрегли влиянием обоймы подшипника на динамику системы.Тивари (23, 24) рассмотрел влияние дисбаланса и предварительного нагружения подшипников на динамику ротора, однако была рассмотрена упрощенная модель идеального подшипника и предполагалось, что ротор является жестким. Пренгер (25) представил модель подшипника, способную моделировать конические роликоподшипники и радиально-упорные подшипники. Модель Пренгера включала эффект гибких валов; однако рассматривались только простые модели вала, и эта модель не могла работать с высокими скоростями.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *