Недостатки поршневых насосов: 1.3 Преимущества и недостатки поршневых насосов. Конструкция поршневого насоса УНБ-600 – Назовите преимущества поршневых насосов — Библиотека морской литературы

Содержание

1.3 Преимущества и недостатки поршневых насосов. Конструкция поршневого насоса УНБ-600

Похожие главы из других работ:

Автоматизация электроцнтробежного насоса кустовой площадки Салымского месторождения нефти

1.3 Преимущества и недостатки ЭЦН

Вследствие минимальных требований к оборудованию на устье, ЭЦН могут пользоваться спросом для применений на площадках с ограниченными рабочими площадями, как например на морских установках…

Гидроприводы. Основные понятия и определения

4. Преимущества и недостатки гидравлического привода

Широкое распространение гидропривода объясняется тем, что этот привод обладает рядом преимуществ перед другими видами приводов машин. Вот основные из них. 1…

Конструкция поршневого насоса УНБ-600

1.1 Классификация поршневых насосов

Поршневые насосы служат для преобразования механической энергии двигателя в механическую энергию перекачиваемой жидкости. Они сообщают жидкости, проходящей через них, энергию, необходимую для преодоления сил сопротивлений…

Конструкция поршневого насоса УНБ-600

1.2 Устройство поршневых насосов и принцип их действия

Рис 1.2 Схема поршневого насоса одинарного действия Рис 1.3 Схемы гидравлической части насосов. а — одноцилиндровый поршневой насос двойного действия; б — плунжерный диафрагменный насос одинарного действия. На рис. 1…

Конструкция поршневого насоса УНБ-600

4.1 Эксплуатация поршневых насосов

Конструкция поршневого насоса УНБ-600

4.2 Техника безопасности при эксплуатации поршневых насосов

Плавный пуск двигателя постоянного тока по системе «Широтно-импульсный преобразователь — двигатель постоянного тока»

1. Преимущества и недостатки системы ШИП — ДПТ

Поршневые эксцентриковые насосы: конструкция и принцип действия

Конструкция и принцип действия поршневых эксцентриковых насосов

Поршневые насосы служат для преобразования механической энергии двигателя в механическую энергию перекачиваемой жидкости. Они сообщают жидкости, проходящей через них, энергию, необходимую для преодоления сил сопротивлений…

Ремонт и монтаж центробежных насосов по перекачке нефти и газа

3. Ремонт поршневых насосов

Плановый осмотр поршневых насосов производят через 700—750 ч работы. При этом проверяют крепление насоса к фундаменту, вскрывают цилиндры и клапаны гидравлической части и определяют состояние сальникового уплотнения плунжеров…

Сварка трением

2.3 Преимущества и недостатки сватки трением

Преимущества Строго локализованное тепловыделение в приповерхностных слоях деталей при сварке трением является главной особенностью этого процесса, предопределяющей его энергетические и технологические преимущества…

Технологические особенности газотермических методов напыления

2. Преимущества и недостатки технологии напыления

Технология производства черной меди на ОАО «Среднеуральский медеплавильный завод»

15 Преимущества и недостатки процесса конвертирования

Преимущества процесса: конвертирование весьма эффективный процесс; характерно высокой степенью использования кислорода; — высокая удельная производительность во время дутья; процесс является автогенным (не требует добавки топлива)…

Химическая и термическая обработка деталей

1.2 Преимущества и недостатки термической обработки

термическая химическая обработка закалка Отжиг Преимущества: — отсутствие ограничений на вид детали; — поиск глобального минимума; — эффективность при решении задач различных классов, требующих оптимизации…

Шаговый двигатель

Шаговые двигатели, преимущества и недостатки.

Шаговые двигатели — это устройства, задача которых преобразование электрических импульсов в поворот вала двигателя на определенный угол. В отличие от обычных двигателей, шаговые двигатели имеют особенности…

Экспериментальные исследования изнашивания пар трения в загрязненной рабочей среде

2. Стендовые испытания аксиально-поршневых насосов при загрязнении масла водой

Для определения влияния воды, содержащейся в масле, на изнашивание поршней аксиально-поршневых насосов были проведены стендовые испытания, которые отличались от предыдущих тем…

Преимущества и недостатки поршневого насоса по сравнению с центробежным.


⇐ ПредыдущаяСтр 19 из 19

Гидронасосы. Типы. Характеристики преимущества и недостатки различных конструкций.

Гидравлические насосы предназначены для преобразования механический энергии (крутящий момент, частоту вращения) в гидравлическую (подача, давление). Существует большое разнообразие типов и конструкций гидравлических насосов, но всех их объединяет единый принцип действия – вытеснение жидкости. Насосы использующие принцип вытеснения называются объемными. Во время работы внутри насоса образуются изолированные камеры, в которых рабочая жидкость перемещается из полости всасывания в полость нагнетания. Поскольку между полостями всасывания и нагнетания не существует прямого соединения, объемные насосы очень хорошо приспособлены для работы в условиях высокого давления в гидросистеме.

Основными параметрами гидронасосов являются:

• Рабочий объем (удельная подача) [см3/об] – это объем жидкости вытесняемый насосом за 1 оборот вала.

• Максимальное рабочее давлени [МПа, bar]

• Максимальная частота вращения [об/мин]

Классификация объемных насосов по типу вытесняющего элемента показана на Схеме 1.

Схема 1.

При выборе типа насоса для гидросистемы необходимо учитывать ряд факторов свойственных определенным типам насосов и особенности разрабатываемой гидросистемы. Основными критериями выбора насоса являются:

  • Диапазон рабочих давлений
  • Интервал частот вращения
  • Диапазон значений вязкости рабочей жидкости
  • Габаритные размеры
  • Доступность конструкции для обслуживания
  • Стоимость

Далее будут рассмотрены различные типы насосов с описанием их конструктивных преимуществ и недостатков.

1.Поршневые Насосы

1.1 Ручные насосы

Простейшим насосом использующим принцип вытеснения жидкости является ручной насос. Данный вид насосов используется в современной технике для обеспечения гидравлической энергией исполнительных гидродвигателей (в основном линейного перемещения) вспомогательных механизмов. Вторым, часто встречающимся, назначением ручных насосов в гидросистемах является использование его как аварийного источника гидравлической энергии.Давления развиваемые этими насосами лежат в диапазоне до 50МПа, но чаще всего данные насосы используют на давлениях не более 10-15МПа. Рабочий объем до 70 см3. Рабочий объем для ручного насоса это суммарный объем жидкости вытесняемый им за прямой и обратный ход рукоятки. Обычно насосы с малым рабочим объемом способны достигать больших величин рабочего давления, это связано с ограничением силы прикладываемой к рычагу пользователем.

Принцип действия ручного насоса одностороннего действия изображен на рис.1. При ходе поршня вверх через обратный клапан КО2 происходит всасывание жидкости из бака, клапан КО1 при этом закрыт. При ходе поршня вниз происходит вытеснение жидкости через клапан КО1 в напорный трубопровод, клапан КО2 – закрыт.

На рис. 2 показан ручной насос двустороннего действия. При ходе поршня вверх через обратный клапан КО4 происходит всасывание жидкости из бака в нижнюю полость. Одновременно происходит вытеснение рабочей жидкости внапорный трубопровод через клапан КО1. Клапана КО2 и КО3 при этом закрыты. При ходе поршня вниз через обратный клапан КО2происходит всасывание жидкости из бака в нижнюю полость. Одновременно происходит вытеснение рабочей жидкости в напорный трубопровод через клапан КО3. Клапана КО1 и КО4 при этом закрыты.

Внешний вид ручного насоса показан на рис. 3.

Рис. 1

Рис. 2

Рис. 3

Достоинства и недостатки:

Достоинства

  • простота конструкции.
  • высокая надежность.
  • отсутствие приводного двигателя.

Недостатки

  • Низкая производительность

1.2Радиально-поршневые насосы

Радиально-поршневые насосы это разновидность роторно-поршневыхгидромашин. Эти насосы применяются для гидросистем с высоким давлением (свыше 40МПа). Эти насосы способны длительно создавать давления до 100МПа.Отличительной особенностью насосов данного типа является их тихоходность, частота вращения насосов данного типакак правило не превышает 1500-2000 об/мин. Частоты вращения до 3000 об/мин можно встретить только для насосов рабочим объемом не более 2-3 см3/об.

Радиально-поршневые насосы бывают двух типов:

  • С эксцентричным ротором
  • С эксцентричным валом

Радиально-поршневой насос с эксцентричным ротором изображен на рис. 4. Конструктивно поршневая группа насоса установлена в роторе насоса. Ось вращения ротора и ось неподвижного статора смещены на величину эксцентриситета e. При вращении ротора поршни совершают поступательное движение. Величина хода составит 2e. Насос данной конструкции имеет золотниковое распределение. При вращении цилиндры поочередно соединяются с полостями слива и нагнетания разделенными перегородкой золотника, расположенного в центре.

Рис.4

Радиально-поршневой насос с эксцентричным валом изображен на рис. 5. Конструктивно поршневая группа насоса установлена в статоре насоса. Ось вращения вала и ось неподвижного статора совпадают, но на валу имеется кулачок, который смещен на величину е относительно центра вращения вала. При вращении вала, кулачок заставляет поршни совершать поступательное движение. Величина хода составит 2e. Насос данной конструкции имеет клапанное распределение. При вращении вала поршни выдвигаясь из цилиндров наполняются жидкостью через клапана всасывания. Нагнетание жидкости происходит через клапана нагнетания при вхождении поршней в цилиндры.

Данная конструкция редко используется как насосная и намного чаще используется в гидромоторах, о которых будет рассказано в одной из следующих статей.

Рис.5

Рабочий объем гидромашин данного типа можно рассчитать по формуле:

где z – число поршней

dп – диаметр поршня

е – эксцентриситет

Радиально поршневые насосы могут иметь конструкцию с переменным рабочим объемом. Регулировка рабочего объема происходит за счет изменения величины эксцентриситета е.

Из двух описанных конструкций большее распостранение получили радиально-поршневые насосы с эксцентричным валом. Это явилось следствием более простой конструкции. Фотографии радиально-поршневых насосов с эксцентричным валом представлены на рис. 6.

Рис. 6(а)

Рис. 6(б)

Достоинства и недостатки насосов радиально-поршневого:

Достоинства

  • простота конструкции.
  • высокая надежность.
  • Работа на давлениях до 100МПа.
  • Относительно малый осевой размер.

Недостатки

  • Высокая пульсация давления
  • Малые частоты вращения вала
  • Больший вес конструкции по отношению к аксиально-поршневым машинам.

1.3Аксиально-поршневые насосы

Аксиально-поршневые насосы – это разновидность роторно-поршневых гидромашин с аксиальным расположением цилиндров (т.е. располагаются вокруг оси вращения блока цилиндров, параллельны или располагаются под небольшим углом к оси).Существует деление по типу вытеснителя на аксиально-плунжерные и аксиально-поршневые гидромашины. Отличаются они тем, что в первых в качестве вытеснителей используются плунжеры, а во вторых — поршни см. рис. 7.

Рис. 7

Насосы данного типа являются самыми распространёнными в современных гидроприводах. По количеству конструктивных исполнений они во много раз превосходят прочие типы гидронасосов. Эти насосы обладают наилучшими габаритно-весовыми характеристики (иными словами имеют высокую удельную мощность), обладают высоким КПД.Насосы этого типа способны даватьдавление до 40МПа и работать на высоких частотах вращения (насосы общего применения имеют частоты до 4000 об/мин, но существуют специализированные насосы этого типа с частотами вращения до 20000 об/мин).

Все аксиально поршневые насосы можно разделить на 2 типа:

  • Снаклонным блоком (ось вращения блока цилиндров располагается по углом к оси вращения вала)
  • С наклоннымдиском (ось вращения блока цилиндров совпадает с осью вращения вала)

На рис. 8 показана конструктивная схема аксиально поршневого насоса с наклонным блоком. При вращении вала насоса, вращается шарнирно соединенный с ним блок цилиндров. При этом поршни совершают поступательные движения. Блок цилиндров прилегает к распределителю который имеет два паза: один паз соединен с линией всасывания, а другой с линией нагнетания. При выдвижении поршня цилиндр движется над пазом всасывания (см. вид А рис.8) и наполняется жидкостью. После прохождения нижней мертвой точки (точки в которой поршень находится в максимально выдвинутом состоянии) цилиндр соединяется с пазом нагнетания в распределителе и начинает вытеснять жидкость из цилиндра пока не достигнет верхней мертвой точки (точки в которой поршень находится в максимально утоленном в цилиндр состоянии). Далее Цилиндр снова соединяется с пазом всасывания и цикл повторяется. Система распределения используемая в данной конструкции насоса называется золотниковой.

Рис.8

Утечки из цилиндров во время нагнетания скапливаются в корпусе насоса. Чтобы не допустить роста давления в корпусе, на насосах данной конструкции имеется линия дренажа. Если ее заглушить, то это приведет к выходу из строя манжеты вала и нарушению герметичности насоса, а в некоторых случаях – к разрушению корпуса насоса.

На рис.9 показана конструкция насоса с наклонным диском.

Принцип работы насоса с наклонным диском аналогичен работе насоса с наклонным блоком. Насос данной конструкции так-же имеет золотниковое распределение. Отличие конструкций состоит в соосности осей вала и блока цилиндров.

Рабочий объем аксиально-поршневых насосов можно рассчитать из следующего выражения:

где z – число поршней

dп – диаметр поршня

Dц– диаметр расположения цилиндров

γ – угол наклона диска(блока)

Для насосов конструкций рис. 8,9возможны исполнения с изменяемым рабочим объемом. Изменение рабочего объема происходит за чет изменения угла наклона диска или блока (в зависимости от конструкции).

Для аксиально-поршневых насосов необходим механизм синхронизации вращения приводного вала и блока цилиндров. Существует четыре основных способа такой синхронизации:

  • Синхронизация одинарным (силовым) карданом
  • Синхронизация двойным (несиловым) карданом
  • Синхронизация шатунами поршней (бескарданная схема)
  • Синхронизация коническим зубчатым зацеплением.

Аксиально-поршневой насос с наклонным блоком представлен на рис. 10. В данной конструкции синхронизация вращения вала и блока цилиндров осуществлена посредством конической зубчатой передачи.

Регулируемый аксиально-поршневой насос с наклонным диском представлен на рис. 11.

Рис. 11

Рассмотрим еще одну довольно распространённую конструкцию насоса с наклонным диском. Это конструкция аксиально-плунжерного насоса с неподвижным блоком, клапанным распределением и приводом плунжеровкулачкового типа (вращающейся наклонной шайбой). По ГОСТ 17398-72 этот тип насоса классифицируется как аксиально-кулачковый. Схема такого насоса показана на рис. 12.

Рис. 12

Эта конструкция имеет принципиальные отличия от конструкции изображенной на рис. 9. Насос на рис. 12 в отличие от предыдущей конструкции на рис. 9 имеет неподвижный блок цилиндров, совмещенный с корпусом, наклонный диск объединенный с валом и клапанное распределение рабочей жидкости. Ход плунжера определяется вращением наклонного диска. Система распределения работает следующим образом: выдвигаясь из цилиндра поршень создает в камере разряжение и через клапан всасывания камера наполняется жидкостью из полости корпуса, объединенной со всасыванием. При вхождении в цилиндр клапан всасывания находится в закрытом состоянии, происходит вытеснение рабочей жидкости из рабочей камеры через клапан нагнетания в линию нагнетания.

Некоторые конструкции аксиально-кулачковых насосов могут работать на давлениях до 70МПа.

Примечательным является факт отсутствия в данной конструкции линии дренажа так как всасывание осуществляется непосредственно из корпуса насоса. При этом в корпусе насоса абсолютное давления ниже атмосферного. По этой причине в данной конструкции повышенные требования предъявляются к уплотнению вала, при выходе из строя которого насос подсасывает воздух и подает гидросистему смесь воздуха и рабочей жидкости. Такой «воздушный коктейль» приводит к вибрациям в гидросистеме и выходу из строя ее элементов, включая насос.

Рабочий объем рассчитывается по той-же зависимости что и для описанных выше конструкций аксиально-поршневых насосов. Следует отметить что насос данной конструкции не имеет исполнения с регулируемым рабочим объемом.

Фотография насоса сконструктивным вырезом показана на рис. 13.

Достоинства и недостатки насосов аксиально-поршневого типа:

Достоинства

  • простота конструкции.
  • Работа на давлениях до 70МПа.
  • Высокий КПД.
  • Частоты вращения до 4000 об/мин
  • Высокая удельная мощность.

Недостатки

  • Высокая пульсация давления
  • Высокая стоимость по сравнению с другими типами гидронасосов.

2. Шестеренные насосы

Шестеренные насосы относятся к типу роторныхгидромашин. Рабочими элементами (вытеснителями) являются две вращающиеся шестерни. Различают два основных типа таких насосов:

  • Насосы внешнего зацепления
  • Насосы внутреннего зацепления.

Частным случаем шестеренных насосов с внутренним зацеплением являются героторные насосы.

Шестеренные насосы широко распространены в гидросистемах с невысокими (до 20 МПа) давлениями. Они широко применяются в сельскохозяйственной, дорожной технике, мобильной гидравлике, системах смазки. Используются для обеспечения гидравлической энергией гидроприводов вспомогательных механизмов в сложных гидросистемах. Столь широкое распространение шестеренные насосы получили за простоту конструкции, компактность и малый вес. Платой за простоту конструкции стало довольно низкое значение КПД (не более 0,85), низкое рабочее давление, и небольшой ресурс (особенно на давлениях ≈20МПа). Шестеренные насосы могут работать на частотах вращения до 5000об/мин.

Существуют образцы шестеренных насосов на давления до 30МПа однако ресурс таких насосов на порядок ниже.

2.1Шестеренные насосы внешнего зацепления

Основными элементами шестеренных насосов внешнего зацепления являются шестерни. При вращении шестерен жидкость, заключенная во впадинах зубьев переносится из линии всасывания в линию нагнетания (рис.14). Поверхности зубьев А1 и А2 вытесняют при вращении шестерен больше жидкости чем может поместиться в пространстве освобождаемом зацепляющимися зубьями B1 и B2. Разность объемов, высвобождаемых двумя парами зубьев вытесняется в линию нагнетания. В месте зацепления шестерен при работе насоса образуются области «запертого» объема, что вызывает пульсации давления в линии нагнетания.

Рабочий объем шестеренного насоса можно определить из зависимости:

Где m – модуль зубьев

z – число зубьев

b – ширина зуба

h – высота зуба

Шестерни насосов внешнего зацепления в большинстве конструкций имеют прямой зуб, однако встречаются конструкции таких насосов с косым и шевронным зубом. Преимущество применения косого зуба состоит в меньшем уровне пульсаций за счет того что в месте зацепления «запертые» объемы не образуются. Недостатком конструкций с косым зубом является возникающая осевая сила, для восприятия которой нужно включать в конструкцию упорные подшипники. Этот недостаток отсутствует в насосах с шевронным зубом, где осевая сила компенсируется формой зуба. У насосов с шевронным зубом также малый уровень пульсаций.

Рис. 14

Конструктивный разрез шестеренного насоса с внешним зацеплением показан на рис. 15.

Рис. 15

Достоинства и недостатки шестеренных насосов внешнего зацепления:

Достоинства

  • простота конструкции.
  • Частоты вращения до 5000 об/мин
  • Низкая стоимость

Недостатки

  • Высокая пульсация давления
  • Низкий КПД
  • Сравнительно низкие давления

2.2 Шестеренные насосы внутреннего зацепления

Отличительной особенностью шестеренных насосов внутреннего зацепления является меньший уровень пульсаций и как следствие малый уровень шума. В связи с этим они находят широкое в стационарных машинах и механизмах, а так-же на мобильной технике работающей в закрытых помещениях.

Принцип работы шестеренного насоса с внутренним зацеплением состоит, как и у насосов внешнего зацепления, в переносе жидкости во впадинах шестерен от линии всасывания в линию нагнетания. В зоне всасывания при вращении шестерен объем камеры, образованной зубьями шестерен и серпообразным разделителем, увеличивается(см. рис. 16). При этом происходит наполнение рабочей камеры жидкостью из линии всасывания. В зоне нагнетания происходит процесс вытеснения рабочей жидкости в линию нагнетания, т.к. объем камеры в этой зоне при вращении шестерен уменьшается.

Рабочий объем шестеренного насоса с внутренним можно определить из зависимости:

Где m – модуль зубьев

z – число зубьев внутренней шестерни

b – ширина зуба

h – высота зуба

Конструктивный разрез шестеренного насоса с внутренним зацеплением показан на рис. 17.

Рис.17

Достоинства и недостатки шестеренных насосов внутреннего зацепления:

Достоинства

  • простота конструкции.
  • Частоты вращения до 4000 об/мин
  • Низкий уровень шума
  • Низкая стоимость

Недостатки

  • Низкий КПД
  • Сравнительно низкие давления

2.3 Героторные насосы.

Героторные насосы это разновидность шестеренных насосов с внутренним зацеплением. Отличие от классической конструкции шестеренного насоса с внутренним зацеплением состоит в отсутствии серпообразного разделителя. Разделение полостей всасывания и нагнетания реализовано за счет применения специального профиля. Его форма такова что в зоне где должен находиться серпообразный разделитель обеспечен постоянный контакт шестерен. (рис.18). Принцип работы насоса данной конструкции точно такой же как и шестеренного насоса с внутренним зацеплением.Героторные насосы обычно используют при невысоких давлениях (до 15МПа) и подачах до 120 л/мин. При этом частоты вращения составляют не более 1500 об/мин.

Изображение героторногопоказано насосана рис. 19.

Рис.18

Рабочий объем героторного насоса можно определить из выражения:

Где Аmin,Аmin – минимальная и максимальная площадь межзубьевой камеры

z – число зубьев внутренней шестерни

b – ширина зуба

\

Рис.19

Достоинства и недостатки героторных насосов:

Достоинства

  • Простота конструкции
  • Низкий уровень шума

Недостатки

  • Невысокий КПД
  • Высокая по сравнению с шестеренными насосами стоимость

2.4 Роторно-винтовые насосы.

Еще одной разновидностью шестеренного насоса можно считать винтовые насосы. Их рабочие элементы можно представить как косозубые шестерни с количеством зубьев равному числу заходов винтовой нарезки. Главным преимуществом этих насосов является равномерность подачи и как следствие низкий уровень шума. Достоинством насоса также является его способность перекачивать жидкости с твердыми включениями. Давление развиваемое насосом может составлять до 20МПа. Частоты вращения до 1500 об/мин.

Ввиду сложности изготовления данного типа насосов, они не получили широкого распространения и применяются лишь в специфических гидросистемах. Существуют двух (рис. 20) и трехвинтовые (рис. 21) конструкции насосов.

Достоинства и недостаткироторно-винтовых насосов:

Достоинства

  • Низкий уровень шума
  • Низкий уровень пульсаций

Недостатки

  • Невысокий КПД
  • Высокая стоимость

3. Пластинчатые насосы.

Пластинчатые гидронасосы это гидромашины в которых роль вытеснителя рабочей жидкости выполняют радиально расположенные пластины, которые совершают возвратно-поступательные движения при вращении ротора. В российской литературе пластины часто называют – шиберами, а насосы – шиберными.

Различают пластинчатые гидронасосы однократного действия и двойного действия. У насосов однократного действия за один оборот вала гидромашины процесс всасывания и нагнетания осуществляется один раз, в машинах двойного действия — два раза.

Пластинчатые насосы имеют низкий уровень шума и хорошую равномерность подачи. Также эти насосы имеют сравнительно большие рабочие объемы при небольших габаритах. Пластинчатые гидронасосы могут работать на давлениях до 21МПа при частотах вращения до 1500 об/мин.

3.1 Насос однократного действия

Принцип работы насоса однократного действия состоит в следующем. При сообщении вращающего момента валу насоса ротор насоса приходит во вращение (см. рис. 22). Под действием центробежной силы пластины прижимаются к корпусу статора, в результате чего образуется две полости, герметично отделённых друг от друга. При прохождении пластин через область всасывания, объем рабочих камер между ними увеличивается и происходит всасывание рабочей жидкости.При прохождении пластин через область нагнетания, объем рабочих камер между ними уменьшается и происходит вытеснение рабочей жидкости в линию нагнетания. Для обеспечения прижима пластин в зоне нагнетания в полость под ними подводится давление из линии нагнетания. В некоторых случаях дополнительный прижим пластин организуется за счет установки пружин под пластины.

Рабочий объем пластинчатого насоса однократного действия рассчитывается как:

Где e – эксцентриситет

b – ширина пластины

Насосы однократного действия конструктивно могут иметь исполнения с регулируемым рабочим объемом. Регулировка рабочего объема происходит за счет изменения величины эксцентриситета e.

Рис. 22

Достоинства и недостаткипластинчатых насосов однократного действия:

Достоинства

  • Низкий уровень шума
  • Низкий уровень пульсаций
  • Возможность регулировки рабочего объема
  • Низкая по сравнению с роторно-поршневыми насосами стоимость.
  • Менее требователен к чистоте рабочей жидкости.

Недостатки

  • Большие нагрузки на подшипники ротора.
  • Сложность уплотнения торцов пластин
  • Низкая ремонтопригодность
  • Сравнительно невысокие давления (до 7МПа)

3.2 Насос двойного действия

Принцип действия насоса двойного действия полностью аналогичен принципу работы насоса однократного действия (рис. 23). Отличием является наличие двух зон всасывания и двух зон нагнетания. Для обеспечения прижима пластин в зоне нагнетания, также как и насосов однократного действия, подводится давление нагнетания.

Рис. 23

Рабочий объем пластинчатого насоса двойного действия рассчитывается как:

Где b – ширина пластины

Изображение внутреннего устройства пластинчатого насоса двойного действия показано на рис. 24.

Рис. 24

Достоинства и недостаткипластинчатых насосов двойного действия:

Достоинства

  • Низкий уровень шума
  • Низкий уровень пульсаций
  • Возможность регулировки рабочего объема
  • Уравновешенность радиальных нагрузок в роторе.
  • Низкая по сравнению с роторно-поршневыми насосами стоимость.
  • Менее требователен к чистоте рабочей жидкости.
  • Большие по сравнению пластинчатыми насосами однократного действия давления (до 21МПа)

Недостатки

  • Низкая ремонтопригодность
  • Сложность уплотнения торцов пластин

4. Рекомендации по выбору насоса для гидросистемы.

Выбор типа и насоса нужно осуществлять исходя из условий работы гидросистемы, ее назначения и требований к параметрам потребного потока рабочей жидкости.

Основными параметрами при выборе типа насоса являются:

  • Уровень действующих давлений рабочей жидкости;
  • Класс чистоты рабочей жидкости;
  • Диапазон вязкостей рабочей жидкости;
  • Экономическое обоснование применения.

При выборе насоса для гидросистемы следует учитывать большое количество определяющих факторов. Основными критериями с которых необходимо начать выбор насоса являются необходимая подача Qи давлениеp. Также в начале процедуры подбора необходимо четкое представление о типе приводного двигателя. В зависимости от предназначения и базирования механизма приводимого в действие гидросистемой приводной двигатель может быть электрическим или двигателем внутреннего сгорания. При выборе мощности приводного двигателя следует определить необходимую для гидросистемы гидравлическую мощность, которую можно приблизительно определить по зависимости (1).

где Q – подача насоса [л/мин]

p – давление в гидросистеме [МПа]

ɳ — КПД насоса (шестеренного и пластинчатого ɳ=0,85, для роторно-поршневого ɳ=0,9)

После определения мощностивыбирается тип гидронасоса исходя из характеристик свойственных для каждого из типов насосов и рабочего давления. Необходимый рабочий объем гидронасоса определяется как:

где Q – необходимая подача насоса [л/мин]

n – частота вращения двигателя [об/мин]

Определив необходимый рабочий объем насоса,выбираем по каталогу насос выбранного типа с наиболее близким значением рабочего объема. После чего взяв из каталога реальные значения q0и ɳ, рассчитываем реальное значение подачи насосаQ:

и проверяем насос на совместимость с выбранным двигателем по мощности (см. выражение (1)).

При необходимости наличия регулируемой подачи насоса, помимо установки регулируемого насоса, можно применить насос постоянного рабочего объема при этом подачу регулировать оборотами приводного двигателя. Данный способ регулирования может быть осуществлен в ограниченных характеристиками двигателя пределах.

Для ступенчатой регулировки скорости гидродвигателя в гидросистеме можно применять два насоса илимногосекционные насосы, фактически представляющие собой несколько насосовконструктивно выполненных одним блоком. Для регулировки скорости в этом случае необходимо подключать или отключать секции насоса изменяя тем самым суммарную подачу насоса. Способы коммутации секций будут описаны в статьях 7 и 8.

5. Причины отказа насосов.

При эксплуатации насоса следует обращать внимание на условия его работы. Наиболее часто неисправность насоса бывает вызвана:

  • Попаданием посторонних частиц (грязи)
  • Масляным голоданием
  • Работой на водно-масляной эмульсии
  • Работой на воздушно-масляной смеси
  • Работой с перегрузкой по давлению
  • Превышением допустимых оборотов
  • Превышение давления в корпусе
  • Перегревом рабочей жидкости

6. Заключение.

Данная статья написана в помощь специалистам осуществляющим ремонт, обслуживание и эксплуатацию гидросистем станочного оборудования и мобильных машин. Ознакомившись с вышенаписанным материалом, читатель получает базовые сведения о самых распространённых типах гидравлических насосов, их преимуществах и недостатках. Также в материале имеется простейший алгоритм определения мощности насоса и подбора приводного двигателя.

Следует отметить что практически все описанные конструктивные типы насосов могут использоваться в качестве гидромоторов, но об этом в следующей статье…

Все типы насосов описанные в данной статье можно приобрести в компании RGC гидроагрегаты.Возможна поставка гидрооборудования и запасных частей под заказ. Также в нашей компании можно получить консультации по гидрооборудованию.


Рекомендуемые страницы:

Недостатки и преимущества аксиально-поршневого насоса

Все устройства, чья работа связана с циркуляцией жидкостей, можно поделить на две группы. Первая использует силу течения жидкости для превращения ее в механическую энергию. Такие устройства носят название гидравлических моторов или гидромоторов. Вторая группа работает в обратном порядке. Используя энергию внешних источников, она передает ее жидкости, приводят тем самым последнюю в движения. Название этой группы – гидронасосы или гидравлические насосы. Под маркой yuken выпускаются обе группы гидравлического оборудования.

И одна, и другая группа гидравлических машин широко используется в промышленности, на крупных предприятиях, при организации водоснабжения. Даже космические корабли не могут обойтись без этого типа оборудования.

Среди всех видов гидравлического оборудования наибольшую распространенность получили лопастные агрегаты. Взаимодействие с жидкостью и передачу энергии обеспечивает колесо, оснащенное лопастями. Основой работы таких устройств является изменение рабочего объема. Ярким представителем этого семейства можно считать аксиально поршневой насос.

Достоинства аксиально-поршневого насоса

По сравнению с другими видами гидротехнического оборудования этот тип обладает следующими преимуществами:

  • Большая мощность при сравнительно компактных размерах и небольшом весе.
  • Из-за небольших размеров рабочих узлов момент инерции незначителен.
  • Существует возможность резкого изменения частоты вращения.
  • Возможность нормального функционирования при достаточно высоком уровне давления.
  • Скорость вращения вала может колебаться от 500 оборотов за одну минуту, до 4000. Остальные виды гидронасосов редко могут добиться таких замечательных показателей, в чем легко убедиться, посетив yuken официальный сайт.
  • Агрегат нормально работает при давлении, достигающем 40 мегапаскалей.

Недостатки аксиально-поршневых насосов

Если бы аксиально-поршневые насосы не обладали недостатками, других конфигураций подобного оборудования бы не существовало. Но поскольку это далеко не так, необходимо учитывать и отрицательные стороны этого типа гидромашин. К таковым относятся:

  • Достаточно высокая цена.
  • Сложность конструктивного решения, которая усложняет ремонт и сервисное обслуживание.
  • Низкий уровень надежности, особенно при неправильной эксплуатации.
  • Пульсация давления.

МЫ ГАРАНТИРУЕМ ВЫСОКОЕ КАЧЕСТВО РАБОТ

ООО ДИЗАЙН ПРЕСТИЖ имеет год основания 1999г. Сотрудники компании все с опытом работы, имеют Московскую прописку и славянское происхождение, оплата происходит любым удобным способом, при необходимости предоставляются оборудование и работы в кредит. Автономное отопление и зимнее полноценное водоснабжение.

Наш основной информационный портал (сайт)

Строительно монтажная компания ДИЗАЙН ПРЕСТИЖ

Телефон: +7 (495) 744-67-74

Мы работаем ежедневно с 10:00 до 22:00

Офис компании расположен рядом с районами: Митино, Тушино, Строгино, Щукино.

Ближайшее метро: Тушинская, Сходненская, Планерная, Волоколамская, Митино.

Рядом расположены шоссе: Волоколамское шоссе, Пятницкое шоссе, Ленинградское шоссе.

Как выбрать между мембранным и поршневым насосами?

Зачастую некоторые задачи технологического процесса можно решить с использованием мембранных (диафрагменных) или плунжерных (поршневых) насосов. Как правило, если перед вами стоит именно такой выбор, значит требования по перекачке имеют свои особенности. Нередко такая задача стоит при выборе насоса для лакокрасочного производства или цеха, когда вязкость краски делает невозможным использование других типов насосов, однако и другие сферы промышленности могут требовать подобного решения.

Принцип действия диафрагменных и поршневых насосов

Мы уже описывали принцип работы мембранного насоса, поэтому не будем повторяться. Нелишним будет лишь напомнить, что рабочими элементами диафрагменного насоса являются мембраны, приводимыми в движение подвижным штоком и создающими давление в диафрагменных камерах, по которым проходит перекачиваемая среда. Существуют модели и с одной мембраной, однако сейчас они скорее редкость.

 

Плунжерные насосы являются куда более древними устройствами, в которых механическое возвратно-поступательное движение поршня создаёт изменение объёма, что приводит к разнице давлений в рабочем цилиндре. Таким образом, сначала пониженное давление влечет всасывание жидкости в рабочую камеру, а затем происходит её вытеснение. Для того, чтобы движение среды происходило только в правильном направлении, на входе и выходе рабочего цилиндра установлены обратные клапаны. В целом, принцип работы поршнегого насоса схож с диафрагменным. Лучшую плавность потока обеспечивают поршневые насосы с большим количеством камер (насосы двустороннего и двойного действия) и некоторые технические решения — гидроаккумуляторы и воздушные колпаки. Насосы двойного действия имеют большую эффективность (КПД) и меньшие пульсации.

Недостатки поршневых насосов

Ввиду функциональных особенностей, поршневые насосы невозможно объединить в одну линию. Кроме того, плунжерные насосы непригодны для перекачки сред с абразивными частицами, что в некоторых случаях приводит к необходимости использования предварительной фильтрации рабочей жидкости. Поршневые насосы требуют специальные уплотнения между поршнями и стенками рабочих камер. Стоимость ремонтного комплекта рабочего поршня выше по сравнению со стоимостью диафрагмы мембранного насоса. К существенным недостаткам можно отнести и относительно высокую стоимость поршневого насоса. Применительно к использованию насосов в окрасочной линии, поршневые насосы менее шумны, т. к. работают периодически только при нагнетании давления в систему.

Преимущества поршневых насосов

Плунжерные насосы позволяют перекачивать ещё более вязкие жидкости, хотя и современным мембранным насосам под силу справляться с очень вязкими средами. При работе с чистыми жидкостями, насосы реже подвергаются техническому обслуживанию за счёт более долгой службы расходных деталей. Поршневые насосы бывают с прямым или кривошипно-шатунным приводом. Так или иначе их энергетическая эффективность выше чем у диафрагменных насосов с питанием от сжатого воздуха.

Недостатки мембранных насосов

Ввиду беспрерывной работы насоса, вибрация аппарата в целом выше, чем у поршневых насосов. Также из-за более интенсивной работы, несмотря на меньшую стоимость, мембраны насоса подлежат замене чаще, чем поршни. Ввиду того, что мембранные насосы являются пневмоприводными, их КПД ниже по сравнению с поршневыми.

Преимущества мембранных насосов

Широкий выбор материалов изготовления мембран, корпуса, шариковых клапанов и других комплектующих позволяет использовать диафрагменные насосы для самых различных сред, включая химически агрессивные, абразивные с большим содержанием крупных твёрдых частиц (более 70%), вязкие и т.д. Несмотря на меньший срок службы, ремонтный комплект для мембранного насоса (мембраны, клапаны и пр.) стоит дешевле, чем ремкомплект плунжерного насоса. В лакокрасочном цехе мембранные насосы выигрывают благодаря способности легко переносить грязную краску. Конструкция мембранных насосов устроена таким образом, что проводить сервисные работы по насосу очень легко — всё в доступности. Многие мембранные насосы являются безсмазочными и в целом их конструкция проще.

Какой насос выбрать?

В редких случаях, при исключительных вязкостях перекачиваемых сред выбор происходит в пользу поршневого насоса. Также, некоторые технологические системы рассчитаны на применение таких насосов. Но для большей части применений используются более простые по конструкции и недорогие пневматические мембранные насосы — они позволяют сэкономить значительные средства на начальной инвестиции. Для получения консультации, обращайтесь к нашим специалистам — они постараются ответить на все ваши вопросы, помогут подобрать насос и поделятся опытом.

 

 

Насосы сравнение поршневых и центробежных

    К достоинствам поршневых насосов по сравнению с центробежными следует отнести  [c.146]

    Центробежные насосы получили в настоящее время большое распространение, а во многих химических производствах полностью вытеснили поршневые насосы. Это объясняется их большими достоинствами, к числу которых относятся а) малая металлоемкость, сравнительно небольшой вес, легкий фундамент и небольшая занимаемая площадь, а также более низкая стоимость в сравнении с поршневыми насосами б) высокая производительность при плавной и непрерывной подаче жидкости без помощи воздушных колпаков в) непосредственное соединение с электродвигателями (отсутствие передаточного механизма) г) простота пуска и регулирования, ремонта и обслуживания д) отсутствие всасывающих и нагнетательных клапанов и, следовательно, меньшая чувствительность к загрязнениям перекачиваемых жидкостей  [c.128]


    Сравнение поршневых и центробежных насосов……..506 [c.547]

    У поршневых насосов по сравнению с центробежными есть в свои преимущества, основные из которых  [c.78]

    К наиболее существенным достоинствам центробежных насосов по сравнению с поршневыми относятся следующие  [c.132]

    Преимущества и недостатки центробежного насоса по сравнению с поршневым [c.228]

    Поршневые насосы имеют один или несколько рабочих цилиндров, в которых движется возвратно-поступательно поршень. Полость всасывания отделяется от полости нагнетания всасывающим и нагнетательным клапанами аналогично поршневому компрессору (см. рис. 5). Достоинством поршневых насосов является практически неограниченный напор, высокий к. п. д. и независимость напора от производительности. Их недостатки — неравномерность подачи, возникающая в результате возвратно-поступательного движения поршня, тихоходность (поршневой насос соединяется с электродвигателем через редуктор), сравнительно небольшая производительность по сравнению с центробежными насосами, сложность конструкции и высокая чувствительность клапанов к загрязнениям, присутствующим в жидкости. [c.41]

    Приведены основы теории действия гидравлических машин и компрессоров, применяемых при бурении скважин, добыче нефти и газа, поддержании давления в пласте и промысловом транспорте нефти и газа. В первой части помещены материалы по динамическим гидромашинам насосам, турбобурам и передачам, а также по объемным гидромашинам возвратно-поступательным и роторным насосам, двигателям и гидроприводу, во второй — по компрессорам центробежным, поршневым, роторным. По сравнению с первым изданием (1970 г.) учебник значительно переработан и дополнен. [c.2]

    В отличие от поршневого центробежный насос не обладает способностью засасывать жидкость в начале своей работы, т. е. центробежный насос, не будучи заполнен жидкостью, вместе со всасывающим трубопроводом не может произвести отсасывание воздуха, которым он заполнен. Объясняется это тем, что возникающая при вращении рабочего колеса насоса центробежная сила вследствие небольшой плотности воздуха по сравнению с плотностью жидкости недостаточна для того, чтобы выбросить воздух в нагнетательный трубопровод и создать требуемое разрежение. [c.146]


    И все же эти насосы при правильном монтаже и эксплуатации имеют преимущества перед поршневыми штанговыми насосами и эрлифтами. Центробежные насосы не содержат частей, движущихся поступательно, как у поршневых насосов последние менее надежны в эксплуатации из-за частых разрывов или разъединений штанг, срыва нарезок в муфтах. По сравнению с эрлифтами центробежные насосы обладают более высоким к. п. д., сравнительно простым устройством электрооборудования и не требуют специально обученного персонала, который необходим при эрлифтах по уходу за компрессорами. [c.31]

    Основные преимущества центробежных насосов по сравнению с поршневыми следующие. [c.228]

    К достоинствам поршневых насосов (по сравнению с центробежными) относятся 1) возможность подачи постоянного точно известного расхода жидкости вне зависимости от сопротивления напорного трубопровода, что дает возможность использовать их как дозаторы 2) возможность подачи незначительных расходов под большим давлением при высоком к. п. д. 3) техническая целесообразность создания малогабаритных насосов, способных поднимать жидкость из скважин малого диаметра  [c.87]

    Роторные компрессоры по устройству и действию родственны роторным насосам. Эти компрессоры имеют более высокий к. п. д., нежели центробежные, а в сравнении с поршневыми обладают достоинствами динамических машин малой массой, компактностью, простотой конструкции н уравновешенностью благодаря отсутствию кривошипно-шатунного механизма, равномерностью подачи газа. Роторные компрессоры удобны в обслуживании, их легко перевести на автоматическое или дистанционное управление. Все эти качества особенно важны для использования роторных компрессоров в передвижных компрессорных станциях (легкое основание, ограниченное пространство, непостоянное обслуживание). [c.250]

    Центробежные насосы по сравнению с поршневыми обладают рядом весьма существенных преимуществ. Главными преимуще-110 [c.110]

    Для снижения шума самого источника необходимо 1) при выборе оборудования учитывать наряду с другими рабочими параметрами уровень звуковой мощности вентилятора 2) стремиться к тому, чтобы при заданном объемном расходе и сопротивлении сети вентилятор работал в режиме максимального КПД 3) снижать сопротивление сети и не устанавливать вентилятор с запасом по давлению 4) делать плавный подвод воздуха к входному патрубку вентилятора 5) особое внимание обращать на статическую и динамическую балансировку рабочего колеса вентилятора 6) отдавать предпочтение центробежным компрессорам и насосам как менее шумным по сравнению с поршневыми (компрессоры с четырьмя и более цилиндрами предпочтительнее, чем с одним или с двумя). [c.1001]

    Опасность изменения давления значительно повышается, когда в технологическом процессе для транспортировки веществ используются насосы и компрессоры объемного действия (шестеренчатые, ротационные, поршневые), которые по сравнению с центробежными насосами и газодувками не могут работать на себя . [c.24]

    Вследствие больших зазоров, допустимых у центробежных насосов по сравнению с поршневыми, они подвержены меньшему износу от абразивных взвесей, находящихся в перекачиваемых жидкостях. Специальные конструкции центробежных насосов допускают проход через наоос крупных твердых частиц, что исключа

Достоинства н недостатки поршневых насосов


из «Основные процессы и аппараты химической технологии Кн.1»

В процессе эксплуатации поршневого насоса иногда требуется изменить его производительность. Увеличение или уменьшение последней чаще всего достигается путем соответствующего повышения (до допустимого предела) или понижения числа оборотов насосного вала. В приводных насосах это осуществляется регулированием числа оборотов двигателя, изменением передаточного числа приводного механизма, установкой вариаторов и т. п. В насосах специальных конструкций предусматривается регулирование производительности путем изменения длины хода поршня перестановкой пальца кривошипа (увеличивая или уменьшая радиус кривошипа). Наименее экономичным является регулирование подачи насоса путем перепуска части жидкости из нагнетательной линии обратно во всасывающую к этому приему прибегают весьма редко. Заметим, что регулирование производительности поршневого насоса не связано с изменением развиваемого напора. Для ограничения последнего во избежание поломки насосы снабжаются предохранительными клапанами. [c.115]
Ценным достоинством поршневых насосов является независимость их производительности от развиваемого напора, т. е. возможность подачи небольших количеств жидкости под высоким давлением. Некоторым преимуществом этих насосов является также осуществление их пуска в ход без предварительной заливки всасывающего трубопровода и рабочего цилиндра перекачиваемой жидкостью. [c.115]
Поршневые насосы обладают, одновременно, рядом существенных недостатков, сильно ограничивающих область их выгодного применения. К числу основных недостатков относятся а) громоздкость, большая металлоемкость и высокая стоимгсть, обусловленные принципом действия (периодичностью всасывания и подачи жидкости) и тихоходностью б) возвратно-поступательное движение поршня, вызывающее необходимость в тяжелых фундаментах в) большая занимаемая площадь (самим насссом и его приводом) г) наличие клапанов, требующих постоянного ухода и ремонта, а также исключающих возможность перекачки жидкостей, содержащих взвешенные твердые частицы (суспензии) д) потребность в промежуточной передаче между насосом и двигателем е) неравномерность всасывания и нагнетания жидкости. [c.115]
Заметим, что производительность поршневых насосов по причинам конструктивного характера обычно ограничена / 150 м /ч. [c.115]

Вернуться к основной статье

Устройство и принцип действия поршневых насосов

Поршневой насос

Поршневой насос (плунжерный насос) — один из видов объёмных гидромашин, в котором вытеснителями являются один или несколько поршней (плунжеров), совершающих возвратно-поступательное движение.

Рис. 2. Дифференциальная схема включения поршневого насоса. Во время движения поршня влево часть жидкости отводится в штоковую полость, объём которой меньше объёма вытесняемой жидкости за счёт того, что часть объёма штоковой полости занимает шток

В отличие от многих других объёмных насосов , поршневые насосы не являются обратимыми, то есть, они не могут работать в качестве гидродвигателей из-за наличия клапанной системы распределения.

Поршневые насосы не следует путать с роторно-поршневыми, к которым относятся, например, аксиально-поршневые и радиально-поршневые насосы.

Принцип работы

Принцип работы поршневого насоса (рис. 1) заключается в следующем. При движении поршня вправо в рабочей камере насоса создаётся разрежение, нижний клапан открыт, а верхний клапан закрыт, — происходит всасывание жидкости. При движении в обратном направлении в рабочей камере создаётся избыточное давление, и уже открыт верхний клапан, а нижний закрыт, — происходит нагнетание жидкости.

Одной из разновидностей поршневого насоса является диафрагменный насос.

Борьба с пульсацией

Одним из недостатков поршневых насосов, как и других объёмных насосов, являются пульсации подачи и давления. Пульсации можно уменьшить, расположив несколько поршней в ряд и соединив их с одним валом таким образом, чтобы циклы их работы были сдвинуты друг относительно друга по фазе на равные углы. Другим способом борьбы с пульсацией является использование дифференциальной схемы включения насоса (рис. 2), при которой нагнетание жидкости осуществляется не только во время прямого хода поршня, но и во время обратного хода.

Также широко применяют насосы двустороннего действия, у которых как поршневая, так и штоковая полость имеют (в отличие от дифференциальной схемы включения) свою клапанную систему распределения. У таких насосов коэффициент пульсаций ниже, а КПД выше, чем у насосов одностороннего действия (рис. 1).

Для борьбы с пульсацией также применяют гидроаккумуляторы , которые в момент наибольшего давления запасают энергию, а в момент спада давления отдают её.

Применение

Поршневые насосы используются с глубокой древности. Известно их применение для целей водоснабжения со II века до нашей эры. В настоящее время поршневые насосы используются в системах водоснабжения, в пищевой и химической промышленности, в быту. Диафрагменные насосы используются, например, в системах подачи топлива в двигателях внутреннего сгорания.

См. также

Литература

  1. Гидравлика, гидромашины и гидроприводы: Учебник для машиностроительных вузов/ Т. М. Башта, С. С. Руднев, Б. Б. Некрасов и др. — 2-е изд., перераб. — М.: Машиностроение, 1982.
  2. Гейер В. Г., Дулин В. С., Заря А. Н. Гидравлика и гидропривод: Учеб для вузов. — 3-е изд., перераб. и доп. — М.: Недра, 1991.

Поршневым насосом называется возвратно-поступательный насос, у которого рабочие органы выполнены в виде поршней. По количеству поршней эти насосы разделяются на однопоршневые, двухпоршневые, трехпоршневые и многопоршневые . По числу циклов нагнетания и всасывания за один двойной ход поршня различают насосы одностороннего действия, двустороннего действия и дифференциальные .

Схема однопоршневого насоса одностороннего действия представлена на

рис. 3.1 .

При движении поршня вправо в левой полости цилиндра и в рабочей камере создается разрежение. За счет разрежения верхний нагнетательный клапан К н прижимается к седлу, а нижний всасывающий клапан К в приподнимается, и в создавшийся зазор по всасывающей трубе засасывается жидкость из источника в рабочую камеру. При движении поршня влево в рабочей камере создается повышенное давление, под действием которого всасывающий клапан К в закрывается, а нагнетательный клапан К н приподнимается, и жидкость вытесняется из цилиндра в напорный трубопровод.

При многократном возвратно-поступательном движении поршня вода перемещается по всасывающей трубе через цилиндр насоса в нагнетательную трубу и дальше к месту потребления. При этом подача жидкости в нагнетательную линию оказывается неравномерной, что является существенным недостатком насосов одностороннего действия . Для устранения этого недостатка применяются насосы двустороннего действия.


На рис. 3.2 представлена схема насоса двустороннего действия (с двумя рабочими камерами). Процесс всасывания в одной камере идет одновременно с процессом нагнетания в другой.

Для обеспечения равномерности подачи применяются дифференциальные насосы (поршневые и плунжерные). На рис. 3.3 показана схема дифференциального насоса с диаметрами поршней D 1 и D 2 . На всасывающей стороне он работает как насос одностороннего действия, на нагнетательной стороне – как насос двустороннего действия. Его отличительной особенностью является то, что за один оборот вала кривошипа он производит всасывание за один ход поршня, а нагнетание жидкости – в течение обоих ходов поршня, вытесняя ее поочередно из камер А и Б в нагнетательный трубопровод.

По направлению оси движения рабочих органов поршневые (плунжерные) насосы могут быть горизонтальными и вертикальными .

Основные понятия, применяющиеся в теории насосов

На рис. 3.4 показана схема насосной установки , состоящей из насосного агрегата 1 , в состав которого входят насос и двигатель (на схеме двигатель не показан), всасывающей трубы 2 и напорного трубопровода 3 , отводящего из насоса жидкость к месту назначения.

В нижней части всасывающей трубы имеется сетка 4 , предохраняющая всасывающую трубу от попадания посторонних предметов и обратный клапан, необходимый для заливки насоса жидкостью перед пуском (в лопастных насосах) и предупреждающий обратное движение жидкости в случае остановки насоса.

В теории насосов применяется ряд терминов и определений, относящихся к насосам всех типов, в том числе и к поршневым насосам.

Напор насоса

В работающем насосе жидкости сообщается дополнительная энергия, которая расходуется на преодоление сопротивлений в напорном трубопроводе и на подъем жидкости в резервуар. Вертикальное расстояние h вс от свободной поверхности водоема до центра насоса называется вакуумметрической высотой всасывания . Потери энергии во всасывающем трубопроводе называются потерями при всасывании Вертикальное расстояние h н от центра насоса до уровня воды в резервуаре называется геодезической высотой нагнетания . Потери энергии в напорной линии называются потерями при нагнетании . Сумма геодезических высот h вс + h н , сложенная с суммой потерь энергии в системе, называется напором насоса Н :

Н = h вс + h н + h wвс + h . (7.9 )

Напор , развиваемый насосом, представляет собой количество энергии, сообщаемое насосом единице массы перекачиваемой жидкости. Напор измеряется в метрах столба перекачиваемой жидкости или в единицах давления .

Напор, развиваемый работающим насосом, можно определить также по формуле (7.9 ) с использованием показаний вакуумметра и манометра, которыми обычно оборудуются насосные установки (рис. 3.4 ):

H = h м +h в + Δh + (w н 2 – w в 2) / (2g ) , (7.10 )

где Н – напор насоса, м ;

h м – показание манометра, выраженное в метрах столба перекачиваемой жидкости;

h в – показание вакуумметра, выраженное в метрах столба перекачиваемой жидкости;

Δh – вертикальное расстояние между точками присоединения манометра и вакуумметра, м ;

w н , w в – скорости в нагнетательной и всасывающей линиях (в местах присоединения манометра и вакуумметра), м/с ;

g м/с 2 .

Одним из основных технических показателей насоса является также давление насоса р :

р = р к – р н + ρ (w к 2 – w н 2) / (2g ) + ρ g (z к – z н) , (7.11 )

где р к , р н – давление на выходе и на входе в насос, Па ;

ρ – плотность жидкой среды, кг/м 3 ;

w к , w н – скорость жидкой среды на выходе и на входе в насос, м/с ;

g – ускорение свободного падения, м/с 2 ;

z к , z н – высота центра тяжести сечения выхода и входа в насос, м .

Напор насоса Н и давление насоса р связаны между собой зависимостью

Н = р / (ρ g ) , (7.12 )

где ρ – плотность жидкой среды, кг/м 3 ;

g – ускорение свободного падения, м/с 2 .

«История изобретения паровых машин» — Трудно представить нашу жизнь без электричества. Первый паровоз. Первый паровой автомобиль. Паровые машины. Преимущества. Определение. История изобретения паровых машин. Паровая турбина Герона. Цель. Паровая машина. Немного истории.

«Тепловые машины» — Рабочим веществом может быть водяной пар или газ. Двс. «Младший брат» — паровоз. Определить пути повышения КПД. Финиш. КПД идеального теплового двигателя. Решающая роль. Средняя скорость движения 72 км/ч. Домашнее задание. Цикл Карно. Экологические последствия работы тепловых двигателей. Сел на пароход, отправлявшийся в Лондон.

«Изобретение паровой машины» — Последующие изобретатели внесли много усовершенствований в насос Ньюкомена. Такой двигатель двойного действия был разработан Уаттом в 1782 году. Паровая машина Томаса Севери. Давление пара, подаваемого в цилиндр из котла (1), поднимало поршень. С 1776 года началось фабричное производство паровых машин.

«История паровой машины» — Паровые машины с возвратно-поступательным движением. Паровая машина. Первая в России двухцилиндровая вакуумная паровая машина. Вакуумные машины. Создание вакуума в закрытом цилиндре. Как она работает. Вид паровых двигателей. Какое у них преимущество. Преимущество паровых машин. Реальная паровая турбина.

«Тепловые насосы» — Система работает устойчиво, колебания температуры и влажности в помещении минимальны. Сечение различных типов вертикальных грунтовых теплообменников. Конструкция грунтового зонда. Зимой теплонасосная система передает в дом тепло неостывшей земли. Объекты жилищного строительства (коттеджи, многоквартирные дома).

«Тепловая машина» — Первый паровоз был сконструирован в 1803 г. английским изобретателем Ричардом Тревитиком. Презентация к уроку физики в 8 классе «Тепловые машины». Машины, преобразующие внутреннюю энергию топлива в механическую, называются тепловыми двигателями. Шотландский инженер, механик и изобретатель, интересовался паром и конденсацией воды.

Всего в теме 11 презентаций

Данная разновидность насосов является одной из самых древних. Механическое вытеснение жидкостной среды можно назвать простейшей реализацией принципа перекачки. В наши дни конструкции таких агрегатов, конечно, имеют более сложное устройство по сравнению с первыми представителями класса. В современном виде поршневой жидкостный насос имеет прочный корпус, развитую элементную базу и предполагает наличие широких возможностей для коммуникации. Последний аспект обуславливает распространение оборудования в разных сферах от бытовых нужд и вплоть до промышленных узкоспециализированных отраслей.

Устройство насоса

Основу агрегата представляет металлический цилиндр, в котором и происходят рабочие процессы с жидкостью. Физические манипуляции выполняет поршень, в котором предусмотрены клапаны. Специалисты также называют такую систему плунжерной — по типу используемых поршневых механизмов. В сущности, главную функцию в таких системах выполняет Поршневой жидкостный насос действует по принципу возвратно-поступательное движения, хотя и отличается от классических гидродвигателей присутствием системы клапанного распределения. Структура приводного механизма также включает целый набор обслуживающих деталей и компонентов. К частям данной конструкции можно отнести кривошип и шатун, которые составляют основу уже силового рабочего органа.


Принцип действия

В упрощенном виде функция таких агрегатов напоминает обычный шприц или водозаборную колонку, в которой носитель замещается клапаном. Но, есть и особенности, которыми обладает поршневой жидкостный насос. Принцип действия в данном случае предусматривает, что принимающий трубопровод будет также иметь закрывающийся клапан. Благодаря такому устройству жидкость не может поступать обратно в цилиндр.

Несмотря на простую схему рабочего процесса, есть один существенный недостаток у таких насосов. Дело в том, что возвратно-поступательные действия не предполагают равномерную и плавную подачу носителя. Скачкообразные темпы, в которых работает поршневой жидкостный насос, могут доставлять трудности для последующего обслуживания принимающих коммуникаций. Впрочем, использование нескольких поршней позволяет минимизировать этот недостаток.


Модели двухстороннего действия

Появление данной разновидности поршневых насосов обусловлено стремлением производителей устранить эффект пульсации, который возникает именно по причине ритма, в котором поршень выталкивает порции жидкости. В таких насосах штоковая и поршневая полости имеют индивидуальные клапанные системы. Такой принцип распределения подачи воды позволяет не только устранять пульсацию, но и повышать производительность. Правда, односторонние жидкостные поршневые насосы все же имеют свои преимущества, которые выражаются в более высокой степени надежности и долговечности. Еще одной модификацией, которая должна была устранить ритмическую подачу жидкости, является насос, дополненный гидроаккумулятором. В момент пикового давления такие агрегаты собирают энергию, а при ее понижении — наоборот, отдают. Впрочем, полностью устранить пульсацию получается не всегда и эксплуатирующим предприятиям приходится соответствующим образом разрабатывать конфигурации приема жидкости уже вне конструкции насоса.

Назначение насосов


Используют такие агрегаты в разных областях. Его принцип действия не предполагает работу с большими объемами носителя, но зато имеет немало других полезных качеств. Так как в ходе вытеснения каждой новой «дозы» поршнем выполняется прием новой жидкости в условиях сухого цилиндра, использование конструкции себя оправдывает в химической промышленности. Специализированное назначение поршневых жидкостных насосов допускает работу с агрессивными средами, взрывоопасными смесями и некоторыми видами топлива. Но этим не ограничивается применение поршневых агрегатов. Их также используют в бытовых нуждах, для снабжения чистой водой и полива. Опять же, такие модели не рассчитываются на большие объемы циркуляции, но отличаются надежностью и деликатным обращением с обслуживаемой жидкостью — собственно, этот фактор и обусловил широкое распространение насосов в пищевой промышленности.

Преимущества и недостатки конструкции

Среди достоинств таких систем можно отметить выносливость конструкции. Это объясняется не только использованием высокопрочных материалов для изготовления составных частей, но и самим принципом работы. Кроме этого, поршневой жидкостный насос отличается возможностью работы с носителями, у которых высокие требования к условиям пуска. В частности, многие специалисты отмечают выгоду от «сухого» всасывания, которое может обеспечить далеко не всякий насос. Что касается недостатков, то они преимущественно относятся к низкой производительности. Конечно, теоретически возможно и расширение технических параметров агрегата, но это приведет к повышению эксплуатационных требований оборудования. Тем более что многие альтернативные конструкции способны обеспечить достаточную продуктивность при меньших затратах.

Заключение


Насосы такого типа занимают отдельное место на рынке, удовлетворяя при этом и запросы частных пользователей, и нужды крупных предприятий. В современных модификациях поршневой жидкостный насос позволяет выполнять широкий спектр задач. Некоторые из них вполне могут реализовать и агрегаты другого типа, но есть направления, в которых не обойтись именно без гидравлического принципа перекачки. Это относится к упомянутым отраслям химической и пищевой промышленности. С другой стороны, востребованность поршневых насосов в быту обусловлена их простой конструкцией и нетребовательностью в содержании. И это не говоря о высоком эксплуатационном ресурсе данной техники.

Отправить ответ

avatar
  Подписаться  
Уведомление о