Турбина устройство: Как работает турбина на бензиновом двигателе — устройство турбокомпрессора

Содержание

Устройство турбины | carakoom.com

Как устроена турбина

Устройство системы турбонаддува очень простое. Турбина устанавливается на выпускной коллектор двигателя. Выхопные газы из цилиндров вращают турбину. Турбина соединена валом с компрессором, который находится между воздушным фильтром и впускным коллектором. Компрессор сжимает воздух, который поступает в цилиндры.

Выхлопные газы из цилиндров проходят через крыльчатку турбины и вращают ее. Больше выхлопных газов – быстрее вращается крыльчатка турбины. На другом конце вала распологается крыльчатка компрессора, которая подает воздух к цилиндрам.

Для того, чтобы выдерживать скорости вращения в 150.000 оборотов в минуту, вал турбины должен поддерживаться особыми подшипниками. Большинство обычных подшипников на таких скоростях просто разваливаются, поэтому в турбинах используются особые гидроподшипники. В таких подшипниках осуществлен постоянный подвод масла к валу. Масло выполняет две функции: охлаждает вал и другие детали турбины, а также снижает трение.

Одна из проблем турбонагнетателей заключается в том, что они не дают мгновенной реакции на газ. Турбине необходима секунда или две, чтобы раскрутиться до оптимальной скорости и создать нужное давление. Эта секундная задержка называется турбо-лагом, после которой автомобиль устремляется вперед.

Один из вариантов понизить турбо-лаг – уменьшить инерцию вращающихся деталей, уменьшив их вес. Это позволит турбине и компрессору раскручиваться быстрее и создавать давление раньше. Хотите меньше инерции, выбирайте турбину меньшего размера. Маленькие турбины создают давление быстрее и на более низких оборотах двигателя, но на высоких скоростях, когда необходимо очень много воздуха, маленькие турбины могут не справиться со сжатием воздуха. При больших скоростях двигателя, когда поток выхлопных газов возрастает, создается угроза для маленьких турбин, через которые проходит слишком большой поток и скорость возрастает до огромных показателей.
Кстати, есть такая система, как антилаг. Ее используют на драговых гоночных турбовых авто. Почитайте по ссылке.

У многих систем турбонаддува есть клапан вестгейта (wastegate valve), который позволяет выводить излишние выхлопные газы, дабы турбина не раскручивалась слишком быстро. Пружинка в клапане вестгейта определяет давление в системе, если давление становится выше определенного показателя, это значит, что турбина вращается слишком быстро, тогда излишнее давление сбрасывается через вестгейт, а скорость вращения турбины замедляется.

Некоторые турбины имеют шариковые подшипники, а не гидроподшипники. Но эти шариковые подшипники тоже специфичные – они изготовленные по передовым технологиям с использованием превосходных материалов. Такие подшипники позволяют вращаться валам с меньшим трением, чем при использовании гидроподшипников. Также такие подшипники позволяют использовать более легкие валы меньшего размера.

Также в турбинах используются керамические крыльчатки, которые легче стальных.

В следующий раз я расскажу вам как работают турбины в паре.

Первая часть
Вторая часть
Или все наоборот 😉

Турбина — Что такое Турбина

Турбина — ротационный двигатель с непрерывным рабочим процессом и вращательным движением рабочего органа

Турбина — ротационный двигатель с непрерывным рабочим процессом и вращательным движением рабочего органа (ротора), преобразующий кинетическую энергию и/или внутреннюю энергию рабочего тела (пара, газа, воды) в механическую работу.
Струя рабочего тела воздействует на лопатки, закреплённые по окружности ротора, и приводит их в движение.
Применяется в качестве привода электрического генератора на тепловых, атомных и гидро электростанциях, как составная часть приводов на морском, наземном и воздушном транспорте, а также гидродинамической передачи, гидронасосах.

Турбина состоит из 2-х основных частей.
Ротор с лопатками — подвижная часть турбины.
Статор с выравнивающим аппаратом — неподвижная часть.
По направлению движения потока рабочего тела различают аксиальные паровые турбины, у которых поток рабочего тела движется вдоль оси турбины, и радиальные, направление потока рабочего тела в которых перпендикулярно оси вала турбины.

Центробежные турбины (турбокомпрессоры) также выделяют как отдельный тип турбин.
По числу контуров турбины подразделяют на 1-контурные, 2-контурные и 3-контурные.
Очень редко турбины могут иметь 4 или 5 контуров.

Многоконтурная турбина позволяет использовать большие тепловые перепады энтальпии, разместив большое число ступеней разного давления.
По числу валов различают 1-вальные, 2-вальные, реже 3-вальные, связанных общностью теплового процесса или общей зубчатой передачей (редуктором).

Расположение валов может быть как коаксиальным так и параллельным с независимым расположением осей валов.
В местах прохода вала сквозь стенки корпуса установлены концевые уплотнения для предупреждения утечек рабочего тела наружу и засасывания воздуха в корпус.
На переднем конце вала устанавливается предельный регулятор (регулятор безопасности), автоматически останавливающий (замедляющий) турбину при увеличении частоты вращения на 10-12 % сверх номинальной.

По типу рабочего тела турбины делятся на Газовые турбины, Паровые турбины и Гидротурбины.

Для того чтобы увидеть внутреннее устройство турбины, при ее изображении «вырезана» передняя верхняя четверть. Точно также показана лишь задняя часть кожуха 2. Турбина состоит из трех цилиндров (ЦВД, ЦСД и ЦНД), нижние половины корпусов которых обозначены соответственно 39, 24 и18. Каждый из цилиндров состоит из статора, главным элементом которого являются неподвижный корпус, и вращающегося ротора. Отдельные роторы цилиндров (ротор ЦВД 47, ротор ЦСД 5 и ротор ЦНД 11) жестко соединяются муфтами 31 и 21. К полумуфте 12 присоединяется полумуфта ротора электрогенератора (не показан), а к нему — ротор возбудителя. Цепочка из собранных отдельных роторов цилиндров, генератора и возбудителя называется валопроводом. Его длина при большом числе цилиндров (а самое большое их число в современных турбинах — 5) может достигать 80 м.

Валопровод вращается во вкладышах 42, 29, 23, 20 и т.д. опорных подшипников скольжения на тонкой масляной пленке и не касается металлической части вкладышей подшипников. Как правило, каждый из роторов размещают на двух опорных подшипниках. Иногда между роторами ЦВД и ЦСД устанавливают только один общий для них опорный подшипник (см. позицию 29 на рис. 6.1). Расширяющийся в турбине пар заставляет вращаться каждый из роторов, возникающие на них мощности складываются и достигают на полумуфте 12 максимального значения.

К каждому из роторов приложено осевое усилие. Они суммируются, и их результирующая осевая сила передается с гребня 30 на упорные сегменты, установленные в корпусе упорного подшипника.

Каждый из роторов помещают в корпус цилиндра (см., например, поз. 24). При больших давлениях (а в современных турбинах оно может дос­тигать 30 МПа  300 ат) корпус цилиндра (обычно ЦВД) выполняют двухстенным (из внутреннего 35 и внешнего 46 корпусов). Это уменьшает разность давлений на каждый из корпусов, позволяет сделать его стенки более тонкими, облегчает затяжку фланцевых соединений и позволяет турбине при необходимости быстро изменять свою мощность.

Все корпуса в обязательном порядке имеют горизонтальные разъемы 13, необходимые для установки роторов внутри цилиндров при монтаже, а также для легкого доступа внутрь цилиндров при ревизиях и ремонтах. При монтаже турбины все плоскости разъемов нижних половин корпусов устанавливают специальным образом (для простоты можно считать, что все плоскости разъема совмещают в одной горизонтальной плоскости). При последующем монтаже ось валопровода помещают в эту плоскость разъема, что обеспечивает центровку — ось валопровода будет точно совпадать с осью кольцевых расточек корпусов. Этим будут исключены задевания ротора о статор, которые могут привести к тяжелой аварии.

Пар внутри турбины имеет высокую температуру, а ротор вращается во вкладышах на масляной пленке, температура масла которой как по соображениям пожаробезопасности, так и необходимости иметь определенные смазочные свойства, не должна превышать 100 °С (а температура подаваемого и отводимого масла должна быть еще ниже). Поэтому вкладыши подшипников выносят из корпусов цилиндров и размещают их в специальных строениях — опорах (см. поз. 45, 28, 7 на рис. 6.1). Таким образом, вращающиеся концы каждого из роторов соответствующего цилиндра необходимо вывести из невращающегося статора, причем так, чтобы с одной стороны исключить какие-либо (даже малейшие) задевания ротора о статор, а с другой — не допустить значительную утечку пара из цилиндра в зазор между ротором и статором, так как это снижает мощность и экономичность турбины. Поэтому каждый из цилиндров снабжают концевыми уплотнениями (см. поз. 40, 32, 19) специальной конструкции.

Турбина устанавливается в главном корпусе ТЭС на верхней фундаментной плите 36 (см. рис. 2.6). В плите выполняются прямоугольные окна по числу цилиндров, в которых размещаются нижние части корпусов цилиндров, а также осуществляется вывод трубопроводов, питающих регенеративные подогреватели, паропроводы свежего и вторично перегретого пара, переходный патрубок к конденсатору.

После изготовления турбина проходит контрольную сборку и опробование на заводе-изготовителе. После этого ее разбирают на более-менее крупные блоки, доводят до хорошего товарного вида, консервируют, упаковывают в деревянные ящики и отправляют для монтажа на ТЭС.

Монтаж турбины осуществляют в следующем порядке. Сначала устанавливают нижнюю половину ЦНД 18 опорным поясом 15, расположенным по периметру обоих выходных патрубков ЦНД. ЦНД имеет собственные вваренные в них опоры ротора. Затем на перемычке между окнами под ЦВД и ЦСД и слева от окна под ЦВД размещают нижние половины корпусов опор соответственно 28 и 41. После этого на опоры подвешивают нижние половины корпусов наружных цилиндров 39 и 24, в них помещают статорные элементы и осуществляют центровку всех цилиндров турбины.

В опоры ротора вставляются нижние половины опорных вкладышей 42, 29, 23, 20 и 16, и на них опускают отдельные роторы. Их строго прицентровывают друг к другу и соединяют с помощью муфт 31 и 21.

Затем в верхние половины корпусов помещают необходимые внутренние статорные элементы и турбину закрывают. Для этого в отверстия на горизонтальные разъемы корпусов ввинчивают шпильки и опускают верхние половины (крышки — см., например, поз. 46 на рис. 6.1), после чего с помощью шпилек и специальных приспособлений верхние и нижние половины корпусов плотно стягиваются по фланцевым разъемам.

Аналогичным образом закрываются опоры роторов. После изоляции турбины, ограждения кожухом и многочисленных проверок ее доводят для состояния, пригодного к несению нагрузки.

При работе турбины пар из котла (см. рис. 2.2) по одному или нескольким паропроводам (это зависит от мощности турбины) поступает сначала к главной паровой задвижке, затем к стопорному (одному или нескольким) и, наконец, к регулирующим клапанам (чаще всего — 4). От регулирующих клапанов (на рис. 6.1 не показаны) пар по перепускным трубам 1 (на рис. 6.1 их четыре: две из них присоединены к крышке 46 внешнего корпуса ЦВД, а две других подводят пар в нижние половины корпуса) подается в паровпускную камеру 33 внутреннего корпуса ЦВД. Из этой полости пар попадает в проточную часть турбины и, расширяясь, движется к выходной камере ЦВД 38. В этой камере в нижней половине корпуса ЦВД имеются два выходных патрубка 37. К ним приварены паропроводы, направляющие пар в котел для промежуточного перегрева.

Вторично перегретый пар по трубопроводам поступает через стопорный клапан (не показан на рис. 6.1) к регулирующим клапанам 4, а из них — в паровпускную полость ЦСД 26. Далее пар расширяется в проточной части ЦСД и поступает в его выходной патрубок 22, а из него — в две перепускные трубы 6 (иногда их называют ресиверными), которые подают пар в паровпускную камеру ЦНД 9. В отличие от однопоточных ЦВД и ЦСД, ЦНД почти всегда выполняют двухпоточными: попав в камеру 9, пар расходится на два одинаковых потока и, пройдя их, поступает в выходные патрубки ЦНД 14. Из них пар направляется вниз в конденсатор. Перед передней опорой 41 располагается блок регулирования и управления турбиной 44. Его механизм управления 43 позволяет пускать, нагружать, разгружать и останавливать турбину.

принцип работы, конструкция, особенности турбокомпрессора

Турбокомпрессор – это механизм, который используют в автомобилях. С его помощью удается улучшить работу двигателя, повысить его мощность и при этом сохранить габаритные размеры агрегата, расход топлива.

Конструкция

Устройство компрессора имеет довольно сложную, но в то же время весьма понятную конструкцию. В нее входят такие элементы, как:

  1. Корпус. Его выполняют преимущественно из материалов, способных пережить высокие температуры. Обычно в качестве такого материала выступает сталь. Выполняется корпус в форме улитки, у которой есть два разнонаправленных патрубка.
  2. Турбинное колесо. Способствует переводу энергии выхлопных газов в энергию вращения вала. Крепится непосредственно на вал. Для изготовления колеса используют железно-никелевый сплав.
  3. Компрессорное колесо. Способствует нагнетанию воздуха в цилиндры, полученного из прокрученных через турбинное колесо выхлопных газов. Материал для изготовления этой детали – алюминий. Плюсом выбора алюминия является снижение потерь энергии.
  4. Вал турбины. Элемент предназначен для соединения турбинного и компрессорного колес.
  5. Подшипники. Также их иногда называют шарикоподшипниками ввиду того, что они обеспечивают шарнирное крепление вала в корпусе. Конструкция может содержать от одного до двух подшипников.
  6. Перепускной клапан. Отвечает за количество поступающего газа, перенаправляя его и воздействуя таким образом на турбинное колесо. Клапан дополнительно оснащен пневматическим приводом.

Одновременная работа всех элементов делает двигатель эффективным.

Принцип работы

Действие компрессора основано на выполнении элементами следующих этапов:

  1. Лопатки турбинного колеса принимают выхлопные газы.
  2. Колесо начинает вращаться, постепенно увеличивая скорость оборотов. При необходимости колесо может разогнаться до 250 000 оборотов в минуту.
  3. Через турбинное колесо разогнавшиеся газы переходят в пусковой клапан.
  4. Сжатый воздух попадает на компрессионное колесо, которое равномерным движением перенаправляет его во впускное отверстие внутрь цилиндра двигателя.

С помощью перечисленных выше действий двигатель начинает активно работать, заставляя автомобиль трогаться с места.

Особенности эксплуатации турбин

Если сравнивать действие турбокомпрессора со стандартным нагнетателем воздуха, который работает исключительно от привода коленчатого вала, главными достоинствами первого будут:

  • повторное использование энергии выхлопных газов;
  • небольшая цена;
  • экономия энергии.

Устройство турбины компрессора практически одинаковое как в случае использования на дизельных, так и на бензиновых моторах. Однако предпочтение все же отдают компрессорам для дизельных агрегатов.

Особенность турбокомпрессора заключается в режиме действия. Для бензиновых двигателей устройства выполняют из жаропрочных материалов из-за высокой температуры отработавших газов, которая способна достичь 1000°. У дизеля температура газов меньше, поэтому и материалы в турбокомпрессоре используют менее жаропрочные.

Дополнительные элементы системы

Стоит отдельно рассмотреть несколько дополнительных элементов. Они тоже входят в конструкцию компрессоров и регулируют определенные процессы.

Клапан Blow-off

Блоу-офф клапан по-другому еще называют перепускным. Установка этого клапана осуществляется в воздушной системе, обычно между дизельной заслонкой и выходным отверстием компрессора. Цель клапана — устранение аварийных ситуаций при работе агрегата. Например, в процессе эксплуатации агрегат может перейти в нежелательный режим surge, если вовремя это не остановить.

Данный режим возникает из-за высокой скорости воздушного потока. В этом случае компрессор старается перекрыть дроссель и хочет сделать это как можно резче. Объясняется возникновение режима тем, что скорость воздушного потока вследствие выхода газов и сам расход воздуха начинают резко снижаться. Турбина же, ввиду силы инерции продолжает быстрое вращение.

Если не уменьшить вращения, последствия могут быть печальными. Один из признаков подобного скачка воздуха – неприятный звук, который прорывается через компрессор. Дальнейшее игнорирование проблемы приведет к поломке подшипников турбины, которые вынуждены принимать большие нагрузки из-за возникших скачков.

Блоу-офф клапан следит за величиной давления внутри коллектора и включается в работу, если оно начинает сильно скакать. Обеспечивает работоспособность клапана установленная внутри пружина, с помощью которой удается предотвратить изменение положения дросселя и наладить работу компрессора.

Если же клапан не успел, и дроссель закрылся, то блоу-офф начинает стравливание в атмосферу избытка давления. Благодаря подобной работе удается снизить риск аварии и уберечь турбокомпрессор от больших нагрузок, способных вызвать его поломку.

Клапан Wastegate

Механический клапан Wastegate устанавливают на турбине или на конструкции выпускного коллетора. Основная задача этой детали заключается в регулировании уровня давления, которое постепенно нарастает внутри компрессора.

Конструкции некоторых дизельных двигателей не содержат вейстгейт, а вот в случае бензиновых агрегатов наличие подобного клапана – обязательное требование для его надежной эксплуатации.

Благодаря работе вейстгейта удается обеспечить беспроблемный и беспрепятственный выход для выхлопных газов из системы. При этом отработавшие газы обходят работающую турбину. С помощью подобного распределения газов осуществляется контроль за нужны количеством энергии.

Подобная предусмотрительность позволяет организовать эффективное управление давлением наддува внутри компрессора. Осуществление контроля обеспечивается за счет встроенной пружины, которая создает противодавление. Именно эта конструкция контролирует обходной поток отработавших газов.

Клапан по виду может быть:

  1. Встроенным. Конструкция подразумевает наличие заслонки, которая встраивается в хаузинг. Хаузинг также называют «улиткой» основной турбины агрегата. Также этот элемент содержит пневматический актуатор.
  2. Внешний. Гейт такого типа представляет стандартный клапан, устанавливаемый на выпускной коллектор. У этого клапана есть преимущество, которое делает его более востребованным нежели встроенный. При необходимости клапан позволяет вернуть сброшенных обходной поток. В случае спортивных автомобилей сброс клапан сбрасывает газы прямо в атмосферу, предотвращая их попадание внутрь турбины.

Оба дополнительных элемента способствуют равномерной работе автомобильного турбокомпрессора и предотвращают возникновение неприятных ситуаций, способных повлечь за собой различные аварии.

Плюсы и минусы

У турбокомпрессора, как и у любого устройства, имеются свои плюсы и минусы в работе. Для начала стоит озвучить достоинства агрегата, и среди них внимание можно уделить следующи:

  1. Турбокомпрессор считается востребованным агрегатом ввиду возможности увеличения мощности двигателя на 35-40%.
  2. Агрегат не способен навредить двигателю и его работе. Любые поломки мотора, а также выход его из строя никак не связан с воздействием на него агрегата, который отвечает за мощность.
  3. Двигатель, оборудованный компрессором, выбрасывают в атмосферу меньшее количество выхлопов. Объясняется это тем, что турбокомпрессор использует энергию отработавших газов повторно, в связи с чем уменьшается их количество на окончательном выходе из двигателя.
  4. Позволяет уменьшить расход топлива на 5-20%. Подобная характеристика также позволяет увеличить КПД и сделать работу мотора эффективнее.

Также к плюсам можно отнести то, что двигатели, оборудованные турбокомпрессором, лучше работают на высокогорных дорогах, практически не теряя мощность. Наконец, устройство заглушает шум от работы системы выпуска.

Минусы конструкции в:

  • увеличении стоимости обслуживания автомобиля;
  • необходимость в использовании специального моторного масла;
  • постоянной проверке качества топлива и его замене.

Еще один минус в необходимости проработки двигателя на холостых оборотах перед поездкой.

Несмотря на недостатки, турбокомпрессор все же стоит использоваться в автомобилях ввиду перечисленных выше достоинств. Данный агрегат способен заметно улучшить работу двигателя и сделать поездку на автомобиле более комфортной.

Принцип работы турбины самолета

Как работает авиационный двигатель — простым языком.

 То что вы видите под крылом — это не турбина, а именно авиационный двигатель, а турбина — это его составная часть.

Авиационный турбовентиляторный реактивный двигатель необходим для создания тяги, которая преодолеет сопротивление воздуха, сопротивление самолета и его частей, разгонит самолет до скорости, на которой вырастет подъемная сила, способная оторвать самолет от земли и унести его с полной загрузкой в небо.

Передняя часть двигателя называется воздухозаборник. Воздух, попадая в него, начинает частично сжиматься. Далее воздух попадает на ступени вентилятора и ряд лопаток, где его давление и температура от сжимания начинает расти.

Воздух дальше идет по двум контурам. Внешний контур сжимает воздух благодаря своей форме. Воздух, который пошел во внутренний контур все больше сжимается, проходя каждый ряд статичных и крутящихся лопаток, сделанных из титана.

В компрессоре высокого давления он сжимается и его температура растет. И вот воздух попадает в камеру сгорания, где он смешивается с топливом. В результате этого резко растет тепловая энергия.⠀

Разогретые до огромной температуры газы выходят с бешеной скоростью из камеры сгорания и расширяются. Попадая на колесо турбины, они приводят ее в вращение.Турбина сидит на одном валу с компрессором. Компрессор начинает вращаться и получается замкнутая цепь. Воздух вновь засасывается компрессором и процесс продолжается.

Далее происходит следующее: разогретые до огромной температуры газы выходят с бешеной скоростью из камеры сгорания и расширяются. Попадая на колесо турбины, они приводят ее во вращение.

Турбина сидит на одном валу с компрессором. Компрессор начинает вращаться. Получается замкнутая цепь: воздух вновь засасывается компрессором, и процесс повторяется.

Выходящие газы попадают в сопло и на выходе из него смешиваясь с воздухом с внешнего контура создают реактивную струю, которая и толкает самолет сквозь воздушную среду. 

Турбореактивный двигатель (ТРД)

ТРД стал самым распространённым в авиации воздушно-реактивным двигателем. Он является базой для создания целого семейства двигателей, объединяемых под общим названием газотурбинных двигателей. ТРД используют в качестве горючего керосин, находящийся в топливных баках, а в качестве окислителя – кислород воздуха.

Поток воздуха, попадающего в двигатель, тормозится во входном устройстве (1), в результате чего давление воздуха перед осевым компрессором (2) повышается. Ротор (вращающаяся часть) объединяет ряд рабочих колёс компрессора (3), представляющих собой диски с закреплёнными на них рабочими лопатками.

 Сжатый воздух из компрессора попадает в камеру сгорания (7). Примерно 25–35% от общего потока воздуха направляется непосредственно в жаровые трубы, где происходит основной процесс сгорания керосина, поступающего в распылённом состоянии через форсунки (5).

Другая часть воздуха обтекает наружные поверхности жаровых труб, и на выходе из камеры сгорания смешивается с продуктами сгорания для их охлаждения, что позволяет поддерживать температуру газовоздушной смеси в камере сгорания на уровне, определяемом допустимой теплопрочностью стенок камеры сгорания, лопаток ротора (8) и лопаток спрямляющего аппарата турбины (9). 

Часть механической мощности отбирается от вала (6) для привода агрегатов двигателя  и привода электрогенераторов, обеспечивающих энергией различные бортовые системы. Основная часть энергии продуктов сгорания идёт на ускорение газового потока в выходном устройстве ТРД – реактивное сопло (10), т. е. на создание реактивной тяги.

Стартовая закрутка вала (5) осуществляется стартером, приводимым при запуске двигателя от наземного или бортового электроагрегата, при дальнейшей работе двигателя вращение вала поддерживается вращением ротора турбины.

 Турбонаддув

Турбонаддув – это система, позволяющая увеличить максимальную мощность двигателя, используя для этого энергию выхлопных газов. 

Первые турбины хотя и давали весьма ощутимую прибавку в мощности, но из-за своей громоздкости во много раз увеличивали и без того немаленький вес двигателей автомобилей тех лет.

Конструкторы со временем усовершенствовали технологию, сделав элементы системы более легковесными, одновременно повысив ее производительность. Но одним из существенных недостатков оставался повышенный расход топлива.

Конструкторам удалось решить одну из главных проблем турбодвигателя – расход топлива, ведь, как известно, дизельный агрегат менее «прожорливый», чем бензиновый.

Еще один несомненный плюс дизельного топлива – его отработанные газы имеют температуру ниже, чем бензиновые, стало быть, основные агрегаты системы турбонаддува можно было производить из менее тяжеловесных и жаростойких материалов. 

Работа реактивного двигателя

Реактивное движение – это такой процесс, при котором от определенного тела с некоторой скоростью отделяется одна из его частей. Сила, которая возникает при этом, работает сама по себе, без малейшего контакта с внешними телами. Реактивное движение стало толчком к созданию реактивного двигателя.

Представим выстрел из любого огнестрельного оружия. Струя раскаленного газа, который образовался в процессе сгорания заряда в патроне, отталкивает оружие назад. Чем мощнее заряд, тем сильнее будет отдача.

В качестве горючего для реактивных двигателей вначале применяли дымный порох. Реактивные двигатели требовали топлива с основой из нитроцеллюлозы, которая растворялась в нитроглицерине. В больших агрегатах сегодня используют специальную смесь полимерного горючего с перхлоратом аммония в качестве окислителя.

Принцип действия РД

В качестве топлива в реактивных двигателях используется жидкий кислород либо азотная кислота. В качестве горючего применяют керосин. 

Компоненты поступают в камеру сгорания из двух отдельных баков. После смешивания они превращаются в массу, которая при сгорании выделяет огромное количество тепла и десятки тысяч атмосфер давления. Окислитель подается в камеру сгорания.

Топливная смесь по мере прохождения между сдвоенными стенками камеры и сопла охлаждает эти элементы. Далее горючее попадет через огромное количество форсунок в зону воспламенения. Струя вырывается наружу. За счет этого и обеспечивается толкающий момент.

Несмотря на то что жидкостные двигатели потребляют очень много горючего, их до сих пор используют в качестве маршевых агрегатов для ракеты-носителей и маневровых для орбитальных станций.

Устройство

Устроен РД следующим образом:

— компрессор;

— камера для сгорания;

— турбины;

— выхлопная система.

Компрессор представляет собой несколько турбин. Их задача – всасывать и сжимать воздух по мере того, как он проходит через лопасти. В процессе сжатия повышается температура и давление воздуха. 

Смесь выходит из камеры сгорания на высокой скорости, а затем расширяется. Далее она следует через турбину, лопасти которой вращаются за счет воздействия газов. Эта турбина, соединяясь с компрессором, находящимся в передней части агрегата, и приводит его в движение. Воздух, нагретый до высоких температур, выходит через выпускную систему. 

Двухконтурный РД

Эти агрегаты имеют массу преимуществ перед турбореактивными (меньший расход топлива при той же мощности).

Воздух, захватываемый турбиной, частично сжимается и подается в первый контур на компрессор и на второй – к неподвижным лопастям. Турбина при этом работает в качестве компрессора низкого давления.

В первом контуре двигателя воздух сжимается и подогревается, а затем подается в камеру сгорания. Здесь происходит смесь с топливом и воспламенение. Образуются газы, которые подаются на турбину высокого давления, за счет чего и вращаются лопасти турбины.

Затем газы проходят через турбину низкого давления. Она приводит в действие вентилятор, и газы попадают наружу, создавая тягу.

Турбовинтовой двигатель 

Конструкция и принцип работы были взяты из механизма турбореактивного мотора, а от поршневого — воздушные винты. Таким образом, стало возможным совмещение небольших габаритов, экономичности и высокого коэффициента полезного действия.

Однако для сверхзвуковой скорости они годными не были. Поэтому с появлением таких мощностей в военной авиации от них отказались. Зато гражданские самолеты в основном снабжаются именно ими.

Схема турбовинтового двигателя выглядит следующим образом: после нагнетания и сжатия компрессором воздух попадает в камеру сгорания. Туда же впрыскивается топливо. Полученная смесь воспламеняется и создает газы, которые при расширении поступают в турбину и вращают ее. Нерастраченная энергия выходит через сопло, создавая реактивную тягу.

Турбина

Турбина способна развить скорость до 20 тысяч оборотов в минуту, но винт не сможет ей соответствовать, поэтому здесь имеется понижающий редуктор. Редукторы могут быть разными, но главная их задача — снижать скорость и повышать момент.

Для повышения тяги иногда двумя винтами снабжается турбовинтовой двигатель. Принцип работы при этом у них реализуется за счет вращения в противоположные стороны, но при помощи одного редуктора.

Преимуществами турбовинтового двигателя являются:

  • малый вес по сравнению с поршневыми агрегатами;
  • экономичность по сравнению с турбореактивными моторами.

Турбокомпрессор

Принцип работы турбокомпрессора сводится к следующему:

  • при попадании в мотор топливовоздушной смеси происходит ее сгорание, которая затем выходит через выхлопную трубу. В начале выпускного коллектора установлена крыльчатка, крепко соединенная с другой крыльчаткой, расположенной во впускном коллекторе;
  • поток выходящих из двигателя выхлопных газов раскручивает крыльчатку, находящуюся в выпускном коллекторе, которая в свою очередь приводит в движение крыльчатку, установленную на впуске;
  • в мотор поступает большее количество воздушной массы, в него подается больше топлива. 

Преимущества и недостатки турбонаддува

Турбокомпрессор используется ввиду простоты конструкции и хороших эксплуатационных параметров. Турбонаддув позволяет увеличить мощность двигателя. 

Двигатель с турбокомпрессором имеет меньший выброс вредных газов в атмосферу, так как вырабатываются дополнительные выхлопные газы в двигатель. У сгораемого топлива становится меньше отходов.

Использование двух турбокомпрессоров и других турбо деталей

На некоторые двигатели устанавливается два турбокомпрессора разного размера. Малый турбокомпрессор быстрее набирает обороты, снижая тем самым задержку ускорения, а большой обеспечивает больший наддув при высокой скорости вращения двигателя.

Охладитель воздуха или охладитель наддувочного воздуха является дополнительным устройством, которое выглядит как радиатор, только воздух проходит как внутри, так и снаружи охладителя. 

Охладитель увеличивает мощность двигателя, охлаждая сжатый воздух от компрессора перед его подачей в двигатель. 

Турбокомпрессоры также обладают преимуществом на большой высоте, где плотность воздуха ниже. Обычные двигатели будут работать слабее на большой высоте над уровнем моря, т.к. на каждый ход поршня подаваемая масса воздуха будет меньше. Мощность двигателя с турбокомпрессором также снизится, но менее заметно, т.к. разреженный воздух легче сжимать.

Принцип работы газовых турбин

Газовой турбиной принято называть своеобразный тепловой двигатель, его рабочим частям предопределено только одно задание – вращаться вследствие воздействия струи газа.

История создания газовой турбины

Интересно, что механизмы турбин начали разрабатываться инженерами уже очень давно. Первая примитивная паровая турбина была создана ещё в I веке до н. э.

Активно разрабатываться турбины начали в конце XIX века одновременно с развитием термодинамики, машиностроения и металлургии.

Технические характеристики газовой турбины

Главная часть турбины представлена колесом, на которое прикреплены наборы лопаток. Газ, воздействуя на лопатки газовой турбины, заставляет их двигаться и вращать колесо. Колесо жёстко скреплено с валом.

Это ротор турбины. Вследствие этого движения достигается получение механической энергии, которая передаётся на электрогенератор, на гребной винт корабля, на воздушный винт самолёта и другие рабочие механизмы аналогичного принципа действия.

 

Активные и реактивные турбины

Активная турбина характеризуется тем, что здесь отмечается большая скорость поступления газа на рабочие лопатки. При помощи изогнутой лопатки струя газа отклоняется от своей траектории движения. В результате отклонения развивается большая центробежная сила.

В реактивной турбине поступление газа к рабочим лопаткам осуществляется на незначительной скорости и под воздействием большого уровня давления. Форма лопаток так же отлична, благодаря чему скорость газа значительно увеличивается.

 

Схема и принцип действия газотурбинного двигателя

Газотурбинным двигателем (ГТД)  называют тепловую машину, в которой энергия топлива преобразуется в кинетическую энергию струи и в механическую работу на валу. Основными элементами ГТД являются компрессор, камера сгорания и газовая турбина.

Принцип действия ГТД следующий.

1. Воздух из атмосферы поступает в компрессор (сечение «В-В»), где происходит сжатие воздуха (плотность, давление и температура возрастают). Если компрессор идеальный, то сжатие воздуха осуществляется в адиабатном процессе (  ), показатель адиабаты к=1.4.

Отношение давления воздуха на выходе из компрессора к давлению на входе называется степенью повышения давления в компрессоре:  .

2. Из компрессора (сечение «К-К») воздух поступает в камеру сгорания, где при постоянном давлении происходит подвод тепла к потоку воздуха при горении топлива. В результате подогрева в камере сгорания газ на её выходе имеет высокую температуру. Отношение температуры газа на выходе из камеры сгорания к температуре атмосферного воздуха называется степенью подогрева воздуха в двигателе:  .

3. Из камеры сгорания газ поступает в турбину (сечение «Г-Г»), где происходит расширение газа (плотность газа уменьшается). Если турбина идеальная, то процесс расширения принимается адиабатным. Показатель адиабаты газа равен 1.33.

4. Из турбины (сечение «Т-Т») газ направляется в выходной канал двигателя. Таким образом, ГТД представляет собой открытую термодинамическую систему, в которой реализуется цикл Брайтона.

Принцип действия и устройство турбин. Активные и реактивные принципы работы турбин

Особенности турбины как теплового двигателя

Турбина является тепловым ротационным двигателем, в котором потенциальная тепловая энергия пара (или газа) превращается в кинетическую, а последняя в свою очередь преобразуется в механическую работу вращения вала.

Пар с давлением более высоким, чем за турбиной, поступает в одно или несколько неподвижных каналов 5. В сопловых каналах пар расширяется, давление его падает, а скорость возрастает. 

Из сопл пар поступает в рабочие каналы, образованные рабочими лопатками 3, закрепленными на диске 2. Двигаясь в рабочих каналах между рабочими лопатками и изменяя свое направление, поток пара оказывает силовое воздействие на рабочие лопатки. В результате чего они вращаются вместе с диском и валом 1, установленным в опорных подшипниках 4.

Комплект, состоящий из сопл и рабочих лопаток, в которых совершается процесс расширения пара, называется ступенью давления турбины. Простейшие турбины, имеющие лишь одну ступень, называются одноступенчатыми, в отличие от более сложных многоступенчатых турбин.

Тремя основными элементами, содержащимися в конструкции турбокомпрессора являются: центробежный компрессор, турбина и центральный корпус. Кинетическая энергия отработанных газов под воздействием турбины преобразуется во вращательное движение компрессора.

Также турбина соединяет турбинное колесо, помещённое в специальный корпус в форме улитки.

Поступая в улитку, отработавшие газы перемещаются по каналу и попадают на лопасти турбинного колеса. Вал, к которому приварено турбинное колесо, передаёт на колесо компрессора энергию, которая придаёт его вращению.

Лопасти турбинного колеса становятся проводниками отработавших газов, которые затем покидают турбину через отверстие в центре турбокомпрессора и выходят в выпускную систему.

От формы и размера турбины напрямую зависит производительность турбокомпрессора. Значительный прирост мощности наблюдается в турбинах большего размера, потому что они могут использовать большее давление отработавших газов. Однако в таких турбокомпрессорах, на низких оборотах, значительна вероятность возникновения турбоямы.

 

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 2 чел.
Средний рейтинг: 5 из 5.

Авиационные газотурбинные двигатели / Хабр

Всем привет! В этой статье я хочу рассказать о том, как работают авиационные газотурбинные двигатели (ГТД). Я постараюсь сделать это наиболее простым и понятным языком.

Авиационные ГТД можно можно разделить на:

  • турбореактивные двигатели (ТРД)
  • двухконтурные турбореактивные двигатели (ТРДД)
  • Турбовинтовые двигатели (ТВД)
  • Турбовальные двигатели (ТВаД)

Притом, ТРД и ТРДД могут содержать в себе форсажную камеру, в таком случае они будут ТРДФ и ТРДДФ соответственно. В этой статье мы их рассматривать не будем.

Начнём с турбореактивных двигателей.

Турбореактивные двигатели


Такой тип двигателей был создан в первой половине 20-го века и начал находить себе массовое применение к концу Второй мировой войны. Первым в мире серийным турбореактивным самолетом был немецкий Me.262. ТРД были популярны вплоть до 60-ых годов, после чего их стали вытеснять ТРДД.


Современная фотография Me-262, сделанная в 2016 году

Самый простой турбореактивный двигатель включает в себя следующие элементы:

  • Входное устройство
  • Компрессор
  • Камеру сгорания
  • Турбину
  • Реактивное сопло (далее просто сопло)

Можно сказать, что это минимальный набор для нормальной работы двигателя.

А теперь рассмотрим что для чего нужно и зачем.

Входное устройство — это расширяющийся* канал, в котором происходит подвод воздуха к компрессору и его предварительное сжатие. В нём кинетическая энергия входящего воздуха частично преобразуется в давление.

*здесь и дальше мы будем говорить про дозвуковые скорости. На сверхзвуковой скорости физика меняется, и там все совсем не так.

Компрессор — это устройство, в котором происходит повышение давление воздуха. Компрессор можно характеризовать такой величиной, как степень повышения давления. В современных двигателях оно уже начинает переступать за 40 единиц. Кроме того, в нем увеличивается температура (может быть, где-то до 400 градусов Цельсия).

Камера сгорания — устройство, в котором к сжатому воздуху (после компрессора) подводится тепло из-за горения топлива. Температура в камере сгорания очень высокая, может достигать 2000 градусов Цельсия. Вам может показаться, что давление газа в камере тоже сильно увеличивается, но это не так. Теоретически принято считать, что подвод тепла осуществляется при постоянном давлении. В реальности оно немного падает из-за потерь (проблема несовершенства конструкции).

Турбина — устройство, превращающее часть энергии газа после камеры сгорания в энергию привода компрессора. Так как турбины используются не только в авиации, можно дать более общее определение: это устройство, преобразующее внутреннюю энергию рабочего тела (в нашем случае рабочее тело — это газ) в механическую работу на валу. Как вы могли понять, турбина и компрессор находятся на одном валу и жестко связаны между собой. Если в компрессоре происходит повышение давления газа, то в турбине, наоборот, понижение, то есть газ расширяется.

Сопло — суживающийся канал, в котором происходит преобразование потенциальной энергии газа в кинетическую (оставшийся запас энергии газа после турбины). Как и в турбине, в сопле происходит расширение газа. Образуется струя, которая, вытекая из сопла, движет самолёт.

С основными элементами разобрались. Но все равно не очень понятно как оно работает? Тогда давайте ещё раз и коротко.

Воздух из атмосферы попадает во входное устройство, где немного сжимается и поступает в компрессор. В компрессоре давление воздуха растёт ещё сильнее, растёт и температура. После компрессора воздух поступает в камеру сгорания и, смешиваясь там с топливом, воспламеняется, что приводит к сильному возрастанию температуры, при, можно сказать, постоянном давлении. После камеры сгорания горячий сжатый газ попадает в турбину. Часть энергии газа расходуется на вращение компрессора турбиной (чтобы он мог выполнять свою функцию, описанную выше), другая часть энергии расходуется на, нужное нам, движение самолёта, из-за того, что газ, пройдя турбину, превращается в реактивную струю в сопле и вырывается из него (сопла) в атмосферу. На этом цикл завершается. Конечно, в реальности все процессы цикла проходят непрерывно.

Такой цикл называется циклом Брайтона, или термодинамическим циклом с непрерывным характером рабочего процесса и подводом тепла при постоянном давлении. По такому циклу работают все ГТД.


Цикл Брайтона в P-V координатах

Н-В — процесс сжатия во входном устройстве
В-К — процесс сжатия в компрессоре
К-Г — изобарический подвод тепла
Г-Т — процесс расширения газа в турбине
Г-С — процесс расширения газа в сопле
С-Н — изобарический отвод тепла в атмосферу


Схематичная конструкция турбореактивного двигателя, где 0-0 — ось двигателя

ТРД может иметь и два вала. В таком случае компрессор состоит из компрессора низкого давления (КНД) и компрессора высокого давления (КВД), а подвод работы будут осуществлять турбина низкого давления (ТНД) и турбина высокого давления (ТВД) соответственно. Такая схема более выгодная газодинамически.


Реальный двигатель такого вида в разрезе

Мы рассмотрели принцип работы самой простой схемы авиационного газотурбинного двигателя. Естественно, на современных «Эйрбасах и Боингах» устанавливаются ТРДД, конструкция которых заметно сложнее, но работает все по таким же законам. Давайте рассмотрим их.

Двухконтурный турбореактивный двигатель


ТРДД, прежде всего, отличается от ТРД тем, что имеет два контура: внешний и внутренний. Внутренний контур содержит в себе то же самое, что и ТРД: компрессор (разделенный на КНД и КВД), камеру сгорания, турбину (разделенную на ТВД и ТНД) и сопло. Внешний контур представляет собой канал, с соплом в конце. В нем нет ни камеры сгорания, ни турбины. Перед обоими контурами (сразу после входного устройства двигателя) стоит ступень компрессора, работающая на оба контура.

Не очень понятная картина выходит, да? Давайте разберемся как оно работает.


Схематичная конструкция двухвального двухконтурного турбореактивного двигателя

Воздух, попадающий в двигатель, пройдя через первую ступень компрессора низкого давления, разбивается на два потока. Одна часть воздуха идет по внутреннему контуру, где происходят те же процессы, которые были описаны, когда мы разбирали ТРД. Вторая часть воздуха попадает во внешний контур, получив энергию от первой ступени КНД (та, которая работает на два контура). Во внешнем контуре энергия воздуха тратится только на преодоление гидравлических потерь (за счёт трения). В конце этот воздух попадает в сопло внешнего контура, создавая огромную тягу. Тяга, созданная внешним контуром, может составлять 80% тяги всего двигателя.

Одной из важнейших характеристик ТРДД является степень двухконтурности. Степень двухконтурности — это отношение расхода воздуха во внешнем контуре, к расходу воздуха во внутреннем контуре. Это число может быть как больше, так и меньше единицы. На современных двигателях это число переступает за значение в 12 единиц.
Двигатели, степень двухконтурности которых больше двух, принято называть турбовентиляторными, а первую ступень компрессора (ту, что работает на оба контура) вентилятором.


ТРДД самолета Boeing 757-200. На переднем плане видно входное устройство и вентилятор

На некоторых двигателях вентилятор приводится в движение отдельной турбиной, которая ставится ближе всего к соплу внутреннего контура. Тогда двигатель получается трехвальным. Например, по такой схеме выполнены двигатели Rolls Royce RB211 (устанавливались на L1011, B747, B757, B767), Д-18Т (Ан-124), Д-36 (Як-42)


Д-18Т в разрезе изнутри

Главное достоинство ТРДД заключается в возможности создания большой тяги и хорошей экономичности, по сравнению с ТРД.

На этом я хотел бы закончить про ТРДД и перейти к следующему виду двигателей — ТВД.

Турбовинтовые двигатели


Турбовинтовой двигатель, как и турбореактивный, относится к газотурбинным двигателям. И работает он почти как турбореактивный. Элементарный турбовинтовой двигатель состоит из уже знакомых нам элементов: компрессора, камеры сгорания, турбины и сопла. К ним добавляются редуктор и винт.

Принцип работы работы такой же, как у турбореактивного, с разницей в том, что практически вся энергия газа расходуется на турбине на вращение компрессора и на вращение винта через редуктор (здесь винт и редуктор находятся на одном валу с компрессором). Винт создаёт основную долю тяги. Оставшаяся, после турбины, часть энергии направляется в сопло, образуя реактивную тягу, но она мала, может составлять десятую часть от общей. Редуктор в этой схеме нужен для того, чтобы понизить обороты и передать момент, так как турбина может вращаться с очень высокой частотой, например, 10000 оборотов в минуту, а винту нужно только 1500. И винт достаточно тяжелый.


Схематичная конструкция ТВД

Но бывает и другая схема турбовинтовых двигателей: со свободной турбиной.
Её суть в том, что за обычной турбиной компрессора ставится отдельная турбина, которая механически не связана с турбиной компрессора. Такая турбина называется свободной. Связь между турбиной компрессора и свободной турбиной только газодинамическая. От свободной турбины идёт отдельный вал, на который устанавливаются редуктор с винтом. Все остальное работает так же, как и в первом случае. Большинство современных двигателей выполняют именно по такой схеме. Одним из плюсов такой схемы является возможность использования двигателя на земле, как вспомогательную силовую установку (ВСУ), не приводя винт в движение.


Схематичная конструкция ТВД со свободной турбиной

Хочу отметить, что не нужно смотреть на турбовинтовые двигатели как на малоэффективный пережиток прошлого. Я несколько раз слышал такие высказывания, но они неверны.
Турбовинтовой двигатель в некоторых случаях обладает наивысшим КПД, как правило, на самолетах с не очень большими скоростями (например, на 500 км/ч), притом, самолет может быть внушительных размеров. В таком случае, турбовинтовой двигатель может быть в разы выгоднее, рассмотренного ранее, турбореактивного двигателя.

На этом про турбовинтовые двигатели можно заканчивать. Мы потихоньку подошли к понятию турбовального двигателя.

Турбовальный двигатель


Должно быть, большинство читателей здесь вообще впервые слышат такое название. Такой тип двигателей устанавливается на вертолёты.

Турбовальный двигатель очень схож с турбовинтовым двигателем со свободной турбиной. Он также состоит из компрессора, камеры сгорания, турбины компрессора, далее идёт свободная турбина, связанная со всем предыдущем только газодинамически. А вот реактивную тягу такой двигатель не создаёт, реактивного сопла у него нет, только выхлоп. Свободная турбина имеет свой вал, который соединяется к главному редуктору вертолёта (несущего винта). Да, у всех известных мне вертолетов есть такой редуктор, и, как правило, он внушительных размеров. Дело в том, что обороты несущего винта вертолёта очень низкие. Если у самолета, как я писал выше, они могут достигать 1500 об/мин, то у вертолёта, например у Ми-8, всего 193 об/мин.
А обороты двигателя у вертолёта зачастую очень высокие (из-за небольших размеров), и понижать их приходится в сотню и более раз. Бывает такое, что редуктор стоит и на двигателе, и на самом вертолете, например, у Ми-2 и его двигателя ГТД-350.


Схематичная конструкция турбовального двигателя


Двигатель ТВ3-117 от вертолета Ми-8. Справа видны выхлопная труба и приводной вал

Итак, мы рассмотрели четыре типа газотурбинных двигателей. Надеюсь, мой текст был понятен и полезен для вас. Все вопросы и замечания можете писать в комментариях.

Спасибо за внимание.

как горячий пар превращается в электричество / Блог компании Toshiba / Хабр

Учёные до сих пор бьются над поиском самых эффективных способов по выработке тока — прогресс устремился от гальванических элементов к первым динамо-машинам, паровым, атомным, а теперь солнечным, ветряным и водородным электростанциям. В наше время самым массовым и удобным способом получения электричества остаётся генератор, приводимый в действие паровой турбиной.

Паровые турбины были изобретены задолго до того, как человек понял природу электричества. В этом посте мы упрощённо расскажем об устройстве и работе паровой турбины, а заодно вспомним, как древнегреческий учёный опередил своё время на пятнадцать веков, как произошёл переворот в деле турбиностроения и почему Toshiba считает, что тридцатиметровую турбину надо изготавливать с точностью до 0,005 мм.

Как устроена паровая турбина


Принцип работы паровой турбины относительно прост, а её внутреннее устройство принципиально не менялось уже больше века. Чтобы понять принцип работы турбины, рассмотрим, как работает теплоэлектростанция — место, где ископаемое топливо (газ, уголь, мазут) превращается в электричество.

Сама по себе паровая турбина не работает, для функционирования ей нужен пар. Поэтому электростанция начинается с котла, в котором горит топливо, отдавая жар трубам с дистиллированной водой, пронизывающим котел. В этих тонких трубах вода превращается в пар.


Понятная схема работы ТЭЦ, вырабатывающей и электричество, и тепло для отопления домов. Источник: Мосэнерго

Турбина представляет собой вал (ротор) с радиально расположенными лопатками, словно у большого вентилятора. За каждым таким диском установлен статор — похожий диск с лопатками другой формы, который закреплён не на валу, а на корпусе самой турбины и потому остающийся неподвижным (отсюда и название — статор).

Пару из одного вращающегося диска с лопатками и статора называют ступенью. В одной паровой турбине десятки ступеней — пропустив пар всего через одну ступень тяжёлый вал турбины с массой от 3 до 150 тонн не раскрутить, поэтому ступени последовательно группируются, чтобы извлечь максимум потенциальной энергии пара.

На вход в турбину подаётся пар с очень высокой температурой и под большим давлением. По давлению пара различают турбины низкого (до 1,2 МПа), среднего (до 5 МПа), высокого (до 15 МПа), сверхвысокого (15—22,5 МПа) и сверхкритического (свыше 22,5 МПа) давления. Для сравнения, давление внутри бутылки шампанского составляет порядка 0,63 МПа, в автомобильной шине легковушки — 0,2 МПа.

Чем выше давление, тем выше температура кипения воды, а значит, температура пара. На вход турбины подается пар, перегретый до 550-560 °C! Зачем так много? По мере прохождения сквозь турбину пар расширяется, чтобы сохранять скорость потока, и теряет температуру, поэтому нужно иметь запас. Почему бы не перегреть пар выше? До недавних пор это считалось чрезвычайно сложным и бессмысленным —нагрузка на турбину и котел становилась критической.

Паровые турбины для электростанций традиционно имеют несколько цилиндров с лопатками, в которые подается пар высокого, среднего и низкого давления. Сперва пар проходит через цилиндр высокого давления, раскручивает турбину, а заодно меняет свои параметры на выходе (снижается давление и температура), после чего уходит в цилиндр среднего давления, а оттуда — низкого. Дело в том, что ступени для пара с разными параметрами имеют разные размеры и форму лопаток, чтобы эффективней извлекать энергию пара.

Но есть проблема — при падении температуры до точки насыщения пар начинает насыщаться, а это уменьшает КПД турбины. Для предотвращения этого на электростанциях после цилиндра высокого и перед попаданием в цилиндр низкого давления пар вновь подогревают в котле. Этот процесс называется промежуточным перегревом (промперегрев).

Цилиндров среднего и низкого давления в одной турбине может быть несколько. Пар на них может подаваться как с края цилиндра, проходя все лопатки последовательно, так и по центру, расходясь к краям, что выравнивает нагрузку на вал.

Вращающийся вал турбины соединён с электрогенератором. Чтобы электричество в сети имело необходимую частоту, валы генератора и турбины должны вращаться со строго определённой скоростью — в России ток в сети имеет частоту 50 Гц, а турбины работают на 1500 или 3000 об/мин.

Упрощённо говоря, чем выше потребление электроэнергии, производимой электростанцией, тем сильнее генератор сопротивляется вращению, поэтому на турбину приходится подавать бо́льший поток пара. Регуляторы частоты вращения турбин мгновенно реагируют на изменения нагрузки и управляют потоком пара, чтобы турбина сохраняла постоянные обороты. Если в сети произойдет падение нагрузки, а регулятор не уменьшит объём подаваемого пара, турбина стремительно нарастит обороты и разрушится — в случае такой аварии лопатки легко пробивают корпус турбины, крышу ТЭС и разлетаются на расстояние в несколько километров.

Как появились паровые турбины


Примерно в XVIII веке до нашей эры человечество уже укротило энергию стихии, превратив её в механическую энергию для совершения полезной работы — то были вавилонские ветряные мельницы. К II веку до н. э. в Римской империи появились водяные мельницы, чьи колёса приводились в движение нескончаемым потоком воды рек и ручьёв. И уже в I веке н. э. человек укротил потенциальную энергию водяного пара, с его помощью приведя в движение рукотворную систему.


Эолипил Герона Александрийского — первая и единственная на следующие 15 веков реактивная паровая турбина. Источник: American Mechanical Dictionary / Wikimedia

Греческий математик и механик Герон Александрийский описал причудливый механизм эолипил, представляющий собой закреплённый на оси шар с исходящими из него под углом трубками. Подававшийся в шар из кипящего котла водяной пар с силой выходил из трубок, заставляя шар вращаться. Придуманная Героном машина в те времена казалась бесполезной игрушкой, но на самом деле античный учёный сконструировал первую паровую реактивную турбину, оценить потенциал которой удалось только через пятнадцать веков. Современная реплика эолипила развивает скорость до 1500 оборотов в минуту.

В XVI веке забытое изобретение Герона частично повторил сирийский астроном Такиюддин аш-Шами, только вместо шара в движение приводилось колесо, на которое пар дул прямо из котла. В 1629 году схожую идею предложил итальянский архитектор Джованни Бранка: струя пара вращала лопастное колесо, которое можно было приспособить для механизации лесопилки.


Активная паровая турбина Бранка совершала хоть какую-то полезную работу — «автоматизировала» две ступки.

Несмотря на описание несколькими изобретателями машин, преобразующих энергию пара в работу, до полезной реализации было еще далеко — технологии того времени не позволяли создать паровую турбину с практически применимой мощностью.

Турбинная революция


Шведский изобретатель Густаф Лаваль много лет вынашивал идею создания некоего двигателя, который смог бы вращать ось с огромной скоростью — это требовалось для функционирования сепаратора молока Лаваля. Пока сепаратор работал от «ручного привода»: система с зубчатой передачей превращала 40 оборотов в минуту на рукоятке в 7000 оборотов в сепараторе. В 1883 году Лавалю удалось адаптировать эолипил Герона, снабдив-таки молочный сепаратор двигателем. Идея была хорошая, но вибрации, жуткая дороговизна и неэкономичность паровой турбины заставили изобретателя вернуться к расчетам.

Турбинное колесо Лаваля появилось в 1889 году, но его конструкция дошла до наших дней почти в неизменном виде.

Спустя годы мучительных испытаний Лаваль смог создать активную паровую турбину с одним диском. На диск с лопатками из четырех труб с соплами под давлением подавался пар. Расширяясь и ускоряясь в соплах, пар ударял в лопатки диска и тем самым приводил диск в движение. Впоследствии изобретатель выпустил первые коммерчески доступные турбины с мощностью 3,6 кВт, соединял турбины с динамо-машинами для выработки электричества, а также запатентовал множество новшеств в конструкции турбин, включая такую их неотъемлемую в наше время часть, как конденсатор пара. Несмотря на тяжёлый старт, позже дела у Густафа Лаваля пошли хорошо: оставив свою прошлую компанию по производству сепараторов, он основал акционерное общество и приступил к наращиванию мощности агрегатов.

Параллельно с Лавалем свои исследования в области паровых турбин вёл англичанин cэр Чарлз Парсонс, который смог переосмыслить и удачно дополнить идеи Лаваля. Если первый использовал в своей турбине один диск с лопатками, то Парсонс запатентовал многоступенчатую турбину с несколькими последовательно расположенными дисками, а чуть позже добавил в конструкцию статоры для выравнивания потока.

Турбина Парсонса имела три последовательных цилиндра для пара высокого, среднего и низкого давления с разной геометрией лопаток. Если Лаваль опирался на активные турбины, то Парсонс создал реактивные группы.

В 1889 году Парсонс продал несколько сотен своих турбин для электрификации городов, а еще пять лет спустя было построено опытное судно «Турбиния», развивавшее недостижимую для паровых машин прежде скорость 63 км/ч. К началу XX века паровые турбины стали одним из главных двигателей стремительной электрификации планеты.


Сейчас «Турбиния» выставляется в музее в Ньюкасле. Обратите внимание на количество винтов. Источник: TWAMWIR / Wikimedia

Турбины Toshiba — путь длиной в век


Стремительное развитие электрифицированных железных дорог и текстильной промышленности в Японии заставило государство ответить на возросшее электропотребление строительством новых электростанций. Вместе с тем начались работы по проектированию и производству японских паровых турбин, первые из которых были поставлены на нужды страны уже в 1920-х годах. К делу подключилась и Toshiba (в те годы: Tokyo Denki и Shibaura Seisaku-sho).

Первая турбина Toshiba была выпущена в 1927 году, она имела скромную мощность в 23 кВт. Уже через два года все производимые в Японии паровые турбины выходили из фабрик Toshiba, были запущены агрегаты с общей мощностью 7500 кВт. Кстати, и для первой японской геотермальной станции, открытой в 1966 году, паровые турбины также поставляла Toshiba. К 1997 году все турбины Toshiba имели суммарную мощность 100000 МВт, а к 2017 поставки настолько возросли, что эквивалентная мощность составила 200000 МВт.

Такой спрос обусловлен точностью изготовления. Ротор с массой до 150 тонн вращается со скоростью 3600 оборотов в минуту, любой дисбаланс приведёт к вибрациям и аварии. Ротор балансируется с точностью до 1 грамма, а геометрические отклонения не должны превышать 0,01 мм от целевых значений. Оборудование с ЧПУ помогает снизить отклонения при производстве турбины до 0,005 мм — именно такая разница с целевыми параметрами среди сотрудников Toshiba считается хорошим тоном, хотя допустимая безопасная погрешность на порядок больше. Также каждая турбина обязательно проходит стресс-тест при повышенных оборотах — для агрегатов на 3600 оборотов тест предусматривает разгон до 4320 оборотов.


Удачное фото для понимания размеров ступеней низкого давления паровой турбины. Перед вами коллектив лучших мастеров завода Toshiba Keihin Product Operations. Источник: Toshiba

Эффективность паровых турбин


Паровые турбины хороши тем, что при увеличении их размеров значительно растёт вырабатываемая мощность и КПД. Экономически гораздо выгодней установить один или несколько агрегатов на крупную ТЭС, от которой по магистральным сетям распределять электричество на большие расстояния, чем строить местные ТЭС с малыми турбинами, мощностью от сотен киловатт до нескольких мегаватт. Дело в том, что при уменьшении габаритов и мощности в разы растёт стоимость турбины в пересчёте на киловатт, а КПД падает вдвое-втрое.

Электрический КПД конденсационных турбин с промперегревом колеблется на уровне 35-40%. КПД современных ТЭС может достигать 45%.

Если сравнить эти показатели с результатами из таблицы, окажется, что паровая турбина — это один из лучших способов для покрытия больших потребностей в электричестве. Дизели — это «домашняя» история, ветряки — затратная и маломощная, ГЭС — очень затратная и привязанная к местности, а водородные топливные элементы, про которые мы уже писали — новый и, скорее, мобильный способ выработки электроэнергии.

Интересные факты


Самая мощная паровая турбина: такой титул могут по праву носить сразу два изделия — немецкая Siemens SST5-9000 и турбина производства ARABELLE, принадлежащей американской General Electric. Обе конденсационных турбины выдают до 1900 МВт мощности. Реализовать такой потенциал можно только на АЭС.


Рекордная турбина Siemens SST5-9000 с мощностью 1900 МВт. Рекорд, но спрос на такие мощности очень мал, поэтому Toshiba специализируется на агрегатах с вдвое меньшей мощностью. Источник: Siemens

Самая маленькая паровая турбина была создана в России всего пару лет назад инженерами Уральского федерального университета — ПТМ-30 всего полметра в диаметре, она имеет мощность 30 кВт. Малютку можно использовать для локальной выработки электроэнергии при помощи утилизации избыточного пара, остающегося от других процессов, чтобы извлекать из него экономическую выгоду, а не спускать в атмосферу.


Российская ПТМ-30 — самая маленькая в мире паровая турбина для выработки электричества. Источник: УрФУ

Самым неудачным применением паровой турбины стоит считать паротурбовозы — паровозы, в которых пар из котла поступает в турбину, а затем локомотив движется на электродвигателях или за счет механической передачи. Теоретически паровая турбина обеспечивала в разы больший КПД, чем обычный паровоз. На деле оказалось, что свои преимущества, как то высокая скорость и надежность, паротурбовоз проявляет только на скоростях выше 60 км/ч. При меньшей скорости движения турбина потребляет чересчур много пара и топлива. США и европейские страны экспериментировали с паровыми турбинами на локомотивах, но ужасная надежность и сомнительная эффективность сократили жизнь паротурбовозов как класса до 10-20 лет.


Угольный паротурбовоз C&O 500 ломался почти каждую поездку, из-за чего уже спустя год после выпуска был отправлен на металлолом. Источник: Wikimedia

Турбина | Британика

Турбина , любое из различных устройств, которые преобразуют энергию в потоке жидкости в механическую энергию. Преобразование обычно осуществляется путем пропускания жидкости через систему стационарных проходов или лопастей, которые чередуются с проходами, состоящими из ребристых лопастей, прикрепленных к ротору. При расположении потока таким образом, чтобы на лопасти ротора воздействовала тангенциальная сила или крутящий момент, ротор вращался, и работа извлекалась.

Ветряные турбины возле Техачапи, Калифорния. © Greg Randles / Shutterstock.com

Турбины можно разделить на четыре основных типа в зависимости от используемых жидкостей: вода, пар, газ и ветер. Хотя одни и те же принципы применяются ко всем турбинам, их конкретные конструкции достаточно различаются, чтобы заслуживать отдельного описания.

Водяная турбина использует потенциальную энергию, возникающую из-за разницы в высоте между верхним резервуаром воды и уровнем воды на выходе из турбины (хвостовая часть), чтобы преобразовать эту так называемую головку в работу.Водяные турбины являются современными наследниками простых водяных колес, возраст которых насчитывает около 2000 лет. Сегодня основное использование водяных турбин для производства электроэнергии.

Однако наибольшее количество электроэнергии поступает от паровых турбин, соединенных с электрогенераторами. Турбины приводятся в действие паром, произведенным либо на ископаемом топливе, либо на атомном генераторе. Энергия, которая может быть извлечена из пара, обычно выражается через изменение энтальпии в турбине.Энтальпия отражает как тепловую, так и механическую формы энергии в процессе потока и определяется суммой внутренней тепловой энергии и произведением давления на объем. Доступное изменение энтальпии в паровой турбине увеличивается с ростом температуры и давления парогенератора и с уменьшением давления на выходе турбины.

Получите эксклюзивный доступ к контенту из нашего первого издания 1768 года с вашей подпиской. Подпишитесь сегодня

Для газовых турбин энергия, извлеченная из жидкости, также может быть выражена через изменение энтальпии, которое для газа почти пропорционально падению температуры в турбине.В газовых турбинах рабочим телом является воздух, смешанный с газообразными продуктами сгорания. Большинство газотурбинных двигателей включают, по меньшей мере, компрессор, камеру сгорания и турбину. Они обычно устанавливаются как единое целое и работают как полный первичный двигатель в так называемом открытом цикле, где воздух всасывается из атмосферы, а продукты сгорания в конечном итоге снова выбрасываются в атмосферу. Поскольку успешная работа зависит от интеграции всех компонентов, важно рассмотреть все устройство, которое фактически является двигателем внутреннего сгорания, а не только турбиной.По этой причине газовые турбины обрабатываются в статье двигателя внутреннего сгорания.

Энергия, имеющаяся в ветре, может быть извлечена с помощью ветряной турбины для производства электроэнергии или откачки воды из скважин. Ветряные турбины являются преемниками ветряных мельниц, которые были важными источниками энергии от позднего средневековья до 19-го века.

Фред Лэндис

Водяные турбины, как правило, делятся на две категории: (1) импульсные турбины, используемые для высоких напоров воды и низких скоростей потока, и (2) реакционные турбины, обычно используемые для напоров ниже 450 метров и умеренных или высоких скоростей потока.Эти два класса включают основные типы общего пользования, а именно: импульсную турбину Пелтона и реакционные турбины сортов Фрэнсис, Пропеллер, Каплан и Дериас. Турбины могут быть установлены с горизонтальными или, чаще, с вертикальными валами. В каждом типе возможны широкие вариации конструкции для соответствия специфическим местным гидравлическим условиям. Сегодня большинство гидравлических турбин используются для выработки электроэнергии в гидроэлектростанциях.

Импульсные турбины

В импульсной турбине потенциальная энергия или напор воды сначала преобразуется в кинетическую энергию, выпуская воду через форсунку аккуратной формы.Струя, выпускаемая в воздух, направляется на изогнутые ковши, закрепленные на периферии бегуна, чтобы извлечь энергию воды и преобразовать ее в полезную работу.

Современные импульсные турбины основаны на конструкции, запатентованной в 1889 году американским инженером Лестером Алленом Пелтоном. Струя свободной воды попадает в турбины тангенциально. Каждое ведро имеет высокий центральный гребень, так что поток делится, чтобы оставить полоз с обеих сторон. Колеса Пелтона подходят для высоких напоров, обычно выше примерно 450 метров при относительно низких скоростях потока воды.Для максимальной эффективности скорость наконечника бегуна должна быть равна половине скорости ударной струи. КПД (работа, создаваемая турбиной, деленная на кинетическую энергию свободной струи) может превышать 91 процент при работе при 60–80 процентах полной нагрузки.

Мощность данного колеса может быть увеличена с помощью более чем одной струи. Двухструйные устройства обычны для горизонтальных стволов. Иногда на одном валу устанавливаются два отдельных бегунка, приводящих в действие один электрический генератор. Узлы с вертикальным валом могут иметь четыре или более отдельных форсунок.

Если электрическая нагрузка на турбину изменяется, ее выходная мощность должна быть быстро отрегулирована в соответствии с потребностью. Это требует изменения расхода воды для поддержания постоянной скорости генератора. Скорость потока через каждую форсунку контролируется центрально расположенным копьем или иглой аккуратной формы, которая скользит вперед или назад, как управляется гидравлическим серводвигателем.

Правильная конструкция иглы гарантирует, что скорость воды, выходящей из сопла, остается практически одинаковой независимо от отверстия, обеспечивая почти постоянную эффективность в большей части рабочего диапазона.Не имеет смысла внезапно уменьшать поток воды, чтобы соответствовать уменьшению нагрузки. Это может привести к разрушительному скачку давления (гидравлический удар) в подающем трубопроводе или в трубе. Таких скачков можно избежать, добавив временное сливное сопло, открывающееся при закрытии основного сопла, или, чаще, частично вставив дефлекторную пластину между струей и колесом, отводя и рассеивая часть энергии, пока игла медленно закрывается.

Другой тип импульсной турбины — это тип Turgo.Струя ударяется под косым углом на направляющую с одной стороны и продолжает движение по одной траектории, выпуская с другой стороны направляющей. Этот тип турбины был использован в средних единицах для умеренно высоких головок.

Реактивные турбины

В реакционной турбине силы, приводящие в движение ротор, достигаются за счет реакции ускоряющегося потока воды в направляющей, когда давление падает. Принцип реакции можно наблюдать во вращающемся газонном разбрызгивателе, где возникающая струя движет ротор в противоположном направлении.Из-за большого разнообразия возможных конструкций направляющих реактивные турбины могут использоваться в гораздо большем диапазоне напоров и скоростей потока, чем импульсные турбины. Реакционные турбины обычно имеют спиральный впускной кожух, который включает в себя управляющие вентили для регулирования потока воды. На входе часть потенциальной энергии воды может быть преобразована в кинетическую энергию при ускорении потока. Энергия воды впоследствии извлекается в роторе.

Как уже отмечалось выше, широко используются четыре основных типа реакционных турбин: Каплан, Фрэнсис, Дериаз и тип пропеллера.В турбинах Kaplan с неподвижным и регулируемым лопастями (названных в честь австрийского изобретателя Виктора Каплана) по существу происходит осевой поток через машину. Турбины типа Фрэнсиса и Дериаза (после американского изобретателя британского происхождения Джеймса Б. Фрэнсиса и швейцарского инженера Пола Дериаза соответственно) используют «смешанный поток», когда вода поступает в радиальном направлении внутрь и выходит в осевом направлении. Рабочие лопатки на турбинах Фрэнсиса и пропеллера состоят из неподвижных лопаток, в то время как в турбинах Kaplan и Deriaz лопатки могут вращаться вокруг своей оси, которая находится под прямым углом к ​​главному валу.

,

различных типов турбинных защитных устройств

В этой статье приведен список различных типов турбинных защитных устройств , таких как турбина при превышении скорости, низкое давление смазочного масла, осевое смещение, температура турбины и вибрации турбины.

Турбинные защитные устройства

  • Расцепитель
  • Low Lube Oil Pr.
  • Over Speed ​​Trip
  • Low Vacuum
  • SOV для дистанционного отключения
  • Hi / Lo Extrn. Пара
  • Расширение корпуса
  • Внешнее расширение / дифференциал Temp дифференциала
  • Защита генератора
  • Осевое смещение
  • Ручное / дистанционное отключение
  • Вибрация подшипника
  • Температура кожуха / ротора.
  • Температура подшипников

Отключающее устройство

Когда турбина отключается, управляющее давление масла сбрасывается отключающим устройством. Таким образом, давление в передней части запорного клапана поршневого диска и управляющего давления масла падает, что приводит к закрытию запорной арматуры и регулирующей арматуры.

Отключение при превышении скорости

Защита от превышения скорости образована тремя независимыми датчиками оценки скорости вращения турбины, которые выполняют выбор выходного сигнала два из трех после превышения заданного значения скорости безопасности для немедленного импульса для закрытия ESV в течение менее 30 мс.

Turbine Over Speed Trip

Магнитный датчик

Магнитный датчик состоит из постоянного магнита, обмотанного катушкой из нескольких тысяч витков тонкой эмалированной медной проволоки.

Когда отдельные магнитные объекты, такие как зубчатые колеса или лопасти, проходят через магнитное поле зондов, плотность потока модулируется. Это вызывает переменное напряжение в катушке. Один полный цикл напряжения генерируется для каждого пройденного объекта.

Общее количество циклов будет мерой общего вращения, а частота переменного напряжения будет прямо пропорциональна скорости вращения вала.

Magnetic Pickup Sensor Formula

Magnetic Pickup Circuit

Создание и обрыв линий потока вызывает переменное напряжение в катушке вокруг полюсного наконечника.

Каждый импульс представлен зубом шестерни, проходящим через MPU. Сопротивление MPU составляет приблизительно 220 Ом.

Magnetic Pickup Operation

PROXIMITOR (вихретоковый пробник)

Механическая энергия преобразуется в электрическую энергию с использованием системы бесконтактных преобразователей. Интерфейсное устройство, используемое для этой системы, называется проксимитором. Он генерирует сигнал радиальной частоты (RF), используя схему генератора.

РЧ-сигнал передается с катушки зонда, которая создает радиочастотное поле вокруг наконечника зонда.Когда в радиочастотном поле присутствует проводящий материал, на его поверхности протекают вихревые токи.

Как только зонд достаточно близко, чтобы вызвать вихревые токи в проводящем материале, на РЧ-сигнал влияют двояко.

  1. Амплитуда минимальна, когда зазор меньше.
  2. Амплитуда максимальная, когда разрыв больше.

Если цель движется медленно в пределах радиочастотного поля, амплитуда сигнала будет медленно увеличиваться или уменьшаться. В зависимости от движения цели, амплитуда увеличивается или уменьшается медленно или быстро.Это колебательное движение цели вызывает модуляцию радиочастотного сигнала.

Working of Proximitor

Это будет преобразовано демодулятором и даст сигнал переменного тока (синусоида). Если цель колеблется (зазор изменяется медленно или быстро), выходные данные проксимиторов также изменяют постоянное напряжение (AC), показанное выше синусоидальной волной.

Если зонд наблюдает вибрацию, проксимитор будет обеспечивать как постоянный (зазор), так и переменный (вибрационный) компонент в выходном сигнале. Частотная характеристика от 0 Гц до 10 кГц.

Расширение обсадной колонны

Это измерение перемещения корпуса турбины или корпуса относительно фиксированного местоположения, обычно измеряемого с помощью LVDT (линейного переменного дифференциального трансформатора). Расширение корпуса — это тепловой рост корпуса машины, поскольку он расширяется во время запуска машины и при работе в режиме реального времени.

Тепловой рост с различной скоростью может привести к внутреннему трению между вращающимися и неподвижными частями машины.

Система преобразователей расширения корпуса использует LVDT для измерения теплового роста корпуса машины.

Шток на LVDT соединяется с машиной. По мере роста корпуса машины стержень перемещается внутрь LVDT. Это вызывает изменение сигнала в LVDT.

Диапазон: — 0 ~ 25 мм; Отключение: — 20 мм

Расширение ротора

Во время запуска турбины необходимо соблюдать особую осторожность, чтобы обеспечить надлежащее нагревание корпуса и его достаточное расширение для предотвращения контакта между ротором и корпусом.

Для этого датчика вихревого датчика будет генерироваться высокочастотный колебательный РЧ-сигнал, который передается через удлинительный кабель на наконечник датчика.Наконечник датчика, имеющий намотанную катушку из тонкой проволоки, излучает электромагнитное поле, поскольку излучаемое поле делится пополам поверхностью ротора.

Когда поверхность ротора приближается к наконечнику датчика, создается большее количество вихревых токов, пропорциональных зазору между поверхностью и наконечником датчика. Датчик сигнала содержит демодулятор, который измеряет увеличение вихревых токов и генерирует эквивалентное постоянное напряжение, пропорциональное зазору.

Расширение ротора на турбине является абсолютным измерением осевого теплового роста ротора относительно основания турбины.

Дифференциальное расширение

Это очень важный параметр, которому уделяется большое внимание во время запуска и прогрева турбины. Этот параметр измеряет, как ротор турбины расширяется относительно корпуса или корпуса турбины.

Разница между расширением корпуса и расширением ротора называется дифференциальным расширением. Это относительное измерение осевого теплового роста ротора относительно корпуса.

Дифференциальное расширение

на турбине является относительным измерением осевого теплового роста ротора относительно корпуса.Расширение корпуса относительно основания турбины. Расширение ротора относительно основания турбины. Расширение ротора относительно корпуса является дифференциальным расширением

Диапазон: — от -4 мм до 6 мм

Авария: — + 2,30 мм и -1,60 мм

Отключение: — + 3,00 мм и -2,50 мм

Key Phasor

A преобразователь, который генерирует импульс напряжения для каждого оборота вала, называется сигналом «KeyPhasor». Он генерирует импульс напряжения один раз за каждый оборот.

Фазовый или фазовый угол — это мера зависимости того, как один вибрационный сигнал относится к другому вибрационному сигналу, и обычно используется для расчета размещения балансира.

Этот сигнал используется главным образом для измерения скорости вращения вала и служит эталоном для измерения вибрации Угол отставания фазы.

Ключевой преобразователь обычно является бесконтактным датчиком. Keyphasor — очень полезный инструмент для диагностики проблем с оборудованием.

Стандартный масштабный коэффициент составляет 200 мВ / мил или 7,87 мВ / мкм

1 мил = 25,4 мкм

Осевое смещение ротора

Turbine Rotor Axial Displacement Trip

Два типа поездок
  1. Осевое смещение ротора
  2. Радиальная вибрация
  3. В приведенной ниже таблице показаны значения аварийного сигнала и отключения для системы измерения вибрации изогнутой Невады.

    О ОПИСАНИЕ Сигнализация Trip 961 18068 9686896861 96861 96861 96861 96861 96861 96861 96861 96861 96861 96861 96861 96161 901 9 901 901 968 901 968 968 901 968 968109689689689686019686015016015015685015 96860 96860 96860 96860 96860 96860 96860 9016 также еще 9016 1 20
    S .N
    1 Ключ Phaser ххх ххх
    2 Осевое смещение +/- .5 мм +/- .8 мм
    4 Передний подшипник ротора 120u 180u
    8 подшипник ведущей шестерни 100u 180u
    15 подшипник зубчатого колеса 150u
    96860 также
    19 Генератор NDE Подшипник 100u 180u
    Расширение кожуха турбины 20 мм 25 мм
    21 Расширение дифференциала турбины; На пути к зонду +2.3 мм + 3 мм
    22 Расширение дифференциала турбины; Вдали от зонда -1,6 мм -2,5 мм

    Температура подшипников

    Температура подшипников является мерой того, насколько горячий подшипник работает. Это может быть связано с перегрузкой, смещением, неправильным давлением смазочного материала и / или расходом.

    Почти все подшипники турбогенератора были изначально установлены с датчиками температуры подшипников. Эти датчики могут быть термопарами или термометрами сопротивления.Любые подшипники, которые изначально не были оснащены датчиками температуры, могут быть установлены заново для приема термопар или термометров сопротивления.

    ТЕМП ЗАДАЮЩИЙ ТИП 110 TG TGR 120 TGR FR01 С 9016 1 110
    ТУРБИННЫХ Вояж
    DECRIPTION — Сименс Губернатор ввода / вывода
    ALARM T R I P
    TURB THRUST BRG TEMP BTM NEG T / C 120
    110 120
    TURB BRGTEMP ЗАДНЯЯ T / C 110 120
    GB PENION ДЕ BRG ТЕМП РТД 100 110
    GB PENION ПСБС BRG TEMP RTD 100 110
    GB КОЛЕСО DE BRG TEMP RTD 120
    GB КОЛЕСО ПСБС BRG ТЕМП РТД 100 110
    ОБЩ ПЕРЕДНЯЯ BRG ТЕМП РТД 85 90
    ОБЩ ЗАДНЯЯ BRG ТЕМП RTD 85 90

    Защита генератора

    • Температура подшипника и обмотки
    • Защита от замыкания на землю
    • Обратная / низкая прямая мощность
    • Перенапряжение / низкое напряжение
    • Повышенная частота / пониженная частота
    • 9 Ток
    • Дифференциал
    • Нейтральное смещение
    • Отрицательная последовательность фаз

    Примечание. Значения аварийных сигналов и отключений могут изменяться от оборудования к оборудованию.

    Автор: К. Р. Рао
    Автор: Басаварадж Ambarage
    .

    Турбина — Википедия

    Eine Турбина (латинская цистерна), в том числе фермерское производство, компания Fluides (Flüssigkeit oder Gas) в Mechanische Leistung umwandelt (Drehhiee de dhhiee de de diehie), Drehhiele de Dhhiee de de diehie de de diehiele de déhhie de de diehie).

    Dem Fluidstrom wird durch die möglichst wirbelfreie (laminare) Umströmung der Turbinenschaufeln ein Teil seiner inneren Energie (mesens vor allem bestehend aus Bewegungs-, Lage- und Druckenerhürünününer-de-dufener), Германия)Über diese wird dann die Turbinenwelle в Drehung versetzt, die nutzbare Leistung wird aine angekuppelte Arbeitsmaschine, wie beispielsweise a einen Generator, abgegeben.

    Kraftwerksturbinen Gehören zu den leistungsfähigsten Maschinen. Ihre mechanisch nutzbare Leistung erreicht heute in den größten Kernkraftwerken fast 1,8 Гигаватт, wobei bei großen Leistungen eine Turbine aus mehreren Teilturbinen (Hoch-, Mittel- und Niederdruckturbine (n)) besteht. Die steile Drehmoment-Kennlinie des Generators sorgt für eine konstante Drehzahl der Kraftwerksturbine, annsten muss die die Drehzahl über einen Реглер, постоянный гехальтен верден.

    Umgangssprachlich wird der Begriff Турбина auch für Düsentriebwerke verwendet, obwohl die Turbine nur ein Teil des Triebwerks ist; Das Triebwerk Besnhammer и Weiteren Komponenten.

    Der Begriff «Турбина», созданная инженером Клодом Бурдином.

    Dieser Abschnitt trennt nicht gut genug zwischen einem einzelnen Laufschaufelrad und einer Gesamt-Turbine, die weitere Bauteile enthält, die bei der Leistungswandlung mitwirken — beispielsweise die Leitschitchuns; außerdem sind Turbinen mitunter mehrstufig.Der Abschnitt Bedarf Einer Überarbeitung. Näheres sollte auf der Diskussion: Turbine angegeben sein. Битт хилф мит, в том числе вербен, андерлэнд и марксинг.

    Теория [Беарбайтен | Quelltext Bearbeiten]

    Anwendung der Eulerschen Turbinengleichung auf axialdurchströmte Maschinen Perspektivische Darstellung der physikalischen Größen zur Eulerschen Turbinengleichung

    Die thetourtischen Fundamente zur Berechnung eines believebigen Turbinentyps wurden bereits im 18.Ярхандерт Дерч Леонгард Эйлер Гелегт.

    Eulersche Turbinengleichung [Bearbeiten | Quelltext Bearbeiten]

    Die Grundlage der Eulerschen Turbinengleichung findet sich in Erhaltung des Drehimpulses eines Stoffstromes in einem geschlossenen System:

    D знак равно м ⋅ v ⋅ р {\ displaystyle D = m \ cdot v \ cdot r}

    Die Veränderung des Impulses innerhalb eines Teilsystemes (hier: die Turbinenschaufeln) erzeugen ein Drehmoment um das Zentrum der Turbine:

    M знак равно d D d T знак равно d с d T ⋅ р ⋅ м {\ displaystyle M = {\ frac {dD} {dt}} = {\ frac {dc} {dt}} \ cdot r \ cdot m}

    Sinnvollerweise können nur Anteile der Strömungsgeschwindigkeit des Fluids einen Anteil zum Drehmoment liefern, die senkrecht im Sinne des Hebelgesetzes zum Turbinendrehpunkt stehen.Solche Anteile Werden Mit Index u gekennzeichnet.

    Eine Integration der Formel liefert folgendes Ergebnis:

    ∫ T 1 T 2 M ⋅ d T знак равно м ⋅ р ⋅ ∫ 1 2 d с U {\ displaystyle \ int _ {t_ {1}} ^ {t_ {2}} M \ cdot dt = m \ cdot r \ cdot \ int _ {1} ^ {2} dc_ {u}}

    Aus dem Zusammenhang zwischen Drehmoment, der Drehzahl N {\ displaystyle n} und der Leistung п {\ displaystyle P} errechnet sich:

    п знак равно M ⋅ 2 ⋅ π ⋅ N знак равно M ⋅ ω {\ displaystyle P = M \ cdot 2 \ cdot \ pi \ cdot {n} = M \ cdot \ omega}
    п знак равно м ⋅ р ⋅ ω ⋅ d с U d T знак равно м ⋅ U ⋅ d с U d T {\ displaystyle P = {\ frac {m \ cdot r \ cdot \ omega \ cdot dc_ {u}} {dt}} = {\ frac {m \ cdot u \ cdot dc_ {u}} {dt}}}

    мит U {\ displaystyle u} als der größtmöglichen Umfangsgeschwindigkeit in einem betrachteten Querschnitt.

    Eine erneute Интеграция liefert

    п знак равно м ˙ ⋅ ∫ 1 2 U ⋅ d с U {\ displaystyle P = {\ dot {m}} \ cdot {\ int _ {1} ^ {2} u \ cdot dc_ {u}}} bzw.
    п м ˙ знак равно ∫ 1 2 U ⋅ d с U знак равно Y {\ displaystyle {\ frac {P} {\ dot {m}}} = {\ int _ {1} ^ {2} u \ cdot dc_ {u}} = \ mathbf {Y}}

    Die Letzte Gleichung wird Eulersche Turbinengleichung genannt.Ihre Lösung ergibt sich zu:

    Y знак равно U 2 ⋅ с U 2 — U 1 ⋅ с U 1 {\ displaystyle Y = u_ {2} \ cdot c_ {u2} -u_ {1} \ cdot c_ {u1}}

    Y {\ displaystyle Y} это его умрет, специализирующийся на шофеларбайте, U {\ displaystyle u} умрите умопомрачительное умение в Шауфельшпитце-ам-Эинтритт (указатель 1) и австрийте (указатель 2), сделайте это без умолку Fluidgeschwindigkeit с U {\ displaystyle c_ {u}} Я — Эйн-унд-Острит.

    In der Wirklichkeit muss für die überschlägige Turbinenauslegung auch noch mit den Reibungsverlusten des strömenden Fluids gerechnet werden.

    Dieser Abschnitt Bezieht Sich Nur Auf Turbinen Für GasFörmige Fluide and Enthält Physikalische Fehler; бедра Эйнер Überarbeitung. Näheres sollte auf der Diskussionsseite im Abschnitt Revert vom 6.5.2019 angegeben sein. Битт хилф мит, в том числе вербен, андерлэнд и марксинг. c_{u}

    In der In der Regel sind mehrere Schaufeln auf einer Nabe angebracht, sodass ein Schaufelder or Laufrad entsteht.Die Schaufeln sind gekrümmt profiliert, ähnlich einer Flugzeugtragfläche.

    Sind Turbinen in einem durchströmten Gehäuse montiert, dann befindet sich vor jeder Laufradstufe ein Leitrad. Die Leitschaufeln ragen vom Gehäuse in das strömende Medium hinein und erteilen ihm einen Drehimpuls (Drall). Der im Leitrad erzeugte Drall (kinetische Energie) является самым популярным в мире, как и прежде, а также в Вель-де-Лауфрадшауфель-и-де-Набе-Монтьер-Синд, anzutreiben.Die Rotation der Welle kann genutzt werden, um zum Beispiel einen Генератор анзутрейбена. Letztlich wird so die mechanische Strömungsenergie von Wasserkraft, Dampf oder Luft in elektrische Energie überführt. Leitrad und Laufrad zusammen bezeichnet man als Stufe . Bei Gas — und besonders bei Dampfturbinen sind mehrere solcher Stufen hintereinandergeschaltet, Wasserturbinen sind einstufig ausgeführt. Da das Leitrad stillsteht, können seine Leitschaufeln sowohl am Gehäuseinneren als auch am Gehäuseäußeren beesestig sein, and somit for für die Welle des Laufrads in Lager anbinden.Freistehende Turbinen (Zum Beispiel bei Windkraftanlagen), созданный в рамках Regel Kein Leitrad und nur eine Stufe. Maßgeblich für die Stufeneinteilung sind die Laufräder — jedes ist Grundlage einer eigenen Stufe.

    Turbinen können direkt mit schnell umlaufenden Generatoren gekoppelt sein, die die mechanische Rotationsenergie in elektrische Energie umwandeln. Diese schnell umlaufenden, niederpoligen Generatoren werden auch Turbogeneratoren genannt. Eine Zusammenstellung aus Turbine и Turbogenerator heißt Turbosatz.

    Wird eine Turbine mit Hilfe eines Verdichters und eines Verbrennungssystems für Gas oder Öl angetrieben, nennt man das Gesamtsystem eine „Gasturbine“. Gasturbinen werden zum Beispiel в Flugzeugen, Schiffen oder in Gas- und Ölkraftwerken verwendet. Turbinen-Strahltriebwerke sind Gasturbinen, die Flugzeuge ganz oder teilweise durch den Rückstoß ihrer beschleunigten Abgase antreiben (Schub). Mantelstromtriebwerke erzeugen einen größeren Teil des Schubes durch ein turbinengetriebenes Gebläse («Fan»).

    Sonderfälle [Bearbeiten | Quelltext Bearbeiten]

    Es gab Windturbinen, die mit nur einem Rotorblatt (und einem Gegengewicht) ausgeführt wurden, die sogenannten Einflügler.

    Die Ljungströmturbine ist eine Bauform einer Dampfturbine, die ohne Leitschaufeln auskommt. Умеренный радиальный фон из турбинных турбин от Hälften, умирает в Entgegengesetzter Richtung DREET. Dabei wirken die Laufradschaufeln der einen Hälfte als Leitschaufeln der andderen Hälfte.Bei der Pelton- and der Lavalturbine is Leitapparat от meerere or mehrere Düsen reduziert.

    Turbinen können nach verschiedenen Kriterien unterschienden werden:

    Kompressibilität des verwendeten Mediums [Bearbeiten | Quelltext Bearbeiten]

    Anströmungsrichtung [Bearbeiten | Quelltext Bearbeiten]

    Unterscheidung nach Anströmrichtung des Mediums:

    Verhältnis Fluiddruck Eintritt zu Austritt [Bearbeiten | Quelltext Bearbeiten]

Отправить ответ

avatar
  Подписаться  
Уведомление о