Роторный двигатель как работает: Роторно-поршневой двигатель — Википедия – принцип работы, устройство, недостатки и преимущества, видео — Рамблер/авто

Содержание

Роторный двигатель достоинства и недостатки

Роторный двигатель достоинства и недостатки

В этой статье Вы узнаете достоинства и недостатки роторных двигателей. Кроме того рассмотрим автомобили на которые устанавливался роторный двигатель.

Первый кто придумал роторный двигатель внутреннего сгорания это Феликс Ванкель. Именно поэтому нередко этот двигатель ассоциируется с ним и носит его имя. Первый роторный двигатель заработал в уже 1958 году. Но большинство автопроизводителей так и не решились устанавливать роторный двигатель на свои автомобили.

Единственный кто решился на массовое производство автомобилей с роторным двигателем это Mazda. Один из таких автомобилей RX 8. Советские инженеры тоже создали некоторое ограниченное количество автомобилей с роторным двигателем. Но об этом немного позже.

Вероятней всего от роторных двигателей отказались из-за низкого ресурса. Ресурс роторного двигателя в силу конструкции редко превышает 100 тысяч.км.

Устройство

Принцип работы роторного двигателя схож с поршневым двигателем. Также работа двигателя состоит из 4 тактов. Впуск, сжатие, воспламенение и выпуск. Но есть серьезные отличия у роторного двигателя отсутствует ГРМ, поршни, шатуны, коленвал. Так как в них необходимости.

Цилиндр в роторном двигателе выполнен в овальной форме. Роль поршня выполняет ротор который, имеет треугольную форму. Он же выполняет и роль ГРМ так как в зависимости от момента вращения, то открывает впускное окно для подачи воздуха, то закрывает. Также присутствует выпускное окно через которое выводятся выхлопные газы. Топливо в роторном одно секционном двигателе воспламеняется двумя свечами зажигания.

Достоинства

1) Более высокий КПД в районе 40 %. Это происходит за счёт того, что за одно вращение происходит 3 цикла работы.

2) Более простая конструкция за счёт отсутствия многих деталей которые присуще поршневому двигателю.

3) Более лёгкий вес.

4) Роторный двигатель высок оборотистый его можно раскручивать более 10 000 об/мин. Редко какой поршневой двигатель сможет похвастаться такими высокими оборотами.

5) Более мягкая работа и отсутствие вибраций, так как ротор постоянно движется в одном направлении.

К сожалению роторный двигатель не лишён недостатков.

Недостатки

1) Автомобили с роторным двигателем расходуют больше топлива чем его поршневые собратья.

2) Роторный двигатель менее экологичен.

3) Трудоемкий ремонт. Зачастую ротор приходится менять целиком.

4) Низкий ресурс около 100 тыс.км

Некоторые автомобили с роторным двигателем

1) Mazda RX 8

Компания Mazda одна из немногих кто живо занимался усовершенствованием роторного двигателя вплоть до 21 века. Им удалось достичь немалого прогресса. Двигатель с мизерным объемом 1,3 литра выдавал 215 л.с. Был и еще более мощный вариант с 231 л.с таким же объемом. Это харизматичное заднеприводное купе стало представителем автомобилей с роторным двигателем. К сожалению продажи начали падать поэтому в Августе 2011 года производство автомобилей Mazda RX-8 были вынуждены закрыть.

2) Ваз 2109-90

В России был создан образец с роторным двигателем характеристики которого на тот момент были впечатляющими. Этот двигатель устанавливался на полицейские автомобили. Роторный двигатель на ваз 2109 выдавал 140 л.с благодаря этому мотору разгон до 100 км/ч занимал всего 8 секунд, а максимальная скорость составляла 200 км/ч. Из-за высокой стоимости агрегата и его невысокой надежности автомобили не прижились. Были и более мощные образцы, но их ресурс оставлял желать лучшего. Тем не менее этот автомобиль отлично выполнял роль догонялки и мог обогнать любой советский автомобиль, даже многие не спортивные иномарки.

3)Mercedes C111

Mercedes C111 показался публике в Женеве в 1970 году. На этот автомобиль устанавливался трех-секционный роторный двигатель объемом 1,8 литра, который имел 280 л.с. При этом разгон до первой сотни занимал всего 5 сек. Максимальная скорость 275 км/ч.

4)Ваз 21019 Аркан

С виду ваз 21011, но внутри располагался ваз-411 это двух-секционный роторный двигатель который выдавал мощность 120 л.с. Максимальная скорость такого автомобиля была 160 км/ч. На практике скорее всего больше. Несомненно в советское время укрыться от такого автомобиля было не просто.

Итог

Роторный двигатель очень хорош для гонок так как он высок оборотистый и обладает хорошей мощность при этом обладает более легким весом и занимает меньше места под капотом. Для гонок ресурс двигателя не является самым важным показателем. Если увеличить ресурс, экономичность и экологичность роторного двигателя, то он будет устанавливаться на автомобили гораздо чаще.

dr]ems украина отслеживание

Роторный двигатель: принцип работы

Как работает роторный двигатель. Роторный двигатель изобретен и разработан доктором Феликсом Ванкелем и иногда называется двигатель Ванкеля или роторный двигатель Ванкеля.

Роторный двигатель, как и традиционный поршневой, является двигателем внутреннего сгорания, но работает он совершенно иначе. В поршневом двигателе, в одном и том же объеме пространства (в цилиндре) попеременно происходят четыре различные работы — впуск, сжатие, сгорание и выпуск (такты).

Роторный двигатель делает эти четыре такта в одном и том же объеме(камере), но каждый из этих тактов происходит в своей отдельной части этой камеры. Как будто для каждого цикла используется отдельный цилиндр, а поршень перемещается от одного цилиндра к другому.

В этой статье мы подробно расскажем, как работает роторный двигатель. Давайте начнем с основных принципов его работы.

Принцип работы роторного двигателя.

Как и поршневой, роторный двигатель использует давление которое создается при сжигании смеси воздуха и топлива. В поршневых двигателях, это давление создается в цилиндрах, и двигает поршни вперед и назад. Шатуны и коленчатый вал преобразуют возвратно-поступательные движения поршня во вращательное движение, которое может быть использовано для вращения колес автомобиля.

В роторном двигателе, давление сгорания содержится в камере, образованной частью объема камеры закрытой стороной треугольного ротора, который используется в данном случае вместо поршней.

Роторный двигатель

Ротор и корпус роторного двигателя от Mazda RX-7: Эти детали заменяют поршни, цилиндры, клапаны, шатуны и распредвалы в поршневых двигателях.

Ротор соединен со стенками камеры каждой из трех своих вершин, создавая три отдельных объема газа. Ротор вращается, и каждый из этих объемов попеременно расширяется и сжимается. Цепная реакция всасывает воздух и топливо в рабочую камеру, сжимает смесь, она расширяясь делает полезную работу, затем выхлопные газы выталкиваются, новая порция воздуха и топлива всасывается, и так далее.

Мы заглянем внутрь роторного двигателя, чтобы познакомится с его устройством, но сначала давайте взглянем на новые модели автомобилей с роторным двигателем.

Mazda RX-8

Mazda стала пионером в массовом производстве автомобилей, использующих роторные двигатели. Спорткар RX-7, который поступил в продажу в 1978 году, был, пожалуй, наиболее успешным автомобилем с роторным двигателем. Но ему предшествовал целый ряд автомобилей, грузовиков и даже автобусов с роторной силовой установкой, начиная с Cosmo Sport выпуска 1967 года.

Однако RX-7 не продается с 1995 года, но идея роторного двигателя не умерла. Mazda RX-8, последний спорткар от Mazda, имеет у себя под капотом новейший роторный двигатель под названием RENESIS. Названный лучшим двигателем 2003 года, этот атмосферный двух-роторный двигатель производит около 250 лошадиных сил.

Строение роторного двигателя.

Роторный двигатель имеет систему зажигания и систему впрыска топлива, весьма похожие на те, что установлены на поршневых двигателях. Однако, если вы никогда не видели внутренности роторного двигателя, то будьте готовы удивиться, потому что вы не увидите ничего знакомого.

Ротор

Ротор имеет три выпуклых стороны, каждая из которых действует как поршень.

Каждая сторона ротора имеет углубление в ней, что повышает скорость вращения ротора в целом, предоставляя больше пространства для топливо-воздушной смеси.

На вершине каждой грани находится по металлической пластине, которые и формируют камеры, в которых происходят такты двигателя. Два металлических кольца на каждой стороне ротора формируют стенки этих камер. В середине ротора находится круг, в котором имеется множество зубьев. Они соединены с приводом, который крепится к выходному валу. Это соединение определяет путь и направление, по которому ротор движется внутри камеры.

Камера

Камера двигателя приблизительно овальной формы (но если быть точным — это Эпитрохоида, которая в свою очередь представляет собой удлиненную или укороченную эпициклоиду, которая является плоской кривой, образуемой фиксированной точкой окружности, катящейся по другой окружности). Форма камеры разработана так, чтобы три вершины ротора всегда находились в контакте со стенкой камеры, образуя три закрытых объемах газа.

В каждой части камеры происходит один из четырех тактов:

  • Впуск
  • Сжатие
  • Сгорание
  • Выпуск

Отверстия для впуска и выпуска находятся в стенках камеры, и на них отсутствуют клапаны. Выхлопное отверстие соединено непосредственно с выхлопной трубой, а впускное напрямую подключено к газу.

Выходной вал

Выходной вал имеет полукруглые выступы-кулачки, размещенные несимметрично относительно центра, что означает, что они смещены от осевой линии вала. Каждый ротор надевается на один из этих выступов. Выходной вал является аналогом коленчатого вала в поршневых двигателях. Каждый ротор движется внутри камеры и толкает свой кулачок.

Так как кулачки установлены несимметрично, сила с которой ротор на него давит, создает крутящий момент на выходном валу, заставляя его вращаться.
Теперь давайте посмотрим, как эти части взаимодействуют.

Строение роторного двигателя

Роторный двигатель состоит из слоев. Двухроторный двигателя состоят из пяти основных слоев, которые удерживаются вместе благодаря длинным болтам, расположенным по кругу. Охлаждающая жидкость протекает через все части конструкции.

Два крайних слоя закрыты и содержат подшипники для выходного вала. Они также запечатаны в основных разделах камеры, где содержатся роторы. Внутренняя поверхность этих частей очень гладкая и помогает роторам в работе. Отдел подачи топлива расположен на конце каждой из этих частей.

Следующий слой содержит в себе непосредственно сам ротор и выхлопную часть.

Центр состоит из двух камер подачи топлива, по одной для каждого ротора. Он также разделяет эти два ротора, поэтому его внешняя поверхность очень гладкая.

В центре каждого ротора крепится две большие шестерни, которые вращаются вокруг более маленьких шестерней и крепятся к корпусу двигателя. Это и является орбитой для вращения ротора.

Мощность роторного двигателя

Роторные двигатели используют четырехтактный цикл сгорания, как и в обычном поршневом. Но в роторном это происходит совсем по-другому.

Сердце роторного двигателя — это ротор. Он чем-то эквивалентен поршню в поршневом двигателе. Ротор установлен на большой округлом лепестке на выходном вале. Этот лепесток смещается от осевой линии вала и действует как заводная ручка на лебедку, давая ротору пространство для поворота выходного вала. Пока ротор вращается внутри корпуса, он толкает лепесток внутри жестких кругов, вращаясь 3 раза за каждый оборот ротора.

В то время как ротор вращается в корпусе, три отсека внутри изменяют свой размер. Изменение размера этих камер создает давление. Давайте пройдем по всем 4 отсекам двигателя.

Подача

Первая фаза начинается тогда, когда вершина ротора находится на уровне отсека подачи. В момент когда камера подачи открыта для основного отсека, объем этой камеры близок к минимуму. Как только ротор проходит мимо камеры подачи, объем камеры расширяется и вливает воздух/топливо в основной отсек. Как только ротор проходит камеру подачи, отсек становится полностью изолированным и начинается компрессия.

Компрессия

В то время как ротор продолжает свое движение по основному отсеку, пространство в отсеке становится меньше, смесь из воздуха/топлива сжимается. Как только ротор проходит отсек со свечами зажигания, объем камеры снова сводится к минимуму. В это время происходит возгорание смеси.

Возгорание

Большинство роторных двигателей имеет две свечи зажигания. Камера возгорания достаточно длинная, поэтому одной свечи будет недостаточно. Как только свечи воспламеняет топливно-воздушную смесь, давление в отсеке сильно увеличится, приводя ротор в движение. Давление в камере возгорания продолжает расти, заставляя ротор двигаться, а отсек расти в объеме. Газы от возгорания продолжают расширяться, перемещая ротор и создавая мощность, до того момента, пока ротор не пройдет выхлопной отсек.

Выхлоп

После того, как ротор проходит выхлопной отсек, высокое давление газа сгорания свободно выходит в выхлопную трубу. Так как ротор продолжает движение, камера начинает сжиматься, выдавливая оставшиеся выхлопные газы в свободный отсек. К тому времени объем камеры опять падает к минимуму и цикл начинается сначала.

Разница и Проблемы

У роторного двигателя достаточно много различий с обычным поршневым двигателем.

Меньше движущихся частей

Роторный двигатель имеет намного меньше частей, чем скажем 4-ех цилиндровый поршневой движок. Двух роторный двигатель имеет три главные движущиеся части: два ротора и выходной вал. Даже самый простой 4-ех цилиндровый поршневой двигатель имеет как минимум 40 движущихся частей, включая поршни, шатуны, стержень, клапаны, рокеры, клапанные пружины, зубчатые ремни и коленчатый вал. Минимизация движущихся частей позволяет получить роторным двигателям более высокую надежность. Именно поэтому некоторые производители самолетов (к примеру Skycar) используют роторные двигатели вместо поршневых.

Мягкость

Все части в роторном двигателе непрерывно вращаются в одном направлении, в отличие от постоянно изменяющих направление поршней в обычном двигателе. Роторный движок использует сбалансированные крутящиеся противовесы, служащие для подавления любых вибраций. Подача мощности в роторном двигателе также более мягкая. Каждый цикл сгорания происходит за одни оборот ротора в 90 градусов, выходной вал прокручивается три раза на каждое прокручивание ротора, каждый цикл сгорания проходит за 270 градусов за которые проворачивается выходной вал. Это значит, что одно роторный двигатель вырабатывает мощность в три четверти . Если сравнивать с одно-цилиндровым поршневым двигателем, в котором сгорание происходит каждые 180 градусов каждого оборота, или только четверти оборота коленчатого вала.

Неспешность

В связи с тем, что роторы вращаются на одну треть вращения выходного вала, основные части двигателя вращаются медленней, чем части в обычном поршневом двигателе. Это также помогает и в надежности.

Проблемы

Самые главные проблемы при производстве роторных двигателей:

Достаточно сложно (но не невозможно) подстроиться под регламент выброса CO2 в окружающую среду, особенно в США.

Производство может стоить намного дороже, в большинстве случаев из-за небольшого серийного производства, по сравнению с поршневыми двигателями.

Они потребляют больше топлива, так как термодинамическое КПД поршневого двигателя снижается в длинной камере сгорания, а также благодаря низкой степени сжатия.

Источник: Авто Релиз.ру.

Что такое роторный двигатель и как он работает

Безраздельное властвование в автомобилестроении поршневых ДВС, характеризующихся наличием механизма обратно-поступательного движения поршня, отнюдь не связано с техническим совершенством их устройства. Более того, такие силовые агрегаты обладают большим количеством конструкционных недостатков, которые в принципе непреодолимы. И никакие ухищрения, основанные на достижениях технического прогресса последних десятилетий, не способны искоренить эти недостатки.

Что собой представляют роторные двигатели

Но поскольку техническую мысль невозможно ни замедлить, ни тем более остановить, ведущие инженеры и целые конструкторские бюро на протяжении последних ста лет усиленно работали над поиском достойной альтернативы ПДВС.

Следует отметить, что в этом направлении уже достигнуты немалые успехи, даже если не принимать во внимание силовые агрегаты с реактивной тягой. В частности, в сфере двигателей, у которых момент движения передается на вал вращения, классический поршневой мотор уже достаточно давно в разных областях применения начал сдавать свои позиции.

Так, в среде стационарных установок вне конкуренции находится электромотор, в авиастроении предпочтение отдают газотурбинным силовым агрегатам, паровые турбины эффективно используется в судостроении и в энергетических силовых установках типа электростанций.

Отметим, что все указанные разновидности моторов относятся к категории роторных машин, поскольку у всех их основной рабочий орган — вращательный, без наличия возвратно-поступательных компонентов. Если рассматривать такую конструкцию с точки зрения термодинамики и классической механики, то она оказывается наиболее эффективной, передающий момент движения с минимальными потерями.

Что такое роторная силовая установка

Роторный двигатель внутреннего сгорания представляет собой разновидность тепловых моторов, у которых в общем элементом является ротор. Принципиальное отличие от поршневых ДВС заключается в том, что такие агрегаты не нуждаются в конструктивных элементах, занимающихся преобразованием возвратно-поступательного движения во вращение основного вала.

Теоретически такой агрегат должен обладать более высоким КПД. Но на практике реализация таких схем оказалось технически достаточно сложной, несмотря на отсутствие такой промежуточной системы, как коленвал. Выяснилось, что роторный мотор обладает некоторыми недостатками, которые настолько существенны, что из-за них этот тип двигателей конкретно в автомобилестроении так и не получил массового распространения. Почему так произошло, мы расскажем чуть позже.

Роторно-поршневые двигатели

Если обратиться к истории, то 1 роторный двигатель был продемонстрирован инженерами Ванкелем и Фройде в 1957 году. Именно тогда немецкие изобретатели сумели воплотить в жизнь свои задумки. Презентация нового типа автомобильных двигателей оказалась настолько успешной, что многие автопроизводители мирового масштаба серьёзно заинтересовались этой разработкой. Достаточно назвать такие бренды, как Citroen, General Motors, Mercedes-Benz. Но после многолетних исследовательских и испытательных работ все они признали бесперспективность роторных силовых агрегатов. Но не японский автоконцерн Mazda. Инженеры этой компании всё же сумели вывести в серию роторные двигатели, которые выпускались автоконцерном достаточно долго.

Следует отметить, что даже АвтоВАЗ на протяжении ряда лет оснащал ограниченные серии своих моделей роторными двигателями. Правда, такие машины не поступали в розничную сеть — ими комплектовались автопарки силовых органов (МВД и КГБ).

Поскольку роторный силовой агрегат относится к категории ДВС, принцип его работы, как и поршневого аналога, заключается в преобразовании тепловой энергии сгорания горючего в энергию вращения. Разумеется, такое преобразование осуществляется принципиально иным, более простым способом. Дело в том, что в роторном моторе основной рабочий орган — это ротор, который жестко связан с приводным валом. В классическом двигателе внутреннего сгорания движущей силой является поршень, двигающийся поступательно вверх-вниз. Для преобразования такого движения во вращательное требуется использование достаточно сложного механизма — кривошипно-шатунного, составной частью которого является коленчатый вал.

Именно в этом и заключается разница между роторным двигателем и обычным поршневым ДВС.

Классификация роторных двигателей

Было бы наивным предполагать, что усилия армии инженеров были сосредоточены исключительно на конструирование альтернативы поршневому мотору. Ещё в шестидесятых годах прошлого столетия были продемонстрированы разработки роторных силовых агрегатов с концептуально разными схемами реализации.

Роторный мотор мощностью 70 лошадей

На сегодня можно перечислить следующие виды роторных моторов:

  • двигатели с разнонаправленным движением рабочих элементов. Их отличительной особенностью является не вращательное, а возвратно-поступательное движение (качание по эллипсоидной дуге вокруг продольно оси). В таких моторах процесс сгорания ТВС, сопровождающийся фазами сжатия/расширения отработанных газов, реализуется в полостях между жёстко укреплёнными лопатками статора, что и определяет замысловатую траекторию движения ротора, отличающуюся от вращения вокруг оси. Таким образом, конструктивно это действительно роторный агрегат, но по принципу передачи движения он является промежуточным решением между поршневым и вращательным способами передачи момента движения на приводной вал. Более того, некоторые склонны причислять такие моторы к поршневым ДВС, ведь у них существует и своеобразный аналог кривошипного механизма, преобразующий колебания ротора во вращательное движение. Такое усложнение конструкции оказалось не слишком оправданным, так что РДВС данного типа не получили сколь-нибудь заметного распространения. К тому же у этой конструкции имеется очень серьёзный недостаток – относительно высокая вероятность столкновений лопастей, что во время работы двигателя грозит очень серьёзными неприятностями;
  • роторные моторы с однонаправленным движением рабочих элементов. У этой разновидности силовых агрегатов имеется два ротора, заключённых в единый корпус. Они вращаются со сдвигом по временной фазе, как бы догоняя во время работы мотора друг друга. Такой тип вращения ротора принято называть пульсирующе-вращательным. Здесь рабочие такты сгорания ТВС происходят в кавернах, образующихся между лопастями смежных роторов на фазах их максимального сближения/удаления. Схема рабочая, но характеризующаяся существенным недостатком: оба головных вала вращаются рывками, равномерное движение отсутствует. Для выравнивания импульсного момента требуется использовать очень сложные устройства и механизмы, позволяющие преобразовывать знакопеременные нагрузки с целью выравнивания скоростей обеих валов. Отметим, что, как и в предыдущей разновидности роторных агрегатов, здесь также не исключены ударные столкновения параллельных лопастей в фазе их сближения;
  • роторные моторы с уплотнительными заслонками. Эта разновидность двигателей оказалась более удачной и широко применяется и в настоящее время, преимущественно в пневматических силовых агрегатах. Но в этом случае в качестве движущей силы выступает уже не горючее, а сжатый воздух. Здесь лопасти ротора выступают в качестве заслонок, а сам вал также движется не прямолинейно, совершая качающиеся либо возвратно-поступательные движения. Как правило, лопасти в таких моторах закреплены на шарнирах, что позволяет им в нужный момент отклоняться. К сожалению, создать такой же эффективный мотор для ДВС так и не удалось, поскольку здесь для реализации задуманного необходимо обеспечить гораздо боле герметичную схему, чем при использовании пневматики. Оказалось, что в условиях больших значений рабочего давления и температур хорошо получается что-либо одно: или обеспечение надлежащей герметичности, либо обеспечение требуемой подвижности роторных лопастей. Добиться приемлемых показателей одновременно не получается. К тому же имеются объективные сложности, касающиеся обеспечения непрерывного движения лопастей. Это можно сделать, используя отдельный специализированный привод, или с помощью комбинации действия пружин и центробежной силы вращения. Оба варианта реализовать чрезвычайно сложно, поэтому в автомобилестроении данная разновидность роторных моторов так и не смогла оказать достойную конкуренцию классическим ДВС;
  • двигатели роторного типа с подвижными уплотнительными заслонками. Схожесть с моторами предыдущего типа очевидна. Разница заключается в том, что здесь лопатки, являющиеся также заслонками, не являются частью ротора – они прикреплены к внутренней стенке корпуса, в нужный момент выдвигаясь внутрь. У ротора также имеются лопасти, но довольно экзотической формы. Именно на них и приходится основная часть нагрузки в виде давления отработанных газов. Задача роторных лопаток – отсекать в определённые моменты лопасти-заслонки от камеры сгорания. Технически всё это реализовать тоже очень непросто, и перечень недостатков такой конструкции схож с предыдущим;
  • моторы с простым вращательным движением роторного вала. В силу простоты конструкции такие агрегаты можно назвать самыми совершенными и очень перспективными. Здесь просто отсутствуют механизмы, совершающие любые виды движения, кроме вращательного. Неудивительно, что достижение скоростей вращения порядка десятков тысяч об/мин для них – не проблема. Отметим, что первые подобные двигатели были сконструированы ещё в конце XIX, продемонстрировав более высокие эксплуатационные характеристики, чем тогдашние поршневые двигатели. Отметим, что в то время основной движущей силой был пар, а не бензин. Но со временем поршневые силовые установки перевели на углеводородное топливо, а вот с роторными аналогами случилась загвоздка;
  • роторные силовые агрегаты с планетарным механизмом вращения. Это – так называемые двигатели Ванкеля, немецкого инженера-конструктора, впервые предложившего такой мотор. Именно они и легли в основу всех попыток создать конкурентоспособный ДВС на роторной тяге. В дальнейшем мы будем вести речь именно об этой разновидности роторных силовых агрегатов.

Итак, пришла пора ознакомиться с устройством и принципом работы роторно-поршневых двигателей.

Конструкция роторного двигателя

Поскольку РПД и классический поршневой мотор являются двигателями внутреннего сгорания, было бы логичным предположить, что и система впрыска ТВС, а также система зажигания у них схожи. Так оно и есть, но строение самих силовых агрегатов кардинально разное.

Устройство роторного двигателя включает следующие основные конструктивные элементы:

  • собственно ротор;
  • статор, в роли которого выступает корпус мотора;
  • приводной (выходной) вал.

Здесь используется классическая компоновка: вращающийся ротор находится внутри статора. Геометрия ротора предполагает наличие трёх выпуклостей, которые, по существу, являются аналогами поршня. Углубление в этих выпуклостях способствует повышению скорости вращения за счёт формирования завихрений отработанных газов. Каждая выпуклость комплектуется двумя кольцами, внутри которых формируются полости, представляющие собой камеры сгорания.

Одной из самых важных элементов ротора считается расположенное примерно посередине вала зубчатое колесо. Оно входит в зацепление с шестерней, располагаемой напротив на корпусе мотора. Эта зубчатая пара и является той компонентой, которая формирует направление и, разумеется, траекторию движения самого ротора.

Корпус РДВС выполнен в виде овала, что резко контрастирует с внешностью традиционного поршневого двигателя. Сделано это для того, чтобы все вершины ротора (напомним, их всего три) постоянно контактировали со стенками статора. Посредством такой экзотической геометрии достигается формирование в любой момент времени трёх камер сгорания, полностью герметичных и целиком изолированных от влияния соседний полостей. Впускная система также необычна: вместо клапанного механизма используются специальные порты впуска/выпуска, первый из которых непосредственно ведёт к дросселю, второй – к выхлопной системе, тоже напрямую, без каких-либо промежуточных конструктивных элементов.

Выходной вал ротора абсолютно не похож на коленвал поршневого ДВС. Да, на нём присутствуют эксцентрики в виде выступов специальной формы, расположенных на валу с определённым смещением относительно осевой линии. Но они служат для сопряжения с роторами (их у двигателя бывает несколько). Каждый отдельный ротор, вращаясь, воздействует на свой кулачковый эксцентрик, усиливая крутящий момент выходного вала.

Вот так необычно устроен роторный двигатель. Следует упомянуть ещё об одной его конструктивной особенности: он собирается в заводских условиях послойно. Наиболее распространены двухроторные силовые агрегаты, у которых имеется пять таких слоёв. В качестве крепёжных элементов используются болтовые соединения, располагаемые по кругу каждой секции.

Система охлаждения роторных силовых агрегатов устроена таким образом, что ОЖ доставляется во все активные элементы конструкции. Подшипники с сальниками расположены в противоположных крайних секциях, во внутренних сегментах установлены роторы. В центральных сегментах расположены впускные порты, выпускные же размещены с обоих краёв корпуса.

Принцип работы

Принцип действия роторного двигателя, как и его конструкция, радикальным образом отличается от поршневого автомобильного аналога. Именно ротор, вращаясь, передает крутящий момент на трансмиссию и, в конечном итоге, – на колёса. Сгорание топливно-воздушной смеси происходит не в цилиндрах, а полостях, образуемых сторонами ротора, представляющего собой равнобедренный треугольник с немного выпуклыми сторонами. Он изготавливается только из высококачественной легированной стали.

Корпус, играющий роль статора – вторая важная компонента роторного силового агрегата. В разрезе он имеет вид продолговатого овала, между стенками которого и сторонами ротора формируются динамические камеры сгорания и происходят все стандартные фазы сгорания ТВС: впрыск смеси, сжатие, воспламенение, выпуск отработанных газов.

Рабочие такты двигателей

Поскольку ось, на которой расположен ротор, расположена не по центру, вращением это назвать сложно. Да и сама геометрия внешних сторон корпуса и ротора далека от симметрии. Однако именно это позволяет в каждый момент времени формировать три полости, в каждой из которых в конкретный момент времени происходит один из четырёх вышеназванных циклов.

Опишем схематически, как работает роторный двигатель, на примере одной отдельно взятой стороны ротора.

На фазе впуска в начинающую расширяться полость всасывается топливная смесь, причём происходит это самотёком, за счёт создаваемого в полости разрежения. В этой же фазе происходит и смешивание ТВС. За счет силы инерции (ведь таких полостей в двигателе три, и одна из оставшихся как раз и толкает ротор в нужном направлении) полость смещается, точки максимального объема и затем начиная опять сжиматься. Максимум этого процесса приходится на нижнюю мёртвую точку, в которой смесь сжимается до такой степени, что готова отдать всю энергию. Именно в этот момент и происходит воспламенение ТВС свечой зажигания, после чего в результате сгорания и резкого расширения продуктов горения струя газов, пытаясь вырваться наружу, толкает ротор, пока он опять не подойдёт к верхней точке траектории. А здесь уже газам есть куда выйти через выпускной клапан. Таким образом, цикл завершается, а весь процесс происходить непрерывно. Важно понять, что в каждый момент времени в каждой из камер происходит один из процессов, аналогичных вышеописанным.

Другими словами, один полный оборот выходного вала соответствует трём тактам работы мотора.

Если учесть, что современные роторные двигатели оснащаются двумя или тремя роторами, для каждого из которых имеется свой статор, то бишь корпус, то картина получается впечатляющая. К слову, в настоящее время производством таких автомобильных силовых агрегатов занимается только автоконцерн Mazda.

Как видим, конструкции и принцип работы роторного двигателя достаточно прост, дополнительных узлов и механизмов требуется минимум, не в пример меньше, чем у поршневого собрата. Это позволяет при сравнимых габаритах обеспечить намного большую производительность. Так, по выходной мощности двухроторный мотор сопоставим с шестицилиндровым поршневым силовым агрегатом, трёхроторный выдает столько же лошадиных сил, как двенадцатицилиндровый поршневой двигатель.

Следует отметить, что повышенная производительность – далеко не единственный конёк этого типа моторов, но есть у него, разумеется, и ряд недостатков, которые и не позволяют (надеемся – пока) сделать его массовым продуктом. Но об этом – в следующей главе.

Преимущества и недостатки РДВС

С момента своей презентации роторно-поршневой силовой агрегат постоянно был в центре внимания специалистов, а многие солидные автопроизводители начали инвестировать в исследования, посвящённые разработке этого типа мотора, громадные суммы. И неспроста: конструкция такого агрегата на порядок проще классического двигателя. Собственно говоря, основными в нём являются две детали: корпус и ротор. Куда уж проще!

Перечислим преимущества, которые сулит использование роторного привода:

  • простота конструкции – фактор, способствующий достижению практически идеальной сбалансированности двигателя: минимум деталей позволил свести вибрационные процессы, характерные для ПДВС, практически на нет;
  • даже не слишком удачные реализации роторного силового агрегата позволяли получать великолепную динамику без увеличения нагрузки на сам мотор. Это наглядно демонстрируют и последние модели Мазда. К примеру, RX-8 с роторным двигателем разгоняется до сотни примерно за такое же время, но без перехода на самую высокую передачу, просто за счёт высоких оборотов;
  • хотя несколько роторов требуют относительно большого объема для размещения, за счёт отсутствия множества дополнительных узлов и агрегатов такой двигатель получается заметно компактнее поршневого, и намного легче. Для конструкторов это идеальный вариант, предоставляющий возможность выполнить идеальную межосевую развесовку. А это, кстати, фактор, существенно улучшающий устойчивость транспортного средства во время выполнения скоростных манёвров;
  • минимизация узлов существенно упрощает обслуживание такого агрегата, увеличивается его надёжность и безотказность;
  • наконец, роторный ДВС характеризуется отменной удельной мощностью, недостижимой для своих классических собратьев.

Вы спросите, почему же при таком количестве впечатляющих достоинств роторные моторы не вытеснили поршневые?

Всё очень просто: минусы роторного двигателя перевешивают плюсы, а современное автомобилестроение – это, прежде всего, целесообразность. Даже если речь идёт об экологичных машинах, учтите, что их производство в значительной степени субсидируется на государственном уровне. О роторных установках этого не скажешь.

Так в чём же заключаются их недостатки? Судите сами:

  • главным, и самым существенным минусом этого типа двигателей считается очень высокий расход горючего, особенно на невысоких скоростях и низких оборотах. Типичный показатель – 20 и более литров на 100 километров. При нынешнем уровне цен на топливо это, конечно неприемлемо. Особенно если сравнивать с аналогичными по мощности бензиновыми ДВС, у которых расход постоянно снижается и уже частично преодолел знаковую отметку в 5 л/100 км.;
  • отсутствие симметрии – другой существенный недостаток таких двигателей. Чтобы идеально скомпоновать ротор и статор, чтобы прохождение эпитрохоидальной кривой было максимально правильным, требуется использование дорогостоящего специализированного и высокоточного оборудования. Без него добиться геометрически безупречной подгонки деталей невозможно. Разумеется, это тоже влияет на стоимость машины, и отнюдь не в сторону снижения;
  • поскольку камера сгорания у роторных агрегатов имеет не круглое, а линзовидное сечение, это негативным образом сказывается на тепловых характеристиках мотора. Другими словами, при сгорании значительная часть энергии из-за специфической формы ротора и статора расходуется не на проталкивание ротора, а на его нагрев. Так что борьба с перегревом – очередное слабое место двигателей данного типа;
  • производителям так и не удалось справиться с проблемой быстрого износа уплотнителей, устанавливаемых между форсунками. Значительные перепады давления, характерные для камер сгорания, разрушают уплотнители, и в результате после 100, максимум 150 тысяч км пробега роторному двигателю требуется капремонт. А это – большая проблема, и даже не из-за высокой стоимости: таких специалистов и автосервисов нужно ещё поискать;
  • наконец, РДВС расход моторного масла гораздо выше: на каждые 1000 километров расходуется примерно 600 мл смазывающей жидкости, и это при новом и неизношенном моторе. Поэтому процедура замены масла производится намного чаще (каждые 5 тысяч километров), что, безусловно, увеличивает стоимость владения таким автомобилем. Но критично не это: если вы забыли вовремя долить/сменить ММ, поломки мотора не заставят себя долго ждать. Так что с точки зрения техобслуживания роторный двигатель, несмотря на свою простоту, не позволит автовладельцу расслабиться.

Разумеется, инженеры Мазда работают над устранением этих проблем, но у главной из них, снижения расхода топлива, похоже, приемлемого решения нет и не предвидится.

На каких авто можно встретить роторный силовой агрегат

Если обратиться к истории, то первым мелкосерийным авто с мотором Ванкеля стал NSU Spider. Его начали выпускать в 1964 году. При развиваемой мощности 54 л.с. этот автомобиль разгонялся до 145-150 км/час. Для первенца, согласитесь, очень неплохие результаты!

Через три года была презентована стендовая модификация NSU Ro-80 – презентабельного четырёхдверного седана, однако до крупносерийного производства дело не дошло. Но именно эта модель подтолкнула многих автопроизводителей к приобретению лицензии на дизельный РДВС (можно упомянуть Citroen, Toyota, GM и, конечно же, Mazda).

К сожалению, попытки создать действительно конкурентный автомобиль не увенчались успехом. О причинах мы уже упоминали: из-за огромного объёма камеры сгорания идеального смешивания ТВС не происходит, в результате даже двухсвечный разряд не позволял эффективно сжигать топливную смесь. А значит, расход топлива возрастает, а выхлоп становится более грязным.

Роторный силовой агрегат

Именно в это время мир накрыл топливный кризис, и компания NSU, практически целиком перешедшая на роторные двигатели, вынуждена была свернуть разработки и в результате была поглощена автоконцерном Volkswagen, где двигатели Ванкеля посчитали бесперспективными.

У Mercedes-Benz, купившей лицензию, дела пошли не лучше – было сконструировано всего две модели с роторным агрегатом. С111 первого поколения при 280 «лошадях» развивала 259 км/час, разгоняясь до сотни ровно за пять секунд. У второго поколения показатели существенно улучшились: 350, 300 и 4.8 соответственно. После этого данное направление было закрыто.

Chevrolet отметился тоже двумя роторными машинами: Corvette оснащался двухсекционным (267 л.с.) и четырёхсекционным (390 л.с.) силовым агрегатом, но дальше прототипа дело не пошло. Citroen сумел довести до серии GS Birotor (108 л.с.), однако впоследствии все машины были отозваны и утилизированы (за исключением порядка 200 экземпляров, обладатели которых не захотели расставаться с уникальными авто). Так что вероятность повстречать эту модель на европейских трассах не равна нулю и сегодня.

Дольше всех держалась Mazda, на протяжении 1967-1972 годов концерн выпустил 1519 автомобилей с роторным двигателем. Примерно в то же время был запущено в серию Luce R130 в форме купе. Дальше – больше: с 1970 года РДВС устанавливали практически на все модели, включая среднегабаритный автобус Parkway Rotary 26. Он весил всего 2.83 тонны и разгонялся до 120 км/час.

В 70-х годах роторные моторы (нелицензированные) начали производить и в СССР. В качестве прототипа взяли классический мотор от Ro-80.

Занимались доводкой автовазовцы, сумевшие в 1976 году довести до ума СА Ваз-311. Но до серии пришлось ждать ещё 6 лет, когда появилась модель Ваз-21018 , оснащаемая роторным мотором мощностью 70 «лошадей». Впрочем, обкатку не прошёл ни один автомобиль, так что эксперимент закончился установкой штатных поршневых моторов. Но в 1983 году ситуация была исправлена, однако модели Ваз-411/413 в розницу не попали: их поставляли исключительно в силовые структуры.

На данный момент Mazda осталась единственной компанией, которая продолжает заниматься данным направлением.

Возможен ли самостоятельный ремонт роторного мотора

Ответ, безусловно, будет скорее отрицательный. И дело не в том, что таких автомобилей в мире очень мало – их конструкция настолько уникальна, что что-либо менять внутри самому не представляется возможным.

Конечно, с заменой свечей дела обстоят не так плохо, однако не для первых моделей. У них свечи оказались спрятанными в стационарный вал (подвижными были не только ротор, но и корпус двигателя). Со временем конструкторы перешли к более простому варианту, а свечи начали устанавливать на стенки неподвижного статора, напротив портов впрыска/выпуска.

Большинство других ремонтных работ самостоятельно произвести практически нереально.

Отметим, что классический мотор Ванкеля имеет примерно на 40% меньше комплектующих, чем поршневой двигатель, но это детали, не имеющие аналогов.

Роторный двигатель ВАЗ

Что ещё можно сделать своими руками? Например, поменять вкладыши приводного вала. Эту операцию выполняют, когда они стерлись настолько, что местами проступает медь. Для этого нужно демонтировать шестерни, поменять вкладыши и напрессовать зубчатые колёса на штатное место. Одновременно можно проверить состояние сальников и при необходимости установить новые.

Если при выполнении ремонтных работ демонтаж пружин маслосъемных колец, следует запомнить, где какие стоят, поскольку по форме передние не совпадают с задними. При необходимости можно выполнить замену торцевых пластин, которые тоже не совместимы друг с другом и имеют соответствующую маркировку.

При замене угловых уплотнителей начинать нужно с передней части ротора. Рекомендуется использовать смазку зелёного цвета от Castrol – это поможет зафиксировать уплотнители, пока вы будете заниматься сборкой остальных деталей. Тыльные угловые уплотнители меняются уже после установки приводного вала. При установке прокладок не забудьте смазать их подходящим герметиком. Апексы следует устанавливать в уплотнители после того, как поместите ротор в корпусе. Последнее, что нужно сделать – смазать прокладки тыловой и фронтальной крышек статора перед их установкой.

Роторный двигатель — история и перспективы — журнал За рулем

Прошлое роторных двигателей, в том числе советское, очень интересно. А есть ли у этого оборотистого малого будущее?

Феликс был бы доволен

Сегодня обычный двигатель внутреннего сгорания только немцы, да и то лишь иногда, величают мотором Отто. А Феликсу Ванкелю наряду с Рудольфом Дизелем повезло куда больше: в рассказах о роторно-поршневых моторах обязательно хоть раз упоминается его фамилия.

Феликс Ванкель, заваривший всю эту кашу, рядом с серийным купе Mazda RX‑7.

Феликс Ванкель, заваривший всю эту кашу, рядом с серийным купе Mazda RX‑7.

Материалы по теме

Правда, злые языки говорили, что Ванкель так и не получил автомобильных прав. Но в историю-то автомобильную он вошел, да и история эта еще не кончилась.

Конструкция роторного двигателя описана множество раз, в том числе в журнале «За рулем» (см., например, ЗР, 2001, № 7). Вкратце: такой мотор — воплощенное торжество геометрии. Блок цилиндров — это статор, который имеет хитрую внутреннюю поверхность, представляющую собой эпитрохоиду. Ротор со специальными уплотнениями движется внутри, выполняя функции поршня и шатуна. В одной камере две свечи — основная и дожигательная. Газообмен происходит через впускные и выпускные окна. Такие секции можно компоновать практически в любых количествах.

Роторный двигатель примерно в полтора раза компактнее и легче аналогичного по характеристикам поршневого. Но есть у него и существенные недостатки. Для смазки уплотнений на роторе масло поступает в топливо. А это означает дополнительный расход масла и сложности с экологией. Для роторного двигателя характерен повышенный расход бензина и относительно низкий ресурс из-за износа тех самых коварных уплотнений. Над решением этих вопросов конструкторы работают много лет, и не без успеха.

NSU Wankel Spider особой популярности не снискал, зато теперь его любят коллекционеры.

NSU Wankel Spider особой популярности не снискал, зато теперь его любят коллекционеры.

Mazda Cosmo Sport доказала, что «ротор» может быть долговечным. Хотя бы относительно.

Mazda Cosmo Sport доказала, что «ротор» может быть долговечным. Хотя бы относительно.

Роторный Citroen M35 — купе на основе массовой модели Ami.

Роторный Citroen M35 — купе на основе массовой модели Ami.

Материалы по теме

Пьедестал почета

Первый патент Ванкель получил еще в 1930‑е годы. Изобретением заинтересовалась фирма BMW, но до дела не дошло. В 1950‑х инженер построил-таки несколько небольших моторов с прицелом на автомобили и легкие самолеты и, что не менее важно, сумел заразить своим энтузиазмом компанию NSU.

Осенью 1963 года на выставке во Франкфурте представили компактный родстер NSU Wankel Spider, снаряженный односекционным «ротором» с приведенным объемом 0,5 л (для роторного двигателя приведенный объем вдвое больше геометрического). Двигатель развивал 50 л.с. при 6000 об/мин (позже — даже 54 л.с.). Для сравнения: мотор 408‑го Москвича выдавал ту же мощность с 1,4 л рабочего объема. Максималка 152 км/ч тоже была очень высокой для родстера такого класса. Но… У немцев еще много лет б

Видео, в котором показано как работает роторный двигатель изнутри

Посмотрите, как работает роторный двигатель Ванкеля в замедленной съемке

Видео, в котором показано, как работает роторный двигатель изнутри

Редчайшее видео, которое мы никогда не увидели бы, если бы не рукастость владельца и по совместительству ведущего YouTube канала «Warp Perception».

 

Смотрите также: Самый необычный двигатель, созданный Роллс-Ройс

 

Этот технически подкованный гражданин, похоже, самостоятельно сделал работающий мини-роторный двигатель внутреннего сгорания, поместил вместо крышки прозрачный пластиковый колпак и, подсоединив шланг с бензином и свечу накаливания, принялся за дело.

 

Отснятый материал просто не описать словами. Это настолько завораживающее зрелище! Работа миниатюрного роторного двигателя видна изнутри, в замедленной съемке! Вы когда-нибудь сталкивались с чем-то подобным? Вряд ли.

 

Создатель по ходу съемок рассказывает о своем творении. Он называет крошечный мотор «авиадвигателем Ванкеля». То есть этот нестандартный двигатель, похоже, будет установлен на радиоуправляемую модель самолета. Но как игрушку такой шедевр просто невозможно воспринимать. Вот как он выглядит и самое главное – как работает:

 

В видео ясно показано, как ротор, вращающийся на эксцентриковом валу, втягивает внутрь воздух через впускное отверстие, увеличивает давление в камере сгорания перед воспламенением воздушно-топливной смеси*, с одной стороны, и, напротив, создавая разряженное давление на такте выпуска, с другой.

 

*В отличие от реальных двигателей Ванкеля, смесь поджигается свечой накаливания.

 

Учитывая, что карбюратор/впуск находится в левой нижней части изображения, источник зажигания – справа, а выхлоп – справа вверху, можно составить визуальную схему, показывающую процесс работы ДВС, начиная с впуска топливо-воздушной смеси:

Видео, в котором показано, как работает роторный двигатель изнутри

Видео, в котором показано, как работает роторный двигатель изнутри

Затем ротор проворачивает эксцентриковый вал и повышает давление в камере сгорания:

Видео, в котором показано, как работает роторный двигатель изнутри

Видео, в котором показано, как работает роторный двигатель изнутри

Источник зажигания (или две свечи, как в случае с многими двигателями Ванкеля) начинает процесс возгорания:

Видео, в котором показано, как работает роторный двигатель изнутри

Видео, в котором показано, как работает роторный двигатель изнутри

Это сгорание топлива и воздуха закручивает ротор во время рабочего такта:

Видео, в котором показано, как работает роторный двигатель изнутри

Видео, в котором показано, как работает роторный двигатель изнутри

И наконец, двигатель выплевывает газы и остатки несгоревшего топлива наружу:

Видео, в котором показано, как работает роторный двигатель изнутри

Видео, в котором показано, как работает роторный двигатель изнутри

На этот работающий шедевр можно смотреть вечно!

Давайте разберёмся, почему роторные двигатели канули в лету

Первым в мире серийным автомобилем, оснащенным роторным Ванкелем стал NSU Spider 1964 года выпуска. С тех пор двигатель просуществовал до 2011 года, и закончил свою жизнь под капотом Mazda RX-8. Возникает несколько вопросов:

— Как работает роторный двигатель?

— Каковы его преимущества? (Зачем его изобрели)

— Каковы его недостатки? (Почему его перестали производить)

 

 

Как работает роторный двигатель

 

Процесс, происходящий при работе роторного двигателя, весьма схож с обычным. Разница в том, что вместо поршней тут имеется ротор треугольной формы, а вместо цилиндра – овальная полость.

 

Впуск

 

Вращаясь внутри полости, ротор создает воздушный карман, тем самым создавая вакуум. Вакуум распространяется на впускные каналы, из которых в камеру внутреннего сгорания и поступают топливо и воздух.

 

Сжатие

 

Ротор продолжает вращаться, сжимая смесь воздуха и топлива о прямую сторону овальной полости.

 

Мощность

 

Две свечи зажигания используются для розжига смеси топлива и воздуха, помогая ускорить процесс внутреннего сгорания и убедиться в том, что большая часть смеси выгорит. Выделяемая энергия позволяет ротору вращаться далее.

 

Выхлоп

 

Похож на цикл впуска, только теперь, вращаясь, ротор выталкивает под давлением выхлопные газы через выхлопные каналы. Важный момент состоит в том, что поскольку в двигателе имеется всего один ротор и одна полость, все эти процессы идут практически одновременно. Таким образом, с одной стороны происходит впуск с другой выделяется энергия, а с третьей выходят выхлопы.

 

Преимущества Ванкеля

Соотношение массы и мощности

 

Одним из самых крупных достоинств является небольшой размер Ванкеля. Несмотря на свои маленькие размеры, роторные движки выжимают неплохую мощность.

 

Меньше подвижных деталей

 

Частенько в инженерии самое легкое решение является самым лучшим. Роторный двигатель не требует большого количества подвижных деталей. Если быть точнее, то в двухроторном моторе подвижных деталей всего три.

 

Плавный набор высоких оборотов

 

Роторный двигатель не имеет возвратно-движущей массы, как клапаны и поршни в традиционном двигателе, что ведет к отличному балансу и плавному набору оборотов.

 

Почему Ванкель сняли с производства

 

Mazda RX-8 2011 была последним серийным автомобилем, который оснащался роторным двигателем Renesis 1.3 л. Как бы то ни было, весь мир автолюбителей пустил горькую слезу, закрывая важную страницу в истории двигателей внутреннего сгорания. Так что же произошло? RX-8 не удалось пройти по соответствию стандарту Euro-5, поэтому после 2010 года он не мог продаваться в странах Европы. Хоть он все еще и разрешен в США, производитель был вынужден отречься от Ванкеля.

 

Недостатки роторного двигателя

Низкий тепловой КПД

 

В связи с наличием уникальной длинной камеры внутреннего сгорания, тепловой КПД Ванкеля значительно ниже, в сравнении с обычным двигателем. Это часто ведет к тому, что в выхлоп попадает масса несгоревшего топлива (поэтому они и считаются самыми огнедышащими)

 

Пей, малыш, пей

Ванкели априори жрут масло вёдрами. Во впускном коллекторе установлены разбрызгиватели масла, а также имеются инжекторы, подающие масло непосредственно в камеру внутреннего сгорания. Это значит не только то, что водитель должен постоянно следить за уровнем масла, но еще и то, что из вашей выхлопной трубы будет выходить масса дряни. Окружающая среда не одобряет.

 

Изоляция ротора

 

Изолировать роторный движок нелегко, поскольку, если вы помните, в нем одновременно происходит несколько процессов, которые оставляют после себя разные температуры. Например, верхняя часть движка сравнительно холодная, в то время как его днище горячо как ад. С точки зрения изоляции, это проблема, поскольку такая разница температур не дает выбрать один вариант изоляции. Можно, конечно, использовать охлаждающую рубашку, но это многого не изменит.

 

Выбросы в атмосферу

 

Именно этот пункт убил роторные движки. Совокупность неэффективного сгорания, прожорливости по маслу и сложностей с изоляцией привела в итоге к тому, что двигатель не проходит по современным стандартам.

 

Что касается показателей RX-8 в сравнении с другими автомобилями, то из плюсов можно сразу выделить низкий вес и высокую мощность, а из минусов, конечно, огромный расход. Впрочем RX-8, покупателю вряд ли есть дело до экономии топлива, поэтому он может насладиться автомобилем в полной мере.

Роторный двигатель | Мото-мануалы и инструкции

Феликс_Ванкель_Феликс Ванкель

Биография Феликс Ванкель

Феликс Генрих Ванкель (13 августа 1902 года, Лар, Германия — 9 октября 1988 года, Хайдельберг, Германия). Один из авторов идеи роторно-поршневого двигателя внутреннего сгорания, создатель конструкции РПД, производящегося серийно в настоящее время. В наши дни модернизированными «двигателями Ванкеля» оснащаются легковые автомобили Mazda RX-8.

Ранние годы
Феликс Ванкель появился на свет 13 августа 1902 года в немецком городе Лар, земля Баден-Вюртемберг, Германия. Его родителями были Рудольф Ванкель, служащий, и Герти Ванкель, в девичестве Хайдлауфф, домохозяйка.
Феликс рос болезненным, слабым ребенком. Он был почти слеп, страдая сильной близорукостью. Поэтому получил преимущественно домашнее образование. Гимназию он посещал нерегулярно, даже эпизодически. Мальчику трудно было читать и писать.
В 1914 году Рудольф Ванкель был призван в германскую армию и погиб в первый же год войны. Мать Феликса осталась одна с больным ребенком и почти без средств к существованию. В 1915 году она переехала ближе к родственникам в соседний Хайдельберг.
В 1921 году Феликс сдал выпускные экзамены в хайдельбергской гимназии, но поступить в университет не смог. После долгих поисков работы юноше, не имевшему никакой профессии (из-за крайне слабого зрения его не приняли ни в одно училище, дающее рабочую специальность), удалось устроиться в книжное издательство мелким служащим. На протяжение последующих трех лет Феликс Ванкель занимался самообразованием, изучая технические учебники, и копил средства на открытие собственного дела. В 1924 году он уволился из издательства и открыл маленькую автомастерскую, которая стала не столько ремонтным предприятием, сколько частным конструкторским бюро.

Политические взгляды
Этому скромному, тихому, совершенно не воинственному человеку, Феликсу Ванкелю, дважды в жизни довелось побывать в тюрьме. В 1921 году (по другим сведениям, в 1924 году) Ванкель вступил в ряды НСДАП, поверив в идею крайнего национализма. В условиях послевоенного кризиса, когда немцы, проигравшие войну, чувствовали себя униженными и нищими, подобные настроения молодого инженера-самоучки легко понять. Однако, Ванкель был трезвым человеком. И в 1933 году, когда фашисты пришли к власти, он демонстративно покинул ряды партии. И это не прошло для него даром — в том же 1933 году Ванкель, как враг правящего режима, полгода провел в немецкой тюрьме. Но, поскольку он не совершал никаких преступлений, был отпущен на волю. Второй раз Ванкель попал в тюрьму после войны — как человек активно сотрудничавший с нацистским режимом.
С 1936 года Феликс Ванкель работал по заказу компании BMW над разработкой опытных авиадвигателей для Люфтваффе. В 1945 году лаборатория в Линдау, в которой он трудился, была уничтожена американской авиацией. После войны Ванкель был осужден и посажен в тюрьму на два года.
В послевоенные годы Феликс Ванкель избегал какой-либо политической деятельности.

Становление
В том же злосчастном для Ванкеля 1933 году в его жизни произошли важные перемены. Начав в 1924 году разработку роторно-поршневого двигателя, Феликс, выйдя на свободу из тюрьмы, подал заявку на патент. Свой двигатель он назвал «машиной с вращающимися поршнями». Рассмотрение патентной заявки заняло три года. Вместе с патентом в 1936 году Ванкель получил приглашение от компании BMW перебраться в Баварию, в город Линдау, чтобы заняться разработкой золотников и уплотнений для авиационных моторов уже в условиях хорошо оснащенной лаборатории.
Это предложение совпало с женитьбой Ванкеля на Эмме Кирн. В 1936 году супруги переехали в Баварию, забрав с собой все оборудование мастерской. За Ванкелем последовали и немногочисленные сотрудники его компании. Любопытно, что работая по заказу крупного концерна, предприятие Ванкеля, тем не менее, сохраняло независимость.
В 30-е годы Ванкель отошел от разработки РПД, сосредоточившись на авиационных моторах. Но уже к началу 40-х годов он вернулся к старым идеям и построил несколько рабочих прототипов роторно-поршневого двигателя. Главная проблема РПД состояла в том, что Ванкель никак не мог отыскать оптимальную форму ротора и внутренней полости мотора. Экспериментируя с эллипсовидными и овальными формами, он не мог добиться нужной степени уплотнения между ротором и камерой сгорания. Успех пришел только в 50-е годы. Но до этого времени Ванкелю пришлось пережить серьезные испытания.
В 1942 году лаборатория Ванкеля в Линдау была распущена, а сам изобретатель был переведен на работу в конструкторское бюро DVL, занимавшееся разработкой моторов для военной авиации и быстроходных катеров. В последние годы войны Ванкель тесно сотрудничал со специалистами японской компании Hitachi, благодаря чему в Японии было выпущено несколько моделей скоростных истребителей. Судьба довоенных и военных разработок Ванкеля неизвестна. По версии самого изобретателя, вся документация и опытные образцы погибли во время налета на Линдау американской авиации. По другой версии, все оборудование лаборатории Ванкеля было вывезено во Францию по репарациям.

После войны
Выйдя на свободу в 1947 году Феликс Ванкель несколько лет в буквальном смысле бедствовал. Жить приходилось мелкими частными заказами и ремонтом автомобилей. Большую поддержку Ванкелю оказала супруга Эмма. Этот брак, несмотря на бездетность, оказался счастливым.
В 1951 году усилия Ванкеля были вознаграждены. Помощь оказала компания «Гётце», которая выделила средства на воссоздание частной лаборатории в Линдау. В том же году Феликс Ванкель возобновил разработку РПД.
Главным заказчиком Ванкеля стала немецкая компания NSU , выпускавшая мотоциклы и автомобили. Заинтересовавшись идеей РПД, NSU заказала Ванкелю мотор для легкого мотоцикла.

С Вальтером Фройде
Подлинным разработчиком «двигателя Ванкеля» стал вовсе не Феликс Ванкель, а вдохновленный его идеями конструктор компании NSU Вальтер Фройде. Именно он в 1957 году нашел оптимальное сочетание формы ротора и камеры сгорания. Однако, в истории осталось имя Ванкеля — как наиболее последовательного разработчика РПД. Хотя в пятидесятые годы Ванкель работал над другим двигателем, который так и не был запущен в серийное производство.
Толчком к изменению конструкции РПД стали испытания очередного варианта двигателя. Опытный образец мотора для легкого мотоцикла имел рабочий объем всего 50 см3 и выдавал мощность в 14 л.с. Установленный на раму спортивного мотоцикла этот двигатель принес команде NSU мировой рекорд скорости — 193 км/ч.
Однако двигатель оказался ненадежен и капризен. Ванкелю стоило немалых усилий уговорить руководство NSU продолжить финансирование разработок. Тогда-то в команде Ванкеля и появился Вальтер Фройде.
1 февраля 1957 года новый роторно-поршневой двигатель Ванкеля-Фройде был установлен на стенде. В бак была залита смесь метанола и касторового масла. Одна попытка завести мотор. Вторая… Двигатель завелся с третьей попытки. И проработал более 100 часов. Год спустя в свет вышел спортивный автомобиль NSU Spider, оснащенный доработанным двигателем Ванкеля-Фройде. Так началась эпоха РПД.

Успех
В 1960 году финансовое положение Ванкеля настолько упрочилось, что он перестроил лабораторию в Линдау, превратив ее в исследовательский центр. Набрав штат инженеров, он сосредоточился на доработке двигателя Ванкеля-Фройда. При абсолютно разумном подходе к выбору формы ротора и камеры сгорания, соавторам не удалось решить главную проблему РПД — надежного уплотнения ротора, которое препятствовало бы прорыву газов.
Простой в производстве мотор для NSU Spider на практике был недолговечен и неэкономичен — и это при том, что одним из достоинств роторно-поршневого двигателя по идее авторов должна быть именно экономичность. Экспериментируя с легированными сталями, Ванкелю удалось сконструировать достаточно надежный ленточный уплотнитель, работающий не хуже традиционного поршневого кольца. В 1964 году руководству NSU был представлен автомобильный РПД улучшенной конструкции. Он и пошел в серийное производство. Эти двигатели устанавливались на самой удачной модели компании — автомобиле NSU Ro 80.
К 1970 году патент на двигатель Ванкеля приобрели все ведущие автомобильные компании мира. Многие из них взялись за разработку, но до практической реализации дошли лишь считанные единицы.

Первый массовый автомобиль с РПД
Легковой автомобиль бизнес-класса NSU Ro 80 выпускался компанией NSU , а затем компанией Volkswagen , которая в 1969 году купила NSU, с 1967 по 1977 годы. Всего за 10 лет производства было выпущено 37204 экземпляра этой модели. Ro 80 стал первой успешной массовой моделью, в которой применялся РПД.
В NSU Ro 80 были применены и другие революционные для своего времени решения. В этом автомобиле впервые появились блок-фары, полуавтоматическая КП с гидротрансформатором, кузов машины имел небывало низкое аэродинамическое сопротивление. И все же необыкновенный автомобиль был достаточно быстро забыт, и виной тому стала ненадежность мотора. Из-за быстрого износа уплотнений ротора двигатель требовал капитального ремонта каждые 50 тысяч км. Зачастую в ремонтных центрах изношенный РПД на этих автомобилях заменяли поршневым фордовским двигателем V4 «Essex». До нашего времени дожили именно такие, «переделанные» экземпляры.

Последние годы жизни
После того, как в 1969 году компания NSU перешла под контроль концерна Volkswagen, Феликс Ванкель продолжил работу в своем центре в Линдау над совершенствованием РПД по заказам японской компании Toyo Kogyo, позднее сменившей имя на Mazda, и советской компании «ВАЗ». В результате Mazda выпускает двигатели Ванкеля серийно, устанавливая их на суперкары серии RX. А «ВАЗ» ограничился мелкосерийным производством легковых автомобилей для силовых структур СССР, а потом и России. С 1998 года разработкой и производством РПД занимается только Mazda.
Феликс Ванкель работал над конструкцией роторно-поршневого двигателя до самой смерти. Он умер 9 октября 1988 года в Хайдельберге в возрасте 86 лет. Всю жизнь он был женат на одной женщине — Эмме Кирн. Детей у них не было.
Как это ни странно, но Феликс Ванкель никогда в жизни не садился за руль автомобиля. У него было очень слабое зрение. По этой же причине он старался не проводить математических расчетов, полагаясь на интуицию.

Устройство Роторно-поршневого двигателя

Роторно-поршневой двигатель

Устройство Роторно-поршневого двигателя

Роторно-поршневой двигатель(РПД), или двигатель Ванкеля. Двигатель внутреннего сгорания, разработанный Феликсом Ванкелем в 1957 году в соавторстве с Вальтером Фройде. В РПД функцию поршня выполняет трехвершинный (трехгранный) ротор, совершающий вращательные движения внутри полости сложной формы. После волны экспериментальных моделей автомобилей и мотоциклов, пришедшейся на 60-е и 70-е годы ХХ века, интерес к РПД снизился, хотя ряд компаний по-прежнему работает над совершенствованием конструкции двигателя Ванкеля. В настоящее время РПД оснащаются легковые автомобили компании Mazda. Роторно-поршневой двигатель находит применение в моделизме.

Особенности роторного мотораПринцип работы

Принцип работы

Сила давления газов от сгоревшей топливо-воздушной смеси приводит в движение ротор, насаженный через подшипники на эксцентриковый вал. Движение ротора относительно корпуса двигателя (статора) производится через пару шестерен, одна из которых, большего размера, закреплена на внутренней поверхности ротора, вторая, опорная, меньшего размера, жестко прикреплена к внутренней поверхности боковой крышки двигателя. Взаимодействие шестерен приводит к тому, что ротор совершает круговые эксцентричные движения, соприкасаясь гранями с внутренней поверхностью камеры сгорания. В результате между ротором и корпусом двигателя образуются три изолированные камеры переменного объема, в которых происходят процессы сжатия топливо-воздушной смеси, ее сгорания, расширения газов, оказывающих давление на рабочую поверхность ротора и очищения камеры сгорания от отработанных газов. Вращательное движение ротора передается на эксцентриковый вал, установленный на подшипниках и передающий вращающий момент на механизмы трансмиссии. Таким образом в РПД одновременно работают две механические пары: первая — регулирующая движение ротора и состоящая из пары шестерен; и вторая — преобразующая круговое движение ротора во вращение эксцентрикового вала. Передаточное соотношение шестерен ротора и статора 2:3, поэтому за один полный оборот эксцентрикового вала ротор успевает провернуться на 120 градусов. В свою очередь за один полный оборот ротора в каждой из трех образуемых его гранями камер производится полный четырехтактный цикл двигателя внутреннего сгорания.
схема РПД

Особенности роторного мотора1 — впускное окно; 2 выпускное окно; 3 — корпус; 4 — камера сгорания; 5 – неподвижная шестерня; 6 — ротор; 7 – зубчатое колесо; 8 — вал; 9 – свеча зажигания

Достоинства РПД

Главным достоинством роторно-поршневого двигателя является простота конструкции. В РПД на 35-40 процентов меньше деталей, чем в поршневом четырехтактном двигателе. В РПД отсутствуют поршни, шатуны, коленчатый вал. В «классическом» варианте РПД нет и газораспределительного механизма. Топливо-воздушная смесь поступает в рабочую полость двигателя через впускное окно, которое открывает грань ротора. Отработанные газы выбрасываются через выпускное окно, которое пересекает, опять же, грань ротора (это напоминает устройство газораспределения двухтактного поршневого двигателя).
Отдельного упоминания заслуживает система смазки, которая в простейшем варианте РПД практически отсутствует. Масло добавляется в топливо — как при эксплуатации двухтактных мотоциклетных моторов. Смазка пар трения (прежде всего ротора и рабочей поверхности камеры сгорания) производится самой топливо-воздушной смесью.
Поскольку масса ротора невелика и легко уравновешивается массой противовесов эксцентрикового вала, РПД отличается небольшим уровнем вибраций и хорошей равномерностью работы. В автомобилях с РПД легче уравновесить двигатель, добившись минимального уровня вибраций, что хорошо сказывается на комфортабельности машины в целом. Особой плавностью хода отличаются двухроторные двигатели, в которых роторы сами являются снижающими уровень вибраций балансирами.
Еще одно привлекательное качество РПД — высокая удельная мощность при высоких оборотах эксцентрикового вала. Это позволяет добиться от автомобиля с РПД отличных скоростных характеристик при относительно небольшом расходе топлива. Малая инерционность ротора и повышенная по сравнению с поршневыми двигателями внутреннего сгорания удельная мощность позволяют улучшить динамику автомобиля.
Наконец, немаловажным достоинством РПД являются небольшие размеры. Роторный двигатель меньше поршневого четырехтактного мотора той же мощности примерно вдвое. И это позволяет рациональней использовать пространство моторного отсека, более точно рассчитывать расположение узлов трансмиссии и нагрузку на переднюю и заднюю ось.

Недостатки РПД

Главный недостаток роторно-поршневого двигателя — невысокая эффективность уплотнений зазора между ротором и камерой сгорания. Имеющий сложную форму ротор РПД требует надежных уплотнений не только по граням (а их четыре у каждой поверхности — две по вершинным, две по боковым граням), но и по боковой поверхности, соприкасающейся с крышками двигателя. При этом уплотнения выполнены в виде подпружиненных полосок из высоколегированной стали с особо точной обработкой как рабочих поверхностей, так и торцов. Заложенные в конструкцию уплотнений допуски на расширение металла от нагрева ухудшают их характеристики — избежать прорыва газов у торцевых участков уплотнительных пластин практически невозможно (в поршневых двигателях используют лабиринтовый эффект, устанавливая уплотнительные кольца зазорами в разные стороны).
В последние годы надежность уплотнений резко возросла. Конструкторы нашли новые материалы для уплотнений. Однако, говорить о каком-то прорыве пока не приходится. Уплотнения до сих пор остаются самым узким местом РПД.
Сложная система уплотнений ротора требует эффективной смазки трущихся поверхностей. РПД потребляет больше масла, чем четырехтактный поршневой двигатель (от 400 граммов до 1 килограмма на 1000 километров). При этом масло сгорает вместе с топливом, что плохо сказывается на экологичности моторов. В выхлопных газах РПД опасных для здоровья людей веществ больше, чем в выхлопных газах поршневых двигателей.
Особые требования предъявляются и к качеству масел, используемых в РПД. Это связано, во-первых, со склонностью к повышенному износу (из-за большой площади соприкасающихся деталей — ротора и внутренней камеры двигателя), во-вторых, к перегреву (опять же из-за повышенного трения и из-за небольших размеров самого двигателя). Для РПД смертельно опасны нерегулярная смена масла — поскольку абразивные частицы в старом масле резко увеличивают износ двигателя, и переохлаждение мотора. Запуск холодного двигателя и недостаточный его прогрев приводят к тому, что в зоне контакта уплотнений ротора с поверхностью камеры сгорания и боковыми крышками оказывается мало смазки. Если поршневой двигатель заклинивает при перегреве, то РПД чаще всего — во время запуска холодного двигателя (или при движении в холодную погоду, когда охлаждение оказывается избыточным).
В целом рабочая температура РПД выше, чем у поршневых двигателей. Самая термонапряженная область — камера сгорания, которая имеет небольшой объем и, соответственно, повышенную температуру, что затрудняет процесс поджига топливо-воздушной смеси (РПД из-за протяженной формы камеры сгорания склонны к детонации, что тоже можно отнести к недостаткам этого типа двигателей). Отсюда требовательность РПД к качеству свечей. Обычно их устанавливают в эти двигатели попарно.
Роторно-поршневые двигатели при великолепных мощностных и скоростных характеристиках оказываются менее гибкими (или менее эластичными), чем поршневые. Они выдают оптимальную мощность только на достаточно высоких оборотах, что вынуждает конструкторов использовать РПД в паре с многоступенчатыми КП и усложняет конструкцию автоматических коробок передач. В конечном итоге РПД оказываются не такими экономичными, какими должны быть в теории.

Практическое применение в автопромышленности

Наибольшее распространение РПД получили в конце 60-х и начале 70-х годов прошлого столетия, когда патент на двигатель Ванкеля был куплен 11 ведущими автопроизводителями мира.
В 1967 году немецкая компания NSU выпустила серийный легковой автомобиль бизнес-класса NSU Ro 80. Эта модель выпускалась в течение 10 лет и разошлась по миру в количестве 37204 экземпляров. Автомобиль пользовался популярностью, но недостатки установленного в нем РПД, в конце концов, испортили репутацию этой замечательной машины. На фоне долговечных конкурентов модель NSU Ro 80 выглядела «бледно» — пробег до капитального ремонта двигателя при заявленных 100 тысячах километров не превышал 50 тысяч.
С РПД экспериментировали концерн Citroen, Mazda, ВАЗ. Наибольших успехов добилась Mazda, которая выпустила свой легковой автомобиль с РПД еще в 1963 году, на четыре года раньше появления NSU Ro 80. Сегодня концерн Mazda оснащает РПД спорткары серии RX. Современные автомобили Mazda RX-8 избавлены от многих недостатков РПД Феликса Ванкеля. Они вполне экологичны и надежны, хотя среди автовладельцев и специалистов по ремонту считаются «капризными».

Практическое применение в мотопромышленности

В 70-е и 80-е годы с РПД экспериментировали некоторые производители мотоциклов — Hercules, Suzuki и другие. В настоящее время мелкосерийное производство «роторных» мотоциклов налажено только в компании Norton, выпускающей модель NRV588 и готовящей к серийному выпуску мотоцикл NRV700.
Norton NRV588 — спортбайк, оснащенный двухроторным двигателем общим объемом в 588 кубических сантиметров и развивающим мощность в 170 лошадиных сил. При сухом весе мотоцикла в 130 кг энерговооруженность спортбайка выглядит в буквальном смысле запредельной. Двигатель этой машины оснащен системами впускного тракта переменной величины и электронного впрыска топлива. О модели NRV700 известно лишь то, что мощность РПД у этого спортбайка будет достигать 210 л.с.

Мотоциклы с Роторным двигателем. Перейти

Любопытные факты

1. Роторно-поршневые двигатели получили распространение среди авиамоделистов. Поскольку в модельном двигателе требования к надежности и экономичности снижены до предела, производство этих моторов оказывается недорогим. В этих двигателях уплотнений ротора либо нет вообще, либо эти уплотнения имеют простейшую конструкцию. Главное достоинство авиамодельного РПД в том, что его можно легко встроить в летающую масштабную модель. В частности, модельные РПД применяются при создании копий реактивных самолетов.
2. Получив патент на РПД в 1936 году Феликс Ванкель стал изобретателем не только двигателя внутреннего сгорания, но еще и роторно-поршневых насоса и компрессора. И эти устройства можно встретить гораздо чаще, чем РПД — на производстве, в ремонтных мастерских, в быту. Например, портативные электрические компрессоры для автомобилистов очень часто устроены по принципу роторно-поршневого насоса.

[kkstarratings] Share Button

Статью прочитали: 471

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *