Клапан прямого действия принцип работы: какой выбрать? Особенности, отличия, эксплуатационные ограничения

Содержание

какой выбрать? Особенности, отличия, эксплуатационные ограничения

Введение

При управлении потоками жидких и газообразных сред на современных промышленных предприятиях наиболее часто используются два типа клапанов: соленоидные клапаны и клапаны с пневмоприводом. Огромное количество различных моделей клапанов обоих типов, предназначенных для самых разнообразных задач, привело к тому, что выбор между соленоидным (электромагнитным) клапаном и клапаном с пневмоприводом перестал быть очевидным.

В данной статье рассмотрены конструктивные особенности клапанов обоих типов и то, как эти особенности влияют на выбор клапанов и их эксплуатацию. Описываемые явления и полученные выводы справедливы практически для всех клапанов, независимо от модели или производителя, поскольку причины этих явлений сосредоточены в самом принципе действия клапанов рассматриваемых типов.

1. Виды, принцип работы и особенности эксплуатации электромагнитных клапанов

1.1. Конструкция соленоидных клапанов прямого действия

Устройство наиболее простого соленоидного клапана представлено на рисунке 1.

Рисунок 1 – Конструкция соленоидного клапана прямого действия

Катушка (1) установлена на трубке сердечника (2), внутри которой расположен сердечник (3), прижимаемый к седлу клапана (5) пружиной (4). При подаче напряжения на катушку, внутри неё и, соответственно, внутри трубки сердечника создаётся электромагнитное поле, в результате воздействия которого сердечник поднимается, открывая проход жидкости через седло клапана.

Таким образом, клапаны данного типа работают за счет электромагнитного поля, создаваемого катушкой. Саму же катушку часто называют соленоидом, отсюда и название клапана — «соленоидный» или «электромагнитный». Поскольку электромагнитное поле катушки воздействует напрямую на сердечник, перекрывающий проходное отверстие клапана, такие электромагнитные клапаны называют клапанами прямого действия.

Сложность при создании электромагнитных клапанов прямого действия проявляется по мере увеличения их размера для обеспечения большего расхода жидкости. Это связано с резким увеличением силы втягивания катушки, необходимой для подъёма сердечника и открытия клапана.

2} times {{A} over {2 times %mu_0},(6)

где:
I – ток, потребляемый катушкой;
N — число витков провода внутри катушки;
µr — магнитная проницаемость сердечника;
µ0 — магнитная постоянная, равная 4π·10-7 Гн/м;
L — длина намотки провода внутри катушки;
A — площадь поперечного сечения сердечника.

Мощность W, потребляемая катушкой из электрической сети, равна:

где:
R – сопротивление катушки.

Выражая квадрат тока из формулы (7) и подставляя его значение в формулу (6), получим:

F=W×(N×μr×μ0)2×A2×L2×μ0×RF= W times(8)

Обозначим совокупность всех коэффициентов, определяемых конструкцией узла клапана «катушка-сердечник» как Kcc

Kcc=(N×μr×μ0)2×A2×L2×μ0×RK_cc= { ( N times %mu_r times %mu_0 )}^2 times A over { 2 times L^2 times %mu_0 times R }(9)

Тогда формула, втягивающего усилия катушки примет следующий вид

F=W×KccF=W times K_cc(10)

Формула (10), показывает что втягивающее усилие катушки зависит от конструкции узла клапана «катушка-сердечник» и пропорционально электрической мощности, потребляемой катушкой.

Рассмотрим два электромагнитных клапана с катушками разной мощности, но имеющих одинаковую конструкцию катушки и сердечника. Тогда втягивающее усилие F1 и F2 и потребляемые мощности W1 и W2 будут соотносится следующим образом:

F1W1=F2W2{F_1} over {W_1} = {F_2} over {W_2}(11)

Выражая из данного равенства W2 получим:

W2=W1F2F1{ {W_2} = W_1 {F_2} over {F_1}(12)

Подставив в формулу (12) значения необходимых минимальных усилий втягивания F1, рассчитанного по формуле (4), F2, рассчитанного по формуле (5) и паспортного значения мощности катушки AMISCO EVI 5P/13 W1 = 17 Вт, получим:

W2=W1F2F1=17Вт1962,5Н11,8Н=2827Вт≈3кВт{ {W_2} = W_1 {F_2} over {F_1} =17Вт {1962,5Н} over {11,8Н} =2827Вт approx 3 кВт(13)

Таким образом, мы рассчитали мощность катушки, необходимую для обеспечения работы электромагнитного клапана прямого действия с диаметром седла 50 мм и рабочим давлением 10 бар. Разумеется, эти расчеты носят приблизительный характер, однако, порядок полученных значений верный. Очевидно, что применение катушек такой мощности неоправданно.

Тем не менее, существуют электромагнитные клапаны, удовлетворяющие условиям задачи, но с катушками мощность которых не превышает 10 – 20 Вт. Дело в том, что эти клапаны имеют другую конструкцию, описанную ниже.

1.2 Устройство соленоидных клапанов непрямого действия

Для уменьшения энергопотребления соленоидных клапанов больших диаметров и для работы с большими давлениями была разработана конструкция электромагнитного клапана непрямого действия, представленная на рисунке 2а.

Рисунок 2 – Конструкция и принцип действия соленоидных клапанов с плавающей мембраной

В таких электромагнитных клапанах основное проходное сечение перекрывается мембраной, которая прижата к седлу. Открытие клапана осуществляется за счет подъема мембраны, вызванного перераспределением величины давления рабочей среды в зонах над мембраной и под мембраной.

В исходном состоянии (см. рисунок 2а) напряжение на катушку клапана не подано. Жидкость, поступающая на вход электромагнитного клапана, через небольшое перепускное отверстие в мембране, проникает в область над мембраной. Площадь поверхности мембраны, с которой взаимодействует жидкость, в зоне над мембраной больше, чем в зоне под мембраной. При равенстве давлений над и под мембраной, это приводит к возникновению силы, прижимающей мембрану к седлу клапана. Одним из ключевых элементов конструкции, оказывающих влияние на работу электромагнитного клапана, является перепускное отверстие. Его расположение на схеме и фотография показаны на рисунке 2б.

Подача напряжения на катушку (см. рисунок 2в) вызывает подъём сердечника. В результате этого жидкость из области над мембраной через пилотное отверстие начинает поступать на выход электромагнитного клапана. Диаметр пилотного отверстия больше диаметра перепускного отверстия, поэтому давление над мембраной уменьшается, а сама мембрана поднимается, открывая основной проход клапана.

Подъём мембраны осуществляется за счет давления жидкости, поступающей на вход клапана, поэтому клапаны такой конструкции не могут работать при низком давлении среды. Разница давлений между входом и выходом, как правило, должна составлять не менее 0.3 – 0.5 бар. Этот параметр указывается в технических характеристиках электромагнитного клапана.

До тех пор, пока катушка находится под напряжением (см. рисунок 2г), сердечник поднят и пилотное отверстие открыто. Это приводит к тому, что давление над мембраной и сила упругости сжатой пружины становится меньше давления жидкости под мембраной. В результате чего мембрана остается поднятой, а клапан открытым.

При снятии напряжения с катушки (см. рисунок 2д), сердечник под действием пружины опускается и перекрывает пилотное отверстие электромагнитного клапана. Жидкость перестает выходить из области над мембраной, в результате чего давление в этой зоне растет и становится равным давлению жидкости под мембраной (на входе клапана). Под действием силы упругости сжатой пружины мембрана начинает опускаться, перекрывая проход жидкости через клапан.

После закрытия клапана (см. рисунок 2е) мембрана плотно прижимается к седлу за счет силы, вызванной давлением жидкости и разной площадью смоченной поверхности мембраны.

В вышеописанном процессе при открытии электромагнитного клапана мембрана поднимается под действием жидкости – «всплывает», поэтому клапаны такой конструкции часто называют соленоидными клапанами с плавающей мембраной.

Примеры клапанов с плавающей мембраной

Описанный принцип действия справедлив для нормально закрытых (НЗ) электромагнитных клапанов. Нормально открытые (НО) электромагнитные клапаны устроены аналогичным образом, но пилотное отверстие открыто в нормальном состоянии и закрывается при подаче напряжения на катушку. Мембрана этих клапанов также поднимается в результате воздействия на неё давления жидкости. Таким образом, если перепад давления ΔP меньше минимально допустимого ΔP

мин, то мембрана будет закрывать основной проход клапана, но пилотное отверстие будет открыто. Поэтому при ΔP мин НО клапан будет открыт, но расход через него будет значительно меньше, чем в рабочем режиме, когда ΔP > ΔPмин.

Электромагнитные клапаны с плавающей мембраной корректно работают при ΔPмин макс. При ΔP мин клапаны работают, но расход рабочей среды через них намного меньше номинального.

Существует ещё одна распространённая конструкция электромагнитных клапанов непрямого действия – клапаны с мембраной принудительного подъёма. Она изображена на рисунке 3. Принцип действия этих клапанов аналогичен ранее рассмотренным.

Рисунок 3 – Конструкция и принцип действия электромагнитных клапанов с мембраной принудительного подъем

В исходном состоянии (см. рисунок 3а) напряжение на катушку клапана не подано. Жидкость, поступающая на вход клапана через небольшое перепускное отверстие, проникает в область над мембраной и прижимает мембрану к седлу клапана.

Подача напряжения на катушку (см. рисунок 3б) вызывает подъем сердечника. Через пилотное отверстие жидкость начинает поступать на выход клапана и давление над мембраной падает.

Мембрана поднимается за счет разности давлений над и под ней, открывая основное проходное сечение соленоидного клапана (см. рисунок 3в).

В отличии от ранее рассмотренных клапанов, электромагнитные клапаны с мембраной принудительного подъёма могут работать без перепада давления (ΔP = 0 бар). В такой ситуации подъем мембраны осуществляется за счет усилия электромагнитной катушки, втягивающей сердечник. Он поднимает мембрану, связанную с сердечником пружиной.

Способность этих клапанов работать без перепада давления привела к тому, что их часто ошибочно называют клапанами прямого действия. Более правильное название – соленоидные клапаны с мембраной принудительного подъема – обусловлено тем что при отсутствии давления, мембрана поднимается принудительно (не зависимо от рабочей среды) за счет усилия, создаваемого электромагнитным полем катушки.

Примеры клапанов с плавающей мембраной

Выше были рассмотрены три наиболее распространенные конструкции клапанов с электромагнитным приводом. Однако, все они имеют следующие общие особенности:

  • рабочая жидкость, проходящая через клапан, находится вокруг сердечника клапана, внутри трубки сердечника;
  • внутри имеется не менее одного небольшого отверстия, критически важного для работы клапана;
  • большая часть электромагнитных клапанов непрямого действия, имеют мембрану из гибкого материала. Как правило, это одна из разновидностей резины: NBR – нитрилбутадиеновая, EPDM – этилен-пропиленовая или FPM – фтористая.

1.3. Факторы, ограничивающие использование соленоидных клапанов

1.3.1 Рабочая жидкость, проходящая через клапан, находится вокруг сердечника клапана и внутри трубки сердечника

Если через клапан проходит чистая и однородная среда без каких-либо примесей, она практически не влияет на работу самого соленоидного клапана. Однако, если среда загрязнена и содержит в себе мелкодисперсные элементы (например, вода с примесями ржавчины), эти частицы со временем оседают на сердечнике и стенках трубки сердечника. Загрязнение трубки сердечника может привезти к заклиниванию сердечника внутри неё, что вызывает залипание клапана (см. рисунок 4). При этом электромагнитный клапан может остаться как в открытом, так и в закрытом состоянии.

Рисунок 4 – Заклинивание сердечника клапана вследствие загрязнения

Также прямой контакт рабочей жидкости с трубкой сердечника обеспечивает хороший теплообмен между ними. Поэтому если через электромагнитный клапан проходит горячая среда (пар или горячая вода), то сердечник будет нагреваться, вызывая нагрев катушки и ускоренное старение межвитковой изоляции. Как правило, катушки соленоидных клапанов, рассчитанных на работу с паром, имеют высокий класс нагревостойкости изоляции (F или H). Несмотря на это, перегрев и дальнейшее перегорание катушки парового клапана не яв- ляется чем-то необычным и встречается достаточно часто.

В случаях, когда через соленоидный клапан проходит холодная среда (например, охлажденный раствор пропиленгликоля), трубка сердечника охлаждается до температуры ниже температуры окружающей среды. Это приводит к выпадению конденсата, под действием которого ржавеют металлические части катушки и нарушается целостность изоляционной оболочки (см. рисунок 5). В итоге, влага проникает внутрь катушки, вызывает повышенное токопотребление, а со временем, и пробой изоляции.

Рисунок 5 – Повреждение катушки под воздействием агрессивной окружающей среды

Для защиты от этого явления следует исключить выпадение конденсата на клапанах (например, уменьшением влагосодержания цехового воздуха). Если полностью исключить конденсат не удаётся, то можно добиться существенного уменьшения его негативного влияния, воспользовавшись клапанами, катушка которых имеет влагозащиту, например, электромагнитными клапанами GEVAX серии 1901R-KBN. Если же и это невозможно, то следует вручную герметизировать уязвимые узлы катушки, защитив их от попадания конденсата.

1.3.2 Внутри клапана имеется не менее одного небольшого отверстия, критически важного для работы всего клапана

Для соленоидных клапанов прямого действия – основное проходное сечение, имеющее малый диаметр; для соленоидных клапанов непрямого действия – перепускное и пилотное отверстия. Дело в том что засорение перепускного или пилотного отверстия приводит к нарушению нормальной работы соленоидного клапана. Как правило, это не вызывает необратимых разрушений конструкции, и подобные неисправности могут быть легко устранены путем чистки клапана. Однако, очистка внутренних частей клапана требует его разборки и, как следствие, невозможна во время его работы.

Таким образом, чистота рабочей среды является одним из наиболее важных факторов, позволяющих обеспечить длительную и безотказную работу соленоидных клапанов.

1.3.3 Большая часть электромагнитных клапанов непрямого действия имеют мембрану из гибкого материала

Ранее было отмечено, что соленоидные клапаны рассчитаны на работу с чистыми средами. Наличие в среде крупных загрязнений может привести не только к засорам клапана, но и к разрыву мембраны, после чего потребуется её замена.

При возникновении в системе гидроударов также возможно повреждение мембраны из-за кратковременного превышения допустимого давления.

Энергия среды, проходящей через клапан, является одним из основных факторов, обеспечивающих как открытие клапана, так и его герметичность в закрытом состоянии. Поэтому соленоидные клапаны непрямого действия являются однонаправленными – корректная работа обеспечивается только при протекании среды от входа к выходу. Верное направление подачи среды показано на рисунке 6. Если при монтаже клапана вход и выход будут перепутаны, то рабочая среда будет поступать только в зону под мембраной, в результате чего «передавит» пружину и откроет клапан (см. рисунок 7).

Рисунок 6 – Верное направление подачи жидкости в клапан Рисунок 7 – Не верное направление подачи жидкости в клапан

Определить правильное положение при монтаже можно по стрелке на корпусе клапана (см. рисунок 8).

Рисунок 8 – Стрелка на корпусе клапана для определения направления подачи среды

Однако, даже при правильном направлении потока жидкости, мембранная конструкция может вызывать проблемы при эксплуатации. Они проявляются в момент подачи жидкости на вход клапана или при резких изменениях давления газообразных сред.

Дело в том, что перепускное отверстие в мембране имеет небольшой размер. Жидкость, проходящая через него, не может сразу заполнить всю полость над мембраной клапана (см. рисунок 9а). В этот момент времени давление жидкости под мембраной больше, чем давление жидкости над ней. Это вызывает подъем мембраны и самопроизвольное открытие электромагнитного клапана. Клапан будет находиться в открытом состоянии до тех пор, пока жидкость не заполнит область над мембраной через перепускное отверстие (см. рисунок 9б). После завершения этого процесса давление над и под мембраной клапана уравновешивается и клапан закрывается (см. рисунок 9в).

Рисунок 9 – Последовательность возникновения эффекта самопроизвольного открытия соленоидного клапана с плавающей мембраной при подаче жидкости

Время открытия клапана в описанном переходном процессе зависит от многих факторов, но даже для больших клапанов оно не превышает 1. ..2 с. Однако, за это время через клапан может пройти несколько литров жидкости.

Несмотря на то, что давление среды, как правило, не выходит за пределы рабочего диапазона, клапан подвергается повышенным ударным нагрузкам. Частое повторение данного явления при эксплуатации приводит к повышенному износу мембраны и пружины клапана, а со временем и к их поломке.

1.4. Ключевые особенности эксплуатации соленоидных клапанов

  • Соленоидные клапаны предназначены для работы с чистыми, гомогенными средами. Загрязненная среда вызывает нарушение работы клапана, а иногда и его поломку.
  • Использование соленоидных клапанов для управления потоком среды, температура которой сильно отличается от температуры окружающей среды, имеет свои особенности и требует особой внимательности при выборе клапана и его эксплуатации.
  • Направление подачи среды в электромагнитный клапан является критически важным. Соленоидный клапан следует считать однонаправленным, если иное не указано в технической документации.

Несмотря на то, что были рассмотрены лишь наиболее часто встречающиеся факторы, ограничивающие использование соленоидных клапанов, может сложиться впечатление, что соленоидный клапан является источником проблем и частых неполадок. На самом деле это не так. Электромагнитные клапаны являются надежным устройством управления потоком жидкости или газа при соблюдении условий эксплуатации.

2. Принцип работы и особенности эксплуатации клапанов с пневмоприводом

2.1. Устройство угловых седельных клапанов с пневмоприводом

Конструкция седельного клапана с пневматическим приводом показана на рисунке 10.

Рисунок 10 – Конструкция седельного клапана с пневмоприводом

Внутри корпуса пневмопривода (1) находится поршень (2), герметично прилегающий к стенкам пневмопривода за счет уплотнения (3). Под действием пружины (4) поршень занимает положение, соответствующее начальному состоянию пневмоклапана (закрытому для НЗ клапанов и открытому для НО клапанов). На поршне жестко закреплён шток (5) с диском (6). В закрытом состоянии диск надежно прижимается к седлу (7) и обеспечивает герметичность клапана. Большая часть клапанов с пневмоприводом имеет визуальный индикатор (8), механически связанный с поршнем клапана.

Для открытия клапана (см. рисунок 11) необходимо подать сжатый воздух в пневмопривод. Пневмоклапан открывается под действием сжатого воздуха, перемещающего поршень вместе со штоком вверх, что также приводит к сжатию пружины.

Рисунок 11 – Клапан с пневмоприводом в открытом состоянии

Для закрытия клапана достаточно сбросить воздух из пневмопривода. Поршень под действием пружины опускается вниз, прижимая диск к седлу.

Открытие клапана с пневмоприводом осуществляется только за счет давления сжатого воздуха, а закрытие – за счет мощной пружины. Таким образом, работа клапанов с пневмоприводом существенно меньше зависит от параметров среды, проходящей через него, в отличии от соленоидных клапанов.

Примеры угловых клапанов с пневмоприводом

2.2.

Схема управления клапанами с пневмоприводом

Для управления пневмоклапанами используются специальные электромагнитные клапаны, называемые пилотными или распределительными клапанами. Эти клапаны называются так, потому что они не просто перекрывают подачу рабочей среды, но и перераспределяют её между различными входными и выходными портами.

Для управления клапанами с пневмоприводом используются распределительные клапаны типа 3/2, схема работы которых показана на рисунке 12.

Рисунок 12 – Пневматическая схема распределителя 3/2

Порт 1 соединяется со входным портом пневмопривода, к порту 2 подключается подвод сжатого воздуха, а порт 3 остается открытым и используется для выхлопа – выпуска воздуха из пневмопривода в атмосферу при закрытии клапана с пневмоприводом.

До тех пор, пока катушка распределительного клапана обесточена, порт 1 соединен с портом 3, а порт 2 перекрыт. Таким образом, сжатый воздух в пневмопривод не поступает, а сам пневмопривод соединен с атмосферой – клапан с пневмоприводом закрыт.

При подаче напряжения на катушку порт 1 соединяется с портом 2, а порт 3 перекрывается. Сжатый воздух поступает в пневмопривод, за счет чего пневмоклапан открывается.

На рисунке 13 показаны распределительные электромагнитные клапаны 3/2 различной конструкции.

Рисунок 13 – Распределительные клапаны 3/2 различных конструкций

У клапана, изображенного слева, выхлоп в атмосферу проходит сквозь трубку сердечника. У клапана, изображенного справа, порты подачи воздуха и выхлопа находятся сверху и снизу клапана.

На рисунке 14 показана обобщенная схема управления клапаном с пневмоприводом.

Рисунок 14 – Обобщенная схема управления клапаном с пневмоприводом

Электрический сигнал из системы управления поступает на распределительный клапан (2), который осуществляет управление потоком сжатого воздуха, подавая его в пневмоклапан (1). Требуемая степень очистки воздуха и стабилизация давления обеспечивается фильтром-регулятором (3).

Распределительные клапаны могут быть установлены непосредственно на клапане с пневмоприводом (см. рисунок 15) или отдельно в шкафу управления (см. рисунок 16).

Рисунок 15 – Монтаж пилотного клапана на клапан с пневмоприводомРисунок 16 – Монтаж распределительных клапанов в шкафу управления

Каждый из этих способов монтажа имеет свои преимущества и недостатки.

Установка распределителей на клапанах с пневмоприводом

Преимущества

  1. +  Меньше время срабатывания клапанов (так как воздух поступает сразу в пневмопривод).
  2. +  Выше энергоэффективность за счет экономии сжатого воздуха (при каждом срабатывании клапана с пневмоприводом весь воздух после распределительного клапана сбрасывается в атмосферу; при монтаже распределителя непосредственно на привод клапана между ними отсутствует пневмотрубка, следовательно расходуемый объем сжатого воздуха ниже).

Недостатки

  1.   Необходимость прокладки двух линий до клапана: пневматической и электрической.
  2.   Распределитель находится возле клапана с пневмоприводом, где может подвергаться негативному воздействию окружающей среды.

Установка распределителей в шкафу управления

Преимущества

  1. +  Упрощение разводки электрических цепей (все распределители в одном шкафу, до клапана с пневмоприводом прокладывается только одна линия – пневматическая).
  2. +  Все распределители легко доступны для обслуживания, так как находятся в шкафу управления.
  3. +  Все распределители надежно защищены от воздействия окружающей среды (повышенная температура, запыленность, мойка оборудования химическими реагентами и так далее).

Недостатки

  1.   Больше время срабатывания клапанов с пневмоприводом.
  2.   Повышенный расход воздуха.

3. Сравнение клапанов с пневмоприводом с соленоидными клапанами

Основным преимуществом клапанов с пневмоприводом перед электромагнитными клапанами является их повышенная устойчивость к воздействию негативных факторов окружающей среды и среды, проходящей через клапан. Это обусловлено тем, что клапаны с пневмоприводом:

  • приводятся в действие сжатым воздухом, а не средой, проходящей через клапан;
  • не имеют дополнительных перепускных отверстий, которые легко забиваются малейшими загрязнениями;
  • менее подвержены влиянию окружающей среды, так как имеется возможность вынести распределительный клапан в шкаф управления, где он будет защищен от вредных воздействий.

Каким же образом система, построенная на клапане с пневмоприводом, может оказаться надежнее системы, основанной на соленоидных клапанах? Ведь любой клапан с пневмоприводом требует своего распределителя, что увеличивает количество последовательно соединенных элементов системы. Это должно приводить к уменьшению общей надежности системы. Данное замечание справедливо при эксплуатации клапанов в идеальных условиях.

Однако, при неблагоприятных условиях запаса устойчивости соленоидного клапана может оказаться недостаточно. Это вытекает из особенностей его конструкции, описанных выше.

Следующим фактором, говорящим в пользу клапанов с пневмоприводом, является их меньшее гидравлическое сопротивление и, как следствие, больший расход среды при том же давлении на входе. Это достигается благодаря угловой (наклонной) конструкции клапана. Проходящий через него поток существенно меньше отклоняется от прямолинейного движения, следовательно расходует меньше энергии на преодоление сопротивления клапана. Для примера в таблице 1 приведены данные коэффициента расхода Kv для электромагнитных клапанов GEVAX серии 1901R-KBN и клапанов с пневмоприводом VALMA серии ASV.

Таблица 1 – Сравнение коэффициента расхода Kv клапанов разных конструкций
Тип клапанаЭлектромагнитный клапанКлапан с пневмоприводом
Схема движения потока жидкости
Размер клапанаКоэффициент расхода Kv, л/мин
DN 156570 (+ 8%)
DN 20110150 (+ 36%)
DN 25180308 (+ 71%)
DN 32250608 (+ 143%)
DN 40390700 (+ 79%)
DN 50575910 (+ 58%)

В отличии от соленоидных клапанов, клапаны с пневматическим приводом преимущественно являются двунаправленными, то есть могут пропускать среду как в прямом, так и в обратном направлении (см. рисунок 17). Направление, показанное на изображении слева, называют «вход под диском», на изображении справа – «вход над диском».

Рисунок 17 – Допустимые направления движения жидкости для клапанов с пневмоприводом

Очевидно, что при подаче рабочей среды «над диском», её давление препятствует открытию клапана. Этот эффект приводит к снижению рабочего давления клапана, однако в некоторой мере он может быть скомпенсирован увеличением управляющего давления воздуха.

Пример изменения рабочего давления при подаче среды над и под диском

На рисунке 18 изображен шильдик клапана с пневмоприводом VALMA ASV-T-040-AL063.

Рисунок 18 – Шильдик клапана с пневмоприводом VALMA ASV-T-040-AL080-U

Рабочее давление пневмоклапана при подаче среды «под диском» составляет 6 бар, при подаче среды «над диском» – 5 бар. Эти данные указаны для давления управляющего воздуха 6 бар. Однако, изменением давления управления возможно увеличить рабочее давление клапана при подаче среды «над диском». Данная зависимость показана на рисуноке 19.

Рисунок 19 – График зависимости давлений рабочей и управляющей среды

По графику видно, что увеличение управляющего давления до 8 бар позволяет увеличить давление рабочей среды (при входе «над диском») до 10 бар, а увеличение управляющего давления до 9 бар позволяет увеличить давление рабочей среды до 12 бар.

Однако, соленоидные клапаны тоже имеют преимущества перед клапанами с пневмоприводом. Системы, построенные на основе соленоидных клапанов, как правило, проще и дешевле систем, построенных на основе клапанов с пневмоприводом, поскольку состоят из меньшего числа компонентов.

Электромагнитные клапаны могут применяться на объектах, в составе которых отсутствует пневмосистема. Установка оборудования для сжатия воздуха и его очистки на таких объектах приводит к сильному удорожанию и усложнению системы в целом.

Заключение

В данной статье описана конструкция электромагнитных клапанов и седельных клапанов с пневмоприводом, рассмотрены их преимущества и недостатки. Вся информация, изложенная в статье, основана на конструктивных особенностях клапанов обоих типов и может быть применима к клапанам указанных конструкций независимо от конкретных моделей или изготовителей клапанов.

Обобщенные преимущества и недостатки электромагнитных клапанов и клапанов с пневмоприводом приведены ниже.

Электромагнитные клапаны

  • +  Подключаются напрямую к электрической системе управления
  • +  Не требуют подвода сжатого воздуха
  • +  Системы на основе данных клапанов, как правило, проще и дешевле
  •   Имеют особые требования к чистоте рабочей среды
  •   Однонаправленные

Клапаны с пневмоприводом

  • +  Устойчивы к загрязнениям рабочей среды
  • +  Давление, вязкость, скорость потока и другие параметры рабочей среды не влияют на работу клапана
  • +  Как правило, двунаправленные
  •   Для подключения к системе управления, требуют установки распределительных (пилотных) электромагнитных клапанов
  •   Для работы требуют подключение сжатого воздуха

Инженер ООО «КИП-Сервис»
Быков А. Ю.

Читайте также:

Устройство клапана

Справочная информация

Электромагнитные клапаны подразделяются по исполнению на:

«НЗ» — нормально закрытые клапаны.

«НО» — нормально открытые клапаны.

«БС» — бистабильные (импульсные) клапаны, переключение между положениями реализовывается путем подачи кратковременного импульса.

По принципу действия электромагнитные клапаны подразделяются на клапаны прямого действия, срабатывающие при отсутствии перепада давления и клапаны пилотного (непрямого) действия, для работы которых необходим минимальный перепад давления. Также клапаны можно разделить на поршневые и мембранные.

Устройство электромагнитного (соленоидного) клапана

Клапан прямого действия

Клапан пилотного действия

Электромагнитная катушка (соленоид) имеет медную обмотку, защищенную композитным диэлектрическим составом, которая помещается в металлический или литой пластиковый корпус. Степенью защиты катушек IP65 (пылевлагонепроницаемые).

Напряжение питания:

Переменный ток AC220V; AC110V; AC24V.

Постоянный ток DC24V; AC12V.

Шток клапана выполнен из нержавеющий стали.

Крышка и Корпус в зависимости от серии клапана могут быть выполнены из следующих материалов: латунь; нержавеющая сталь; чугун; нейлон, эколон.

Крепеж выполнен из нержавеющей стали

Пружина 1 выполнена из нержавеющей стали

Плунжер выполнен из нержавеющей стали и уплотнения из полимерного материала

Пружина 2 выполнена из нержавеющей стали

Мембрана изготовлена из высококачественных эластичных полимерных материалов специальной конструкции и химического состава.

Свойства материалов мембран и уплотнений.

Благодаря развитию химической промышленности, полимерные материалы из которых создаются мембраны, и уплотнения для соленоидных клапанов SMART получают уникальный набор свойств и отвечают самым различным запросам, и потребностям.

EPDM – Этилен-пропилен-диен-каучук. Недорогой, химически, термостойкий и износостойкий эластичный полимер. Высокая устойчивость к старению и погодным воздействиям. Устойчив к кислотам, щелочам, окислителям, соленым растворам, воде, пару низкого давления, нейтральным газам. Неустойчив к бензину, бензолу керосину, маслам, и углеводородам. Температура применения −40… +140 °С.

FKM – Фторкаучук. Термостойкий и эластичный синтетический полимер. Высокая стойкость к износу, старению, озону и ультрафиолету. Химически устойчивый для кислотных и щелочных сред, нефтепродуктов, для топлива и углеводородов. Применяется для спиртов, воды, воздуха и пара низкого давления при температуре −30… +150 °С. Разрушается эфирами, органическими кислотами.

NBR – Нитрил-бутадиен-каучук. Распространенный и недорогой эластичный полимер, обладающий относительно высокой стойкостью к истиранию и износостойкостью, нейтральный к воздействию бензина, минерального масла, дизельного топлива, растворов щелочей, неорганических кислот, пропана, бутана, воды, морской воды. Температурный диапазон −30… +100 °С. Разрушается бензолом, окислителями и ультрафиолетом.

PTFE – Политетрафторэтилен. Фторполимер, один из самых химически стойких полимерных материалов. Применяется в химической промышленности для кислот и их смесей высокой концентрации, щелочей, растворителей. Устойчив к  бензолу, окислителям, маслам и топливам. Используется для агрессивных газов, углеводородов, воздуха, воды и пара. Температурный диапазон −50… +200 °С. Разрушается трифторидом хлора и жидкими щелочными металлами.

TEFLON – Политетрафторэтилен. Запатентованное название фторполимера, на основе PTFE с улучшенными эксплуатационными характеристиками. Рабочая температура применения в диапазоне −50… +250 °С.

Принцип действия электромагнитного клапана прямого действия.

Нормально закрытый соленоидный клапан.

У данного клапана рабочее положение нормально-закрытое, без напряжения на электромагнитной катушке он закрыт. Мембрана клапана эластична и имеет перепускное отверстие, по центру мембраны расположено запрессованное кольцо с подъемной пружиной из нержавеющей стали и выравнивающий канал. При отсутствии или присутствии давления в системе мембрана и плунжер прижаты к седлу и выравнивающему каналу, усилием возвратной пружины. Так же мембрану будет прижимать давление среды, равное давлению на входе в клапан, поступающее через перепускное отверстие в мембране, в над мембранное пространство.

При подаче напряжения на соленоидную катушку создается электромагнитное поле, в результате плунжер поднимается и открывает выравнивающий канал. В случае если в системе есть давление произойдет снижение давления в над мембранном пространстве, т. к. выравнивающий канал больше в диаметре, чем перепускное отверстие. Таким образом, из-за разницы давлений мембрана поднимается вверх и клапан открывается. Если в системе нет давления, мембрану потянет в верхнее положение подъемная пружина, которая закреплена на плунжере. Электромагнитный клапан будет находиться в открытом состоянии до снятия напряжения с электромагнитной катушки.

Нормально открытый соленоидный клапан.

У данного клапана рабочее положение является нормально-открытым, без напряжения на электромагнитной катушке он открыт. Плунжер поднят, выравнивающий канал открыт. В случае если в системе есть давление, в над мембранном пространстве давление падает, т.к. выравнивающий канал больше в диаметре, чем перепускное отверстие. Таким образом, из-за разницы давлений мембрана поднимается вверх, и клапан находится в открытом положении. Если в системе нет давления, мембрану поднимает в верхнее положение подъемная пружина, закреплённая на плунжере, который в свою очередь изначально находится в верхнем положении. Электромагнитный клапан будет находиться в открытом состоянии до подачи напряжения на электромагнитную катушку.

При подаче напряжения на электромагнитную катушку клапана якорь сжимает подъемную пружину, возвратная пружина выталкивает шпиндель, который оказывает усилие на плунжер и закрывает выравнивающий канал. Мембрана прижимается к седлу за счет усилия возвратной пружины и перепада давления. Электромагнитный клапан будет находиться в закрытом состоянии до подачи напряжения на электромагнитную катушку.

Принцип действия электромагнитного клапана пилотного действия.

Нормально закрытый соленоидный клапан.

У данного клапана рабочее положение является нормально-закрытым, без напряжения на электромагнитной катушке он закрыт. Мембрана клапана прижата к седлу усилием пружины 0,5 бар и давлением среды в над мембранном пространстве, которое поддерживается через перепускное отверстие в мембране и равно давлению на входе в клапан. Пилотный канал, находящийся на выходе из клапана закрыт подпружиненным плунжером и его диаметр больше диаметра перепускного отверстия в мембране. При подаче напряжения на соленоидную катушку создается электромагнитное поле, в результате плунжер поднимается и открывает пилотный канал. Происходит снижение давления в над мембранном пространстве. Из-за разницы давлений мембрана поднимается вверх и клапан открывается. Электромагнитный клапан будет находиться в открытом состоянии до снятия напряжения с электромагнитной катушки.

Нормально открытый соленоидный клапан.

Рабочее положение данного клапана является нормально-открытым, т.е. клапан открыт без подачи на электромагнитную катушку напряжения и есть минимальный перепад давления 0,5 бар. В случае, если в системе на входе в клапан будет, отсутствовать давление или оно будет менее 0,5 бар, то мембрана клапана останется, прижата к седлу усилием пружины 0,5 бар. При подаче напряжения на соленоидную катушку создается электромагнитное поле, в результате плунжер опускается и закрывает пилотный канал. Диаметр пилотного канала больше чем диаметр перепускного отверстия в мембране. Клапан закрывается при помощи пружины и давления среды на входе в клапан, которое попадает в над мембранное пространство через перепускное отверстие в мембране. Электромагнитный клапан будет находиться в закрытом состоянии до снятия напряжения с электромагнитной катушки.

Принцип действия бистабильного электромагнитного клапана.

Данный клапан имеет два постоянных положения «открыто» или «закрыто», переключение между положениями реализовывается путем подачи кратковременного импульса. Мембрана клапана прижата к седлу усилием пружины 0,5 бар и давлением среды в над мембранном пространстве, которое поддерживается через перепускное отверстие в мембране и равно давлению на входе в клапан. Пилотный канал, находящийся на выходе из клапана закрыт подпружиненным плунжером и его диаметр больше диаметра перепускного отверстия в мембране. При подаче кратковременного импульса на соленоидную катушку плунжер поднимается и открывает пилотный канал. Происходит снижение давления в над мембранном пространстве. Из-за разницы давлений мембрана поднимается вверх и клапан открывается. Электромагнитный клапан будет находиться в открытом состоянии до момента подачи импульса обратной полярности на электромагнитную катушку.

Виды соленоидных клапанов, прямого и непрямого действия

Под соленоидным или электромагнитным клапаном понимается устройство, которое служит для регулирования направления движения потоков газа или жидкости в различных технологических системах. Соленоидный клапан работает автоматически и управляется с помощью электрического тока, который подается на индукционную катушку, входящую в состав соленоидного клапана.

В зависимости от положения соленоида при отсутствии подачи электрического тока, выделяется два вида соленоидных клапанов – нормально открытые и нормально закрытые

Кроме этого электромагнитные клапаны могут быть как прямого, так и непрямого действия. Их отличие в том, что прямой соленоидный клапан при подаче напряжения напрямую изменяет положение диафрагмы, и открывает или закрывает клапан. Непрямые соленоидные клапаны при подаче напряжения на него вызывают срабатывание другого (неэлектромагнитного) клапана. Прямые соленоидные клапаны являются более предпочтительными, так как они позволяют обеспечить более оперативное срабатывание. Они обычно используются когда расход воздуха или жидкости невелик, так как в противном случае необходимо значительно увеличить мощность соленоида, что ведет к большому удорожанию продукции. Соответственно, непрямые соленоидные клапаны более предпочтительны при больших расходах рабочей среды.

Компания «Полтраф СНГ» занимается поставкой потребителям в России и других странах СНГ соленоидных клапанов производства компаний ODE (Италия) и Asco Joucomatic (Голландия). Продукция этих компаний может использовать в различных условиях, в том числе на взрыво- и пожароопасных предприятиях (нефтяная и пищевая промышленности, АЗС и так далее), а также в случае при работе в агрессивной среде (в том числе в морской воде).

Вы можете перейти в раздел электромагнитных клапанов и произвести поиск, выбрав необходимые параметры >>

Предохранительные клапаны

Принцип действия предохранительного клапана основан на уравновешивании внешней силой (пружиной) давления жидкости, действующего на клапан, который под действием этой силы плотно (герметично) перекрывает проходной канал.

Предохранительные клапаны имеют разнообразные конструкции:

— шарикового,
— конусного и
— плунжерного типов.

В самоходных машинах часто применяются предохранительные клапаны прямого и непрямого действия.

Предохранительные клапаны прямого действия (одноступенчатые):

Предохранительные клапаны прямого действия имеют простую конструкцию и жесткие статические характеристики срабатывания, существенно зависящие от давления и расхода жидкости. Они обладают достаточным быстродействием вследствие небольшой массы подвижных деталей. На стабильность статической характеристики клапанов отрицательно влияют силытрения и нелинейность характеристики длинной пружины. Поэтому такие клапаны периодически регулируют в процессе эксплуатации.
Предохранительные клапаны прямого действия применяют в случаях эпизодического действия и при средних расходах (dy < 25 мм).

При больших расходах и высоком давлении (более 25 МПа) значительно увеличиваются габаритные размеры, поэтому целесообразнее применять клапаны непрямого действия.

Первичные предохранительные клапаны прямого действия применяют в напорных секциях гидрораспределителей, клапанных блоках и коробках, в качестве вторичных клапанов. На рис. 1 приведена конструкция предохранительных клапанов прямого действия.

Рис.1.


Предохранительные клапаны прямого действия:

1 — пробка;
2 — регулировочный винт;
3 — корпус;
4 — пружина;
5 — направляющая втулка;
6 — запорно-регулирующий элемент;
7 — демпфер;
8 — седло

Предохранительные клапаны непрямого действия (двухступенчатые):

Предохранительные клапаны непрямого действия имеют статические характеристики, почти не зависящие от изменения расхода и давления в широком диапазоне. Они приспособлены для гидравлического демпфирования, поэтому обладают лучшей устойчивостью и малым гистерезисом, более простым способом обеспечивается дистанционное управление разгрузкой, но для некоторых случаев применения их быстродействия недостаточно, особенно с повышением вязкости рабочей жидкости при низкой температуре.

Конструкция предохранительных клапанов непрямого действия более сложная, а изготовление более трудоемкое, но вследствие указанных преимуществ они находят широкое применение, особенно в гидроприводах самоходных машин с высоким номинальным давлением.

Статические и динамические свойства предохранительных клапанов и стабильность их работы в процессе эксплуатации существенно влияют на надежность и технический ресурс самоходных машин с гидравлическим приводом! Поэтому, при проектировании машины, на эти агрегаты гидропривода следует обращать повышенное внимание.
Следует иметь в виду, что в конструкции клапанов давления с сервоуправлением применяют запорно-регулирующие элементы с гидравлическим уравновешиванием некоторой части усилия, развиваемого давлением жидкости, и с гидравлическим демпфированием резонансных явлений, создающих сопротивление возбуждающему усилию, пропорциональное скорости перемещения запорно-регулирующего элемента. Клапаны давления непрямого действия с короткими и жесткими пружинами менее подвержены вибрации, чем клапаны давления прямого действия с длинными пружинами.

На рис. 2 приведена конструкция предохранительные клапаны непрямого действия.

Рис.2.


Предохранительный клапан непрямого действия:

 

1, 3 — запорный элемент;
2, 5 — пружина;
4, 8 — втулка;
6 — регулировочный винт;
7 — камера первичного дросселирования.

Клапаны давления выпускаются как в корпусном, так и в патронном исполнении. Последние устанавливаются непосредственно в корпус гидрораспределителей, клапанных коробок, блоков и т.п.

 

Составители:
Московский Государственный автомобильно-дорожный институт,
Министерство транспорта РФ, Главгостехнадзор России.

Kipvalve – описание конструкции соленоидных клапанов

Назначение и применение

Соленоидные клапаны предназначены для управления потоками жидкости или пара, как в сложных технологических процессах, так и в быту. С их помощью можно дистанционно включить и отключить подачу жидкости или пара в нужный момент времени.
Клапаны KIPVALVE широко используются для подачи воды в поливочных системах, системах водоснабжения и пожаротушения, управления отопительными процессами, подачи охлаждающей жидкости в экструдерах, обеспечения работы котельных объектов и парогенераторов, смешивания различных сред, а также для заполнения и опустошения емкостей в системах автоматического контроля уровня. Использование соленоидных клапанов делает технологический процесс более удобным и надежным.

Принцип работы

Серия WTR220 NC (нормально закрытые, 2/2 ходовые):

Клапаны серии WTR220 по принципу работы относятся к клапанам прямого действия. Они не имеют пилотных и перепускных отверстий, а запорная втулка вмонтирована в сердечник соленоида, что обеспечивает гарантированную работоспособность клапана при нулевом перепаде давления между входом и выходом и обеспечивает быстродействие работы клапана.

При отсутствии напряжения питания на катушке соленоида, пружина сжатия, воздействуя на сердечник соленоида сверху, прижимает запорную втулку к седлу, закрывая тем самым клапан.

При подаче напряжения питания на катушку соленоида, сердечник соленоида втягивается, преодолевая сопротивление пружины сжатия, поднимает запорную втулку вверх, и клапан открывается.


а

б

Рисунок 1 — Принцип работы соленоидного клапана серии WTR220 NC (нормально закрытый, 2/2 ходовой)
а) клапан закрыт; б) клапан открыт

Серия WTR223 NC (нормально закрытые, 2/2 ходовые) :

Клапаны серии WTR223 по принципу работы относятся к клапанам с плавающей мембраной принудительного подъема. Они снабжены пилотным отверстием и меньшим по диаметру перепускным отверстием, а сердечник соленоида соединен с мембраной при помощи пружины растяжения, что обеспечивает гарантированную работоспособность клапана при нулевом перепаде давления между входом и выходом.

При отсутствии напряжения питания на катушке соленоида, рабочая среда через перепускное отверстие попадает в полость над мембраной, уравновешивая давление с двух сторон мембраны. Однако из-за разности площадей мембраны, на которые действует давление рабочей среды, усилие, приложенное к мембране давлением среды сверху, чуть больше усилия, приложенного к мембране давлением среды снизу. Благодаря давлению пружины сжатия и дополнительному усилию, создаваемому давлением среды, мембрана плотно прижимается к седлу клапана, закрывая его.

При подаче напряжения питания на катушку соленоида, сердечник соленоида втягивается, открывая пилотное отверстие в центре мембраны. Давление рабочей среды стравливается через это отверстие из полости над мембраной на выход клапана, уменьшая тем самым давление сверху мембраны. Под давлением среды, действующим на мембрану снизу, и усилием пружины растяжения мембрана поднимается вверх, открывая клапан.


а

б

Рисунок 2 — Принцип работы соленоидного клапана серии WTR223 NC (нормально закрытый, 2/2 ходовой)
а) клапан закрыт; б) клапан открыт

Серия WTR224B NC (нормально закрытые, 2/2 ходовые):

Клапаны WTR224B по принципу работы относятся к клапанам непрямого действия с плавающей мембраной. Они снабжены пилотным отверстием и меньшим по диаметру перепускным отверстием, а сердечник соленоида не имеет непосредственной связи с мембраной (мембрана прижата к седлу пружиной сжатия).

При отсутствии напряжения питания на катушке соленоида, рабочая среда через перепускное отверстие попадает в полость над мембраной, уравновешивая давление с двух сторон мембраны. Однако из-за разности площадей мембраны, на которые действует давление рабочей среды, усилие, приложенное к мембране давлением среды сверху, чуть больше усилия, приложенного к мембране давлением среды снизу. Благодаря давлению пружины сжатия и дополнительному усилию, создаваемому давлением среды, мембрана плотно прижимается к седлу клапана, закрывая его.

При подаче напряжения питания на катушку соленоида, сердечник соленоида втягивается, открывая пилотное отверстие в корпусе клапана. Давление рабочей среды стравливается через это отверстие из полости над мембраной на выход клапана, уменьшая тем самым давление сверху мембраны. Давление среды, действующее на мембрану снизу, поднимает ее вверх, открывая клапан. В виду отсутствия непосредственной механической связи мембраны с сердечником соленоида, открытие клапана происходит только за счет давления рабочей среды, т.е. при наличии минимального давления между входным и выходным портами клапана.


а

б

Рисунок 3 – Принцип работы соленоидного клапана серии WTR224B NC (нормально закрытый, 2/2 ходовой)
а) клапан закрыт; б) клапан открыт

 

Серия WTR224B NO (нормально открытые, 2/2 ходовые):

Клапаны WTR224B по принципу работы относятся к клапанам непрямого действия с плавающей мембраной. Они снабжены пилотным отверстием и меньшим по диаметру перепускным отверстием, а сердечник соленоида не имеет непосредственной связи с мембраной (мембрана прижата к седлу пружиной сжатия).

При отсутствии напряжения питания на катушке, сердечник соленоида поднят вверх, а пилотное отверстие в корпусе клапана открыто. Давление рабочей среды постоянно стравливается через это отверстие из полости над мембраной на выход клапана, уменьшая тем самым давление сверху мембраны. Давление среды, действующее на мембрану снизу, поднимает ее вверх, оставляя клапан открытым. В виду отсутствия непосредственной механической связи мембраны с сердечником соленоида, клапан находится в открытом состоянии только за счет давления рабочей среды, т.е. при наличии минимального давления между входным и выходным портами клапана.

При подаче напряжения питания на катушку, соленоид закрывает пилотное отверстие, рабочая среда через перепускное отверстие попадает в полость над мембраной, уравновешивая давление с двух сторон мембраны. Далее из-за разности площадей мембраны, на которые действует давление рабочей среды, усилие, приложенное к мембране давлением среды сверху, чуть больше усилия, приложенного к мембране давлением среды снизу. Благодаря давлению пружины сжатия и дополнительному усилию, создаваемому давлением среды, мембрана плотно прижимается к седлу клапана, закрывая его.

a

б

Рисунок 4 – Принцип работы соленоидного клапана серии WTR224B NO (нормально открытый, 2/2 ходовой)
а) клапан открыт; б) клапан закрыт

Серия STM423 NC (нормально закрытые, 2/2 ходовые):

Клапаны серии STM423 по принципу работы аналогичны клапанам серии WTR224B. Но в отличии от серии WTR224B клапаны серииSTM423 имеют латунный поршень вместо гибкой мембраны, что позволяет применять их при более высоких температурах рабочей среды. Клапаны серии STM423 снабжены пилотным отверстием и меньшим по диаметру перепускным отверстием, а сердечник соленоида не имеет непосредственной связи с поршнем (поршень прижат к седлу пружиной сжатия).

При отсутствии напряжения питания на катушке соленоида, рабочая среда через перепускное отверстие попадает в полость над поршнем, уравновешивая давление с двух сторон поршня. Однако из-за разности площадей поршня, на которые действует давление рабочей среды, усилие, приложенное к поршню давлением среды сверху, чуть больше усилия, приложенного к поршню давлением среды снизу. Благодаря давлению пружины сжатия и дополнительному усилию, создаваемому давлением среды, поршень плотно прижимается к седлу клапана, закрывая его.

При подаче напряжения питания на катушку соленоида, сердечник соленоида втягивается, открывая пилотное отверстие в корпусе клапана. Давление рабочей среды стравливается через это отверстие из полости над поршнем на выход клапана, уменьшая тем самым давление сверху поршня. Давление среды, действующее на поршень снизу, поднимает его вверх, открывая клапан. В виду отсутствия непосредственной механической связи поршня с сердечником соленоида, открытие клапана происходит только за счет давления рабочей среды, т.е. при наличии минимального давления между входным и выходным портами клапана.


а

б

Рисунок 5 – Принцип работы соленоидного клапана серии STM423 NC (нормально закрытый, 2/2 ходовой)
а) клапан закрыт; б) клапан открыт

Модельный ряд:

  • WTR220
    Быстродействующие клапаны прямого действия
  • WTR223
    Универсальные клапаны для широкого применения с мембраной принудительного подъема
  • WTR224B
    Клапаны с плавающей мембраной для систем под давлением
  • STM423
    Клапаны для горячей воды и пара

Комплектующие для клапанов KIPVALVE

Электромагнитный соленоидный клапан KIPVALVE сертифицирован и имеет разрешительную документацию. Вы можете узнать больше об электромагнитных клапанах KIPVALVE, связавшись с представителями KIPVALVE в вашем регионе.

Особенности конструкции клапанов KIPVALVE

Прочный материал корпуса

КОВАНАЯ ЛАТУНЬ. Основные свойства этого материала — высокая прочность и пластичность, которые позволяют выдерживать клапану (в отличие от распространенных на рынке дешевых корпусов из прессованной латуни) повышенные механические нагрузки, удары, а также сохраняют резьбу при усиленном затягивании и обеспечивают надежное соединение клапана с трубопроводом. Корпуса из кованой латуни имеют большую толщину стенок, что придает им дополнительную прочность.
НЕРЖАВЕЮЩАЯ СТАЛЬ. Корпуса из этого материала используются для работы в агрессивных средах, а также при взаимодействии с пищевыми продуктами и т.п.

Особый конструктив мембран для надежного запирания клапанов

В сериях WTR223 и WTR224B устанавливаются мембраны с металлической опорной шайбой. Такой конструктив мембраны повышает ее жесткость и обеспечивает надежное прилегание к седлу, а также предотвращает деформацию мембраны клапана при высоких давлениях и температурах. В серии STM423 устанавливается латунный поршень с фторопластовым уплотнением седла и графитовыми кольцами скольжения.

Надежный конструктив и материал трубки сердечника катушки

Трубка сердечника надежно приварена к стальному основанию, что обеспечивает ее механическую прочность (в сравнении с распространенными на рынке более простыми конструкциями, где трубка сердечника завальцована в мягкое латунное основание, что может привести к поломке трубки).

Высокопрочный материал катушки

Изготавливается из термостойкой эпоксидной смолы, способной длительно выдерживать температуру +200 °С (в отличие от пластика, температура которого не должна превышать 80 °С).

Гарантия — 24 месяца

Импульсные предохранительные клапаны прямого действия

Импульсные предохранительные клапаны прямого действия.

Как решение проблемы повышения надёжности предохранительных устройств

 

В. М. Шокало, инженер по техническому надзору, Новочеркасская ГРЭС, г. Новочеркасск, Ростовская обл.

 

На ТЭЦ с параметрами высокого давления применяются импульсные предохранительные клапаны (ИПУ) непрямого действия, которые представляют собой корпус со сбросным клапаном, действующим на закрытие, и гидроприводом, действующим на принудительное открытие сбросного клапана (рис. 1). Гидропривод ИПУ с защищаемым объектом соединён импульсными трубками через импульсный клапан. Поршень гидроцилиндра имеет сальниковое уплотнение и ручную поджимную грундбуксу. Для смягчения ударов уплотнительных поверхностей ИПУ имеет противоударное устройство с уплотняемым штоком и механизм с уплотняемым штоком удержания в закрытом состоянии сбросного клапана при работе под вакуумом.

Рисунок 1. Импульсные предохранительные клапаны непрямого действия (фото с сайта wnroilfield.com).

Принцип работы ИПУ непрямого действия заключается в следующем. Давление среды защищаемого объекта действует на закрытие сбросного клапана.

При срабатывании импульсного клапана на его открытие в атмосферу происходит, как правило, заполнение гидропривода рабочей средой из защищаемого объекта и создание давления для открытия сбросного клапана за счёт разности рабочих площадей сбросного клапана и поршня гидропривода.
Дополнительное время на заполнение гидропривода рабочей средой и создание в нём достаточного давления приводит к инерционности (запаздыванию открытия сбросного клапана ИПУ) в аварийных режимах [1-3].
По этой причине в 70-е годы на Новочеркасской ГРЭС произошли две аварии
с разрывом растопочного сепаратора и растопочного трубопровода – не сработали по 3 параллельно установленных ИПУ. После аварий дополнительно были смонтированы мембранные предохранительные устройства (МПУ).

На не блочных ТЭЦ с параметрами низкого и среднего давления, а также в крупных котельных, в основном, применяются пружинные предохранительные клапаны прямого действия, более надёжные, но малой пропускной способности, где давлению среды на золотник противодействует сила сжатия пружины (рис.

2).
Рисунок 2. Пружинный предохранительный клапан прямого действия (фото с сайта wikiwand.com).
Принцип работы ИПУ непрямого действия заключается в следующем. Давление среды защищаемого объекта действует на закрытие сбросного клапана. При срабатывании импульсного клапана на его открытие в атмосферу происходит, как правило, заполнение гидропривода рабочей средой из защищаемого объекта и создание давления для открытия сбросного клапана за счёт разности рабочих площадей сбросного клапана и поршня гидропривода.
Дополнительное время на заполнение гидропривода рабочей средой и создание в нём достаточного давления приводит к инерционности (запаздыванию открытия сбросного клапана ИПУ) в аварийных режимах [1-3].
По этой причине в 70-е годы на Новочеркасской ГРЭС произошли две аварии
с разрывом растопочного сепаратора и растопочного трубопровода – не сработали по 3 параллельно установленных ИПУ. После аварий дополнительно были смонтированы мембранные предохранительные устройства (МПУ).
На не блочных ТЭЦ с параметрами низкого и среднего давления, а также в крупных котельных, в основном, применяются пружинные предохранительные клапаны прямого действия, более надёжные, но малой пропускной способности, где давлению среды на золотник противодействует сила сжатия пружины (рис. 2).

Рисунок 3. Импульсный сильфонный предохранительный клапан: 1 – корпус; 2 – импульсный клапан; 3 – сбросной клапан; 4 – сильфонный гидроцилиндр; 5 – дроссельная шайба.

Кроме того, конструкция ИСПК значительно упрощена в сравнении с конструкцией ИПУ. В данной конструкции нет противоударного устройства с уплотняемым штоком, нет механизма удержания сбросного клапана при работе под вакуумом, а сильфонный гидропривод не имеет сальникового уплотнения, вследствие чего, расхаживание (продувка) ИСПК ограничивается только расхаживанием импульсных клапанов, что снижает риск необходимости вывода в ремонт защищаемого оборудования в аварийных ситуациях.

Принцип работы ИСПК прямого действия заключается в следующем.

Давление среды защищаемого объекта действует на открытие сбросного клапана, который удерживается в закрытом состоянии сильфонным гидроприводом вследствие разности площадей рабочих поверхностей сбросного клапана и сильфонного гидропривода. При срабатывании импульсного клапана на его открытие в атмосферу происходит мгновенное снижение давления в сильфоне и под действием давления в защищаемом объекте мгновенно открывается сбросной клапан.
Сопутствующими факторами для высокой надёжности ИСПК являются малоподъёмность сбросных клапанов и низкая цикличность срабатывания [2].

Вывод: в результате замены ИПУ непрямого действия на ИСПК прямого действия повысится безопасность и надёжность работы ТЭЦ и котельных высоких параметров, служащих в качестве источников теплоснабжения.

 

Литература
1. А.К. Зыков и др. Справочник по объектам котлонадзора. – М. Энергия. 1974 г.
2. Л.Е. Андреева. Сильфоны. Расчёт и проектирование. – М. Машиностроение. 1975 г.
3. Д.Ф. Гуревич. Расчёт и конструирование трубопро­водной арматуры. – М. 5-е издание, ЛКИ. 2008 г.

Источник: http://www.rosteplo.ru/Tech_stat/stat_shablon.php?id=4107

 

ЕЩЕ АКТУАЛЬНЫЕ НОВОСТИ ЗДЕСЬ

 

Редукционный клапан прямого действия:назначение,устройство,схема

Назначение редукционного клапана прямого действия

Редукционный клапан давления предназначен для поддержания в некоторой части гидросистемы пониженного давления относительно давления в основной нагнетательной магистрали и независящего от него.Так же, как и предохранительные клапаны, редукционные клапаны подразделяются на клапаны прямого и непрямого действия, а по количеству линий присоединений клапана – на двухлинейные и трехлинейные.

Устройство двухлинейного редукционного клапана прямого действия

Схема двухлинейного редукционного клапана прямого действия приведена на рис. 1. В корпусе 1 размещается регулирующий золотник 2, который под действием пружины 3 стремится занять крайнее нижнее положение и находится в нем до тех пор, пока давление Р1 в канале “б”, действующее на нижний торец золотника, не в состоянии преодолеть усилие пружины редукционного клапана (рис.1 а). На котором показано состояние клапана, когда усилие от давления Р1 из-за малой величины давления на входе в клапан, в канале “а” меньше усилия пружины.

 

Принцип работы двухлинейного редукционного клапана прямого действия

Принцип работы двухлинейного редукционного клапана заключается в следующем, по мере роста давления Р наступает момент , когда усилие от давления Р , превысит начальное усилие пружины, регулируемое с помощью винта 4 и золотника 2 начнет смещаться вверх, частично перекрывая канал “б” на выходе клапана. С этого момента давление на выходе клапана будет поддерживаться постоянным, независимо от дальнейшего нарастания давления на входе в клапана в канале “а”.

Принцип работы трехлинейного редукционного клапана прямого действия

Принцип работы трехлинейного редукционного клапана давления прямого действия отличается от двухлинейного тем, что у него, помимо, канала “а” подводящего жидкость и отводящего канала “б”, имеется и канал “в” сообщенный со сливной магистралью. На рис.2 показана схема такого клапана, в котором, в отличие от описанного ранее, поддержание редуцированного давления достигается путем частичного перекрытия подводящего канала “а”, что не принципиально. Благодаря наличию сливного канала “в”, редуцированное давление в канале “б” будет поддерживаться постоянным даже в том случае, когда полностью перекрытом канале “а” давление на выходе клапана будет стремиться возрастать по какой-либо причине, например из-за обратного тока жидкости из системы. На рис.2 а показан клапан в режиме нормального редуцирования, а на рис.2 б – в режиме перелива жидкости из-за обратного тока в канал “б”.

Устройство трехлинейного редукционного клапана прямого действия

Устройство трехлинейного редукционного клапана давления модульного исполнения приведена на рис. 3. В корпусе 1 установлена втулка 3 с каналами “а” и “б”, связанными магистралями подвода жидкости Р и редуцированного давления Р!. Канал “в”, в свою очередь, связан с каналом “б” и установленным в нем демпфером , с помощью которого жидкость подводиться в полость, образованную втулкой 3 и пробкой 4. В расточке втулки размещен золотник 2, который пружинами 5 и 6 в исходном состоянии прижат к пробке 4, так что каналы “а” и “в”, а значит и магистрали Р и Р1оказываются сообщенными друг с другом.

При возникновении усилия от давления Р1, действующего на торец золотника 2, большего суммарного усилия двух пружин, определяемого положением регулировочного винта 8 относительно резьбового стакана 7, золотник 2 начинает смещаться влево, частично перекрывая канал “а”. Тем самым поддерживается постоянное давление Р1 в канале “в”. Если почему-либо давление Р1будет стремиться возрастать, золотник 2 еще больше сместиться влево так, что его первый поясок выйдет в полость “с” и через канавки на втором пояске жидкость из канала “в” начнет поступать на слив через сверление из полости “с” в магистраль “Т”.

 

OMEGA ENGINEERING — Технические принципы клапанов

Технический Принципы клапанов

ОБЩЕЕ

Соленоид Клапаны используются везде, где требуется автоматическое регулирование потока жидкости. Они все в большей степени используются в самых разных типы заводов и оборудования. Разнообразие различных дизайнов которые доступны, позволяют выбрать клапан специально для подходят для рассматриваемого приложения.

СТРОИТЕЛЬСТВО

Соленоид клапаны — это блоки управления, которые при электрическом напряжении или обесточен, либо отключите, либо позвольте жидкости течь. Привод принимает форму электромагнита. При подаче напряжения магнитный нарастание поля, которое толкает плунжер или поворотную арматуру к действие пружины. В обесточенном состоянии плунжер или поворотный якорь возвращается в исходное положение под действием пружины.

КЛАПАН ЭКСПЛУАТАЦИЯ

Согласно к режиму срабатывания различают прямое действие клапаны, клапаны с внутренним управлением и клапаны с внешним управлением. Еще одна отличительная особенность — количество подключений к портам. или количество путей потока («путей»).

ПРЯМОГО ДЕЙСТВИЯ КЛАПАНЫ

с электромагнитный клапан прямого действия, уплотнение седла прикреплено к сердечник соленоида. В обесточенном состоянии отверстие седла закрытый, который открывается при подаче напряжения на клапан.

ПРЯМОГО ДЕЙСТВИЯ КЛАПАНЫ 2-ХОДОВЫЕ

Двусторонняя клапаны запорные с одним входным и одним выходным патрубками. порт (рис.1). В обесточенном состоянии пружина сердечника, с помощью давления жидкости удерживает уплотнение клапана на клапане сиденье, чтобы перекрыть поток. При подаче напряжения сердечник и уплотнение втягивается в катушку соленоида, и клапан открывается. Электромагнитный сила больше, чем объединенная сила пружины и статическая и силы динамического давления среды.

ПРЯМОГО ДЕЙСТВИЯ 3-ХОДОВЫЕ КЛАПАНЫ

Трехходовой клапаны имеют три штуцера и два седла клапана.Один клапан уплотнение всегда остается открытым, а другое закрыто в обесточенном состоянии. режим. Когда катушка находится под напряжением, режим меняется на противоположный. 3-ходовой Клапан, изображенный на рис. 2, выполнен с сердечником плунжерного типа. Разные клапана можно получить в зависимости от того, как текучая среда подключен к рабочим портам на рис. 2. Давление жидкости накапливается под седлом клапана.Когда катушка обесточена, коническая пружина плотно прижимает нижнее уплотнение сердечника к клапану седло и перекрывает поток жидкости. Порт А истощен через R. Когда катушка находится под напряжением, сердечник втягивается, клапан седло порта R закрыто подпружиненным верхним уплотнением сердечника. Текучая среда теперь течет из P в A.

В отличие от исполнения с плунжерными сердечниками, поворотно-якорными клапанами все соединения портов находятся в корпусе клапана.Изолирующая диафрагма гарантирует, что текучая среда не контактирует с камера змеевика. Клапаны с поворотной арматурой могут использоваться для получения любой режим работы трехходового клапана. Показан основной принцип конструкции. на рис. 3. Клапаны с поворотным якорем снабжены ручным дублированием. как стандартная функция.

ВНУТРЕННИЙ ЭЛЕКТРОМАГНИТНЫЕ КЛАПАНЫ ПИЛОТНЫЕ

с клапана прямого действия, силы статического давления увеличиваются с увеличением увеличение диаметра отверстия, что означает, что магнитные силы, необходимые для преодоления сил давления, становятся соответственно больше.Поэтому используются электромагнитные клапаны с внутренним управлением. для переключения более высоких давлений в сочетании с большим отверстием размеры; в этом случае перепад давления жидкости выполняет основная работа по открытию и закрытию клапана.

ВНУТРЕННИЙ ПИЛОТНЫЕ КЛАПАНЫ 2-ХОДОВЫЕ

Электромагнитные клапаны с внутренним управлением оснащены 2- или 3-ходовой пилотный соленоидный клапан. Диафрагма или поршень обеспечивают уплотнение седла главного клапана. Работа такого клапана показан на рис. 4. Когда пилотный клапан закрыт, жидкость давление увеличивается с обеих сторон диафрагмы из-за стравливания отверстие. Пока существует перепад давления между впускной и выпускной патрубки, сила отключения доступна благодаря большей эффективной площади в верхней части диафрагмы.Когда пилотный клапан открывается, давление сбрасывается с верхнего сторона диафрагмы. Большая эффективная сила чистого давления снизу поднимает диафрагму и открывает клапан. В целом, клапаны с внутренним управлением требуют минимального перепада давления для обеспечения удовлетворительного открытия и закрытия. Омега также предлагает клапаны с внутренним управлением, спроектированные с соединенным сердечником и диафрагмой которые работают при нулевом перепаде давления (рис. 5).

ВНУТРЕННИЙ ПИЛОТНЫЕ МНОГООБХОДИМЫЕ ЭЛЕКТРОМАГНИТНЫЕ КЛАПАНЫ

внутри управляемые 4-ходовые электромагнитные клапаны используются в основном в гидравлических и пневматические приложения для приведения в действие цилиндров двустороннего действия. Эти клапаны имеют четыре штуцера: вход давления P, два цилиндра соединения порта A и B, а также соединение одного выпускного порта R.An 4/2-ходовой тарельчатый клапан с внутренним управлением показан на рис. 6. Когда обесточен, пилотный клапан открывается на соединении от вход давления в пилотный канал. Обе тарелки в основном клапан теперь находится под давлением и переключается. Теперь подключение к порту P подключен к A, а B может выпускаться через второй ограничитель через

р.

ВНЕШНИЙ ПИЛОТНЫЕ КЛАПАНЫ

с у этих типов независимая пилотная среда используется для приведения в действие клапан. На рис.7 показан поршневой клапан с угловым седлом и закрытием. весна. В негерметичном состоянии, седло клапана закрываются. 3-ходовой электромагнитный клапан, который можно установить на привод, управляет независимой пилотной средой. Когда электромагнитный клапан находится под напряжением, поршень поднимается против действия пружины и клапан открывается. Может быть получена версия с нормально открытым клапаном. если пружина расположена на противоположной стороне поршня привода.В этих случаях независимая пилотная среда подключается к верх привода. Версии двустороннего действия с 4/2-ходовым управлением клапаны не содержат пружины.

МАТЕРИАЛЫ

Все материалы, используемые в конструкции клапанов, тщательно выбирается в соответствии с различными типами приложений. Тело материал, материал уплотнения и материал соленоида выбираются для оптимизации функциональная надежность, совместимость с жидкостями, срок службы и Стоимость.

КОРПУС МАТЕРИАЛЫ

Корпуса клапанов нейтральной жидкости изготовлены из латуни и бронзы. Для жидкостей при высоких температурах, например, пар, нержавеющая сталь доступен.Кроме того, полиамидный материал используется для экономических причины в различных пластиковых клапанах.

СОЛЕНОИД МАТЕРИАЛЫ

Все части электромагнитного привода, которые контактируют с жидкости изготовлены из аустенитной коррозионно-стойкой стали. В этом Кстати, устойчивость к коррозии гарантирована нейтральным или умеренно агрессивные среды.

УПЛОТНЕНИЕ МАТЕРИАЛЫ

особые механические, термические и химические условия в приложении факторы при выборе материала уплотнения. стандартный материал для нейтральных жидкостей при температурах до 194F обычно используется FKM. Для более высоких температур используются EPDM и PTFE. Материал PTFE универсально устойчив практически ко всем техническим жидкостям. интерес.

ДАВЛЕНИЕ РЕЙТИНГИ — ДИАПАЗОН ДАВЛЕНИЯ

Все значения давления, приведенные в этом разделе, представляют собой манометрическое давление. Номинальное давление указано в фунтах на квадратный дюйм. Клапаны надежно работают в заданных диапазонах давления. Наши цифры относятся к ассортименту Пониженное напряжение от 15% до перенапряжения 10%. Если используются 3/2-ходовые клапаны при другой операции допустимый диапазон давления изменяется.Более подробная информация содержится в наших технических паспортах.

В в случае работы в вакууме необходимо следить за тем, чтобы вакуум находится на стороне выхода (A или B), в то время как более высокое давление, т. е. атмосферное давление, подключается к входному отверстию P.

ПОТОК СТАВКИ

расход через клапан определяется конструктивным исполнением и по типу потока.Размер клапана, необходимый для конкретного заявка обычно определяется рейтингом Cv. Эта фигура разработан для стандартных единиц и условий, т.е. в галлонах в минуту и ​​с использованием воды при температуре от 40F до 86F при падении давления 1 фунт / кв. дюйм. Приведены значения Cv для каждого клапана. Стандартизированная система значений расхода также используется для пневматики. В этом случае расход воздуха в SCFM вверх по потоку и падение давления 15 фунтов на квадратный дюйм при температуре 68F.

СОЛЕНОИД ПРИВОД

А общей чертой всех электромагнитных клапанов Omega является залитый эпоксидной смолой соленоидная система. В этой системе вся магнитная цепь-катушка, соединения, ярмо и направляющая трубка сердечника — объединены в один компактный блок. Это приводит к сдерживанию высокой магнитной силы. в пределах минимального пространства, обеспечивая первоклассную электрическую изоляцию и защита от вибрации, а также от внешних коррозионных последствия.

КАТУШКИ

Катушки Омега доступны для всех обычно используемых напряжений переменного и постоянного тока. Низкое энергопотребление, особенно с соленоидом меньшего размера. систем, означает, что возможно управление через полупроводниковую схему.

доступная магнитная сила увеличивается по мере увеличения воздушного зазора между сердечник и гайка заглушки уменьшаются, независимо от того, переменный или постоянный ток участвует.Система соленоидов переменного тока имеет большую доступную магнитную силу. при большем ходе, чем у сопоставимой системы соленоидов постоянного тока. В Графики зависимости характерного хода от усилия, показанные на рис. 8, иллюстрируют это отношения.

потребление тока соленоида переменного тока определяется индуктивностью. С увеличением хода индуктивное сопротивление уменьшается и вызывает увеличение потребления тока.Это означает, что при в момент обесточивания ток достигает максимума ценить. Противоположная ситуация применима к соленоиду постоянного тока, где потребление тока зависит только от сопротивления обмотки. Временное сравнение характеристик включения для соленоидов постоянного и переменного тока показано на рис. 9. В настоящее время находятся под напряжением, т.е. когда воздушный зазор максимален, электромагнитные клапаны потребляют гораздо более высокие токи, чем когда сердечник полностью втянут, я.е., воздушный зазор закрыт. Это приводит к высокой производительности и увеличенный диапазон давления. В системах постоянного тока после включения ток, расход увеличивается относительно медленно до тех пор, пока постоянное удержание ток достигнут. Таким образом, эти клапаны могут управлять только более низкое давление, чем у клапанов переменного тока при тех же размерах отверстий. Выше давления можно получить только за счет уменьшения размера отверстия и, таким образом, пропускная способность.

ТЕРМИЧЕСКИЙ ЭФФЕКТЫ

Определенное количество тепла всегда выделяется, когда катушка соленоида находится под напряжением. Стандартная версия электромагнитных клапанов имеет относительно невысокие повышения температуры. Они предназначены для достижения максимальное повышение температуры 144F в условиях непрерывного эксплуатации (100%) и при перенапряжении 10%.Кроме того, максимум температура окружающей среды 130F обычно допустима. Максимум допустимые температуры жидкости зависят от конкретного указанные материалы уплотнения и корпуса. Эти цифры можно получить из технических данных.

ВРЕМЯ ОПРЕДЕЛЕНИЯ (VDE0580) ВРЕМЯ ОТВЕТА

небольшие объемы и относительно высокие магнитные силы, связанные с соленоидные клапаны обеспечивают быстрое время отклика. Клапаны с различным временем отклика доступны для специальных приложений. Время отклика определяется как время между применением сигнал переключения и завершение механического открытия или закрытия.

ПО ПЕРИОД

период включения определяется как время между переключениями соленоида. ток включен и выключен.

ЦИКЛ ПЕРИОД

общее время включенного и выключенного периодов — цикл период. Предпочтительный период цикла: 2, 5, 10 или 30 минут.

РОДСТВЕННИК РАБОЧИЙ ЦИКЛ

относительный рабочий цикл (%) — это процентное соотношение находящихся под напряжением период к общему периоду цикла.Непрерывная работа (100% режим цикл) определяется как непрерывная работа до достижения установившейся температуры достигается.

КЛАПАН ЭКСПЛУАТАЦИЯ

Кодирование работы клапана всегда состоит из заглавной буквы. Сводка слева подробно описывает коды различных операций клапана. и указывает соответствующие стандартные символы схемы.

ВЯЗКОСТЬ

технические данные действительны для вязкости до указанного значения. Допускаются более высокие вязкости, но в этих случаях напряжение диапазон допуска уменьшается, а время отклика увеличивается.

ТЕМПЕРАТУРА ДИАПАЗОН

Температура пределы для текучей среды всегда подробно описаны.Различные факторы, например условия окружающей среды, езда на велосипеде, скорость, допуск напряжения, установка детали и т. д., однако, могут повлиять на температурные характеристики. Следовательно, приведенные здесь значения следует использовать только в качестве общее руководство. В случаях, когда работа при экстремальных температурах диапазона, вам следует обратиться за советом в отдел инженерных разработок Omega. Отделение.

Воспроизведено с разрешения Burkert Contromatic Corporation

Как работают контуры регулирующих клапанов прямого и обратного действия ~ Изучение контрольно-измерительной техники

Типичный контур регулирующего клапана состоит из четырех основных элементов:

(a) Процесс, находящийся под контролем, в основном, приложения расхода или давления

(b) Контроллер процесса, который инициирует управляющее воздействие на регулирующий клапан

.

(c) Позиционер клапана (почти всегда требуется в большинстве приложений)

Эти основные элементы работают согласованно, чтобы обеспечить желаемый результат контроля. Контуры регулирующих клапанов могут работать в двух основных режимах:

(а) Петли прямого действия

(b) Петли обратного действия

Контуры регулирующего клапана прямого действия :

В контуре регулирующего клапана прямого действия, показанном ниже:
Контур регулирующего клапана прямого действия

Контроллер, позиционер и регулирующий клапан действуют следующим образом:

(a) Действие контроллера :

По мере того как переменная процесса (расход или давление) увеличивается численно, выходной сигнал контроллера увеличивается пропорционально и наоборот

(b) Действие позиционера клапана :

По мере увеличения входного сигнала на позиционер клапана от контроллера выходная нагрузка или давление воздуха от позиционера увеличивается

(c) Действие регулирующего клапана :

По мере увеличения давления воздуха или нагрузки на привод клапана плунжер клапана перемещается в закрытое положение для клапана, который является ATC — FO (Air-to-Close, Fail Open).

Контуры регулирующего клапана обратного действия :

В контуре регулирующего клапана обратного действия, показанном ниже:

Контур регулирующего клапана обратного действия

Контроллер, позиционер и регулирующий клапан действуют следующим образом:

(a) Действие контроллера :

По мере численного увеличения переменной процесса (расход или давление) выходной сигнал контроллера пропорционально уменьшается, и наоборот.

(b) Действие позиционера клапана :

По мере уменьшения входного сигнала на позиционер клапана от контроллера выходная нагрузка или давление воздуха от позиционера увеличивается

(c) Действие регулирующего клапана

По мере увеличения давления воздуха или нагрузки на привод клапана плунжер клапана перемещается в открытое положение для клапана, который является ATO-FC (Air-to-Open, Fail Close).

Для различных применений регулирующего клапана контроллер, позиционер и регулирующий клапан могут быть сконфигурированы для прямого или обратного либо для прямого и обратного хода в одном и том же контуре управления в зависимости от требований различных приложений.

5 типов электромагнитных клапанов и принцип их работы

Источник: http://www.solenoidsupplier.com

Электромагнитный клапан регулирует поток жидкости в трубке или канале. Для управления средой используются различные механизмы, что означает широкий спектр этих клапанов для удовлетворения различных вариаций.

В дополнение к конструкции эти клапаны поставляются с различными механизмами управления. Здесь мы рассмотрим 5 типов электромагнитных клапанов и принципы их работы.

1. Электромагнитный клапан прямого действия

Источник: http://www.heatingandprocess.com

Клапаны этих типов используют самые простые в работе операции. Электромагнитный клапан прямого действия состоит из плунжера, который закрывает небольшое отверстие напрямую, не полагаясь на внешнюю силу.

Эти типы электромагнитных клапанов быстродействующие.Они также могут работать при разном давлении, от минимального до максимально допустимого.

Электромагнитный клапан прямого действия может быть NO (нормально открытый) или NC (нормально закрытый). Когда клапан NO, отверстие закрывается при приложении электрического тока.

В нормально закрытом клапане прямого действия отверстие остается закрытым и открывается при подаче напряжения на обмотки электромагнитной катушки.

Вариантом клапана прямого действия является трехходовой двухпозиционный электромагнитный клапан.Он работает аналогично 2/2 клапану, с отличием только в способе отвода жидкости. Это можно сделать с помощью печати в верхней или нижней части поршня.

Использование электромагнитных клапанов прямого действия имеет преимущества и недостатки. Эти клапаны быстродействующие и точные. Еще одно преимущество — что эти типы клапанов могут работать с различным давлением в трубопроводе, от низкого до высоко.

Недостатки электромагнитных клапанов прямого действия в основном заключаются в их прочности и размерах. Поскольку клапаны зависят от силы закрытия, обеспечиваемой электромагнитной катушкой, для их работы обычно требуется большой ток.

Это часто означает большую конструкцию соленоида, особенно если системы являются крупномасштабными.

2. Электромагнитный клапан с пилотным управлением

Источник: http://www.globalsources.com

Также называемый непрямого действия , пилотный соленоидный клапан использует перепад давления на портах клапана для закрытия или открытия отверстия. Работа этих типов клапанов несколько сложнее, чем у клапанов прямого действия и состоит из нескольких дополнительных частей.

Вот как работает пилотный электромагнитный клапан.

Мембрана разделяет впускные и выпускные отверстия этих типов соленоидные клапаны. На диафрагме есть небольшое отверстие, через которое среда течет. в верхнюю камеру. Небольшой канал соединяет эту камеру с системой низкого давления. порт.

Давление в системе и небольшая пружина удерживают клапан в закрытом состоянии. Когда соленоид находится под напряжением, пилотное отверстие открывается, в результате чего давление в верхней камере падает.

В результате диафрагма поднимается, и среда теперь свободно течет от входа к выходному отверстию.

Камера давления в электромагнитном клапане с пилотным управлением служит для увеличения сил закрытия и открытия. Это позволяет небольшим соленоидам работать на линии с большим расходом.

Благодаря такому увеличению давления, этот тип электромагнитного клапана в большинстве случаев не требует большого количества тока для работы.

Несмотря на свою мощную работу, пилотные электромагнитные клапаны имеют несколько ограничений. Это односторонний электромагнитный клапан , способный регулировать среду, которая течет только в одном направлении.

Пилотные электромагнитные клапаны также работают медленнее, чем клапаны прямого действия, к тому же им необходим минимальный уровень рабочего давления, в отличие от электромагнитных клапанов прямого действия, которые могут работать с контурами 0 бар.

Пилотные электромагнитные клапаны подходят для систем с достаточным перепадом давления, таких как системы орошения и оборудование для мойки автомобилей.

Они чаще всего используются в приложениях с высокими расходами или производительностью. К ним относятся системы, контролирующие поток воды, такие как краны.

3. Двухходовые электромагнитные клапаны

Источник: http://www.zoro.com

Эти типы клапанов используют два порта для закрытия или открытия потока жидкости. 2-ходовой электромагнитный клапан классифицируется как нормально открытый, если диафрагма позволяет среде течь, когда катушка обесточена и нормально закрыта, если возбуждение змеевика позволяет жидкости течь через любой порт. NC или нормально закрытый соленоидный клапан встречается чаще, чем тип NO.

Системы с двухходовым электромагнитным регулирующим клапаном, в которых требуется только выпуск и ограничение среды.К ним относятся машины для сжатия воздуха и подобное оборудование.

4. Трехходовой электромагнитный клапан

Источник: http://www.ebay.com

Трехходовой электромагнитный клапан обычно оснащен тремя портами и двумя разными отверстиями. Оба отверстия открываются попеременно в зависимости от состояния катушки соленоида.

Обычно эти типы клапанов имеют два впускных отверстия и одно выпускное отверстие. При использовании в этой конструкции трехходовой электромагнитный клапан в основном смешивает две разные жидкости.

В некоторых трехходовых соленоидных клапанах используются два выхода и один входной порт. Такая конструкция позволяет клапану управлять потоком среды в одном из выпускных отверстий, направляя его в другое. Трехходовые электромагнитные клапаны можно найти в обычной бытовой технике, например, в посудомоечной машине.

5. Четырехходовой электромагнитный клапан

Источник: http://www.ebay.com

Этот тип клапана использует четыре порта; два входа давления и два выхода выхлопа. 4-ходовые клапаны обычно используются для работы с приводами соленоидных клапанов двойного действия.

Впускные отверстия обеспечивают поступающее давление в привод или цилиндр, а выпускные трубы представляют собой выпускные отверстия под давлением.

Заключение

Электромагнитные клапаны бывают разных типов, с разными рабочими механизмами и конструкциями.

Используемый тип зависит от многих факторов. В основном требуемое действие диктует конструкцию и принцип работы.

Электромагнитные клапаны прямого действия и двухходовые электромагнитные клапаны подходят для систем, где требуется только отключение.Сложные системы, которые смешивают или направляют жидкости, требуют большего, чем простое действие.

В этих схемах требуются дополнительные порты.

В целом, каждый тип электромагнитного клапана подходит для определенных областей применения.

5 типов электромагнитных клапанов и принцип их работы2019-11-2019-11-25 https://startersolenoid.net/wp-content/uploads/2017/02/tx-logo1.pngT&X https://startersolenoid. net/wp-content / uploads / 2019/11/5-типы-соленоидного-клапана-и-их-принцип-действия-баннер.png200px200px

Принцип работы предохранительного клапана прямого действия

Принцип работы предохранительного клапана прямого действия просто разработан для регулирования гидравлического давления. Гидравлический предохранительный клапан прямого действия часто используется в различных гидравлических системах для регулирования давления или поддержания давления в системе в нормальном режиме работы. — finotek.com

— Теория автоматического управления прессом с замкнутым контуром Принцип работы предохранительного клапана прямого действия:

С точки зрения теории управления предохранительный клапан прямого действия представляет собой гидравлический компонент с закрытыми клапанами. контурное автоматическое управление, рисунок А представляет собой просто описание замкнутого автоматического управления для предохранительных клапанов.

Входное давление — это давление предварительной настройки пружины, выходное давление — это контролируемое давление (входное давление), гидравлическая сила, создаваемая контролируемым давлением, возвращается на золотник клапана с эффективной площадью, сила сравнивается с силой пружины , который автоматически регулирует площадь открытия дроссельной заслонки предохранительного клапана, так что регулируемое давление практически постоянно.

— Строительные схемы предохранительного клапана прямого действия —
1.Отверстие | 2. Корпус клапана | 3. Тарелка | 4. Крышка клапана | 5. Регулировочный винт
6. Седло пружины | 7. Регулировочная пружина | 8. Дренажный порт

На рисунке B показана общая конструкция предохранительного клапана прямого действия, например, предохранительный клапан прямого действия состоит из корпуса клапана, золотника клапана и регулирующего механизма (включая винт регулировки давления, пружину регулирования давления) и другие основные компоненты. На левой и правой стороне корпуса клапана расположены впускной порт P (соединение с гидравлическим насосом и управляемым контуром гидравлического масла) и выпускной порт T (порт соединяется с масляным резервуаром), в дополнение к вышеуказанным деталям, демпфирующее отверстие и внутреннее иногда требуется сливной порт.

Сила жидкости на золотнике клапана находится в прямом равновесии с силой пружины в предохранительном клапане прямого действия. См. Рисунок B, золотник клапана находится в закрытом положении против усилия пружины, масляные каналы P и T изолированы. Когда входящее гидравлическое давление повышается до значения, превышающего предварительно установленное давление пружины, золотник клапана поднимается и открывает порт P, и гидравлическое масло под давлением выходит из выпускного отверстия T. Золотник клапана находится в другом положении в зависимости от жидкости. скорость потока, но существует очень небольшое расстояние движения для тарелки, поэтому гидравлическое масло течет в предохранительный клапан прямого действия, если только открыть небольшой зазор на впускном отверстии.Давление на впускном отверстии P, по существу, постоянно для предохранительного клапана прямого действия.

Когда давление на впускном отверстии падает, сила пружины становится достаточно большой, чтобы установить золотник клапана в закрытое положение, но усилие пружины можно изменить путем регулировки давления предварительной настройки и изменения пружины различной жесткости, чтобы изменить диапазон регулировки давления. Отверстие представляет собой динамическое гидравлическое демпфирование, используемое для минимизации вибрации золотника, вызванной различным давлением, с целью улучшения стабильности клапана.Небольшая утечка происходит из небольшого зазора между поверхностью золотника и отверстием корпуса клапана, протекающее масло в пружинной камере течет прямо к выходному Т-образному отверстию через внутренний канал 8, этот тип слива называется внутренним сливом.

На рисунке C ниже показан предохранительный клапан прямого действия с различными внутренними конструкциями. Рисунок C-1, C-2 — это подъемный и тарельчатый предохранительный клапан прямого действия; Изображение C-3, C-4 и C-5 представляют собой золотниковый тип, золотник с диафрагмой и дифференциальный золотниковый тип предохранительного клапана прямого действия.

— Предохранительный клапан прямого действия с другим золотником —
1. Золотник клапана другого типа | 2. Корпус клапана | 3. Весна | 4. Регулировочный винт

Характеристики предохранительного клапана прямого действия — простая конструкция, высокая чувствительность, но давление сильно зависит от объема перелива, отсюда и отклонение статической регулировки (разница между установленным давлением и давлением открытия) большие, динамические характеристики из-за различной структурной конфигурации, такой как тарельчатый тип, шаровой тип предохранительного клапана прямого действия, который быстрее реагирует, чувствительное действие, но плохая стабильность, громкий шум, часто используется в качестве пилотного клапана предохранительного клапана и сброса давления клапан.Предохранительный клапан прямого действия золотникового типа отличается медленной реакцией на давление, большим диапазоном регулирования давления и хорошей стабильностью работы.

— Анимация предохранительного клапана прямого действия —

Что такое электромагнитный клапан и как он работает?

Электромагнитные клапаны используются везде, где требуется автоматическое регулирование потока жидкости. Они все в большей степени используются в самых разных типах установок и оборудования. Разнообразие доступных конструкций позволяет выбрать клапан в соответствии с конкретным применением.

ОБЩИЕ

Электромагнитные клапаны используются везде, где требуется автоматическое регулирование потока жидкости. Они все в большей степени используются в самых разных типах установок и оборудования. Разнообразие доступных конструкций позволяет выбрать клапан в соответствии с конкретным применением.

СТРОИТЕЛЬСТВО

Электромагнитные клапаны — это блоки управления, которые при включении или отключении электропитания либо перекрывают, либо пропускают поток жидкости.Привод выполнен в виде электромагнита. При возбуждении создается магнитное поле, которое натягивает плунжер или поворотный якорь против действия пружины. В обесточенном состоянии плунжер или поворотный якорь возвращается в исходное положение под действием пружины.

РАБОТА КЛАПАНА

По режиму срабатывания различают клапаны прямого действия, клапаны с внутренним управлением и клапаны с внешним управлением. Еще одна отличительная черта — это количество подключений к портам или количество потоков («путей»).

КЛАПАНЫ ПРЯМОГО ДЕЙСТВИЯ

В соленоидном клапане прямого действия уплотнение седла прикреплено к сердечнику соленоида. В обесточенном состоянии отверстие седла закрыто, которое открывается, когда клапан находится под напряжением.

КЛАПАНЫ ПРЯМОГО ДЕЙСТВИЯ 2-ХОДОВЫЕ

Двухходовые клапаны — это запорные клапаны с одним входным и одним выходным отверстиями (рис. 1). В обесточенном состоянии пружина сердечника с помощью давления жидкости удерживает уплотнение клапана на седле клапана, перекрывая поток.При подаче напряжения сердечник и уплотнение втягиваются в катушку соленоида, и клапан открывается. Электромагнитная сила больше, чем объединенная сила пружины и силы статического и динамического давления среды.

Рисунок 1

КЛАПАНЫ ПРЯМОГО ДЕЙСТВИЯ 3-ХОДОВЫЕ

Трехходовые клапаны имеют три штуцера и два седла клапана. Одно уплотнение клапана всегда остается открытым, а другое закрытым в обесточенном режиме. Когда катушка находится под напряжением, режим меняется на противоположный.Трехходовой клапан, показанный на рис. 2, выполнен с сердечником плунжерного типа. Различные операции клапана могут выполняться в зависимости от того, как текучая среда соединяется с рабочими портами на рис. 2. Давление текучей среды нарастает под седлом клапана. Когда катушка обесточена, коническая пружина плотно прижимает нижнее уплотнение сердечника к седлу клапана и перекрывает поток жидкости. Порт A выпускается через R. Когда катушка находится под напряжением, сердечник втягивается, седло клапана в Порте R закрывается подпружиненным верхним уплотнением сердечника.Текучая среда теперь течет от P к A.

фигура 2 В отличие от версий с сердечником плунжерного типа, клапаны с поворотным якорем имеют все портовые соединения в корпусе клапана. Изолирующая диафрагма предотвращает контакт текучей среды с камерой змеевика. Клапаны с поворотным якорем могут использоваться для управления любым трехходовым клапаном. Базовый принцип конструкции показан на рис. 3. Клапаны с поворотным якорем стандартно оснащены ручным дублером.

цифра 3

ЭЛЕКТРОМАГНИТНЫЕ КЛАПАНЫ С ВНУТРЕННИМ ПИЛОТОМ

В клапанах прямого действия силы статического давления увеличиваются с увеличением диаметра отверстия, что означает, что магнитные силы, необходимые для преодоления сил давления, соответственно становятся больше.Поэтому электромагнитные клапаны с внутренним управлением используются для переключения более высоких давлений в сочетании с отверстиями большего размера; в этом случае перепад давления жидкости выполняет основную работу по открытию и закрытию клапана.

КЛАПАНЫ 2-ХОДОВЫЕ С ВНУТРЕННИМ ПИЛОТОМ

Электромагнитные клапаны с внутренним управлением оснащены 2- или 3-ходовым пилотным соленоидным клапаном. Мембрана или поршень обеспечивают уплотнение для седла главного клапана. Работа такого клапана показана на рис.4. Когда пилотный клапан закрыт, давление жидкости увеличивается с обеих сторон диафрагмы через выпускное отверстие. Пока существует разница давлений между впускным и выпускным портами, запорная сила доступна за счет большей эффективной площади в верхней части диафрагмы. Когда пилотный клапан открыт, давление сбрасывается с верхней стороны диафрагмы. Большая эффективная сила чистого давления снизу теперь поднимает диафрагму и открывает клапан. Как правило, клапаны с внутренним управлением требуют минимального перепада давления для обеспечения удовлетворительного открытия и закрытия.Omega также предлагает клапаны с внутренним управлением, спроектированные с соединенным сердечником и диафрагмой, которые работают при нулевом перепаде давления (рис. 5).

фигура 4

МНОГООБХОДИМЫЕ ЭЛЕКТРОМАГНИТНЫЕ КЛАПАНЫ С ВНУТРЕННИМ ПИЛОМ

4-ходовые электромагнитные клапаны с внутренним управлением используются в основном в гидравлических и пневматических системах для приведения в действие цилиндров двустороннего действия. Эти клапаны имеют четыре патрубка: впуск давления P, два патрубка A и B цилиндра и один патрубок выпуска R.4/2-ходовой тарельчатый клапан с внутренним управлением показан на рис. 6. В обесточенном состоянии пилотный клапан открывается на соединении между входом давления и пилотным каналом. Теперь обе тарелки главного клапана находятся под давлением и переключаются. Теперь соединение порта P подключено к A, а B может выходить через второй ограничитель через R.

цифра 5

КЛАПАНЫ С НАРУЖНЫМ УПРАВЛЕНИЕМ

В этих типах для приведения в действие клапана используется независимая управляющая среда.На рис. 7 показан поршневой клапан с угловым седлом и закрывающей пружиной. В негерметичном состоянии, седло клапана закрываются. Трехходовой электромагнитный клапан, который может быть установлен на приводе, управляет независимой управляющей средой. Когда электромагнитный клапан находится под напряжением, поршень поднимается против действия пружины, и клапан открывается. Версия с нормально открытым клапаном может быть получена, если пружина расположена на противоположной стороне поршня привода. В этих случаях независимая управляющая среда подключается к верхней части привода.Версии двойного действия, управляемые 4/2-ходовыми клапанами, не содержат пружины.

рисунок 6

МАТЕРИАЛЫ

Все материалы, из которых изготовлены клапаны, тщательно отбираются в соответствии с различными типами применения. Материал корпуса, материала уплотнения и материала соленоида выбирается для оптимизации функциональной надежности, совместимости с жидкостями, срока службы и стоимости.

КОРПУС

Корпуса клапанов нейтральной жидкости изготовлены из латуни и бронзы.Для жидкостей с высокими температурами, например пара, доступна коррозионно-стойкая сталь. Кроме того, полиамидный материал используется по экономическим причинам в различных пластиковых клапанах.

СОЛЕНОИДНЫЕ МАТЕРИАЛЫ

Все части электромагнитного привода, контактирующие с жидкостью, изготовлены из аустенитной коррозионно-стойкой стали. Таким образом обеспечивается устойчивость к коррозионному воздействию нейтральных или умеренно агрессивных сред.

МАТЕРИАЛЫ УПЛОТНЕНИЯ

Конкретные механические, термические и химические условия в приложении влияют на выбор материала уплотнения.Стандартным материалом для нейтральных жидкостей при температурах до 194 ° F обычно является FKM. Для более высоких температур используются EPDM и PTFE. Материал PTFE универсально устойчив практически ко всем техническим жидкостям.

НОМИНАЛЬНОЕ ДАВЛЕНИЕ — ДИАПАЗОН ДАВЛЕНИЯ

Все значения давления, приведенные в этом разделе, представляют собой манометрическое давление. Номинальное давление указано в фунтах на квадратный дюйм. Клапаны надежно работают в заданных диапазонах давления. Наши цифры действительны для диапазона пониженного напряжения от 15% до перенапряжения 10%.Если 3/2-ходовые клапаны используются в другом режиме, допустимый диапазон давления изменяется. Более подробная информация содержится в наших технических паспортах.

В случае работы в вакууме необходимо следить за тем, чтобы вакуум был на стороне выхода (A или B), в то время как более высокое давление, то есть атмосферное давление, подключено к входному отверстию P.

ЗНАЧЕНИЯ РАСХОДА

Скорость потока через клапан определяется конструкцией и типом потока.Размер клапана, требуемый для конкретного применения, обычно определяется номиналом Cv. Этот показатель разработан для стандартных единиц и условий, то есть расхода в галлонах в минуту и ​​использования воды с температурой от 40 ° F до 86 ° F при перепаде давления 1 фунт / кв. Дюйм. Приведены значения Cv для каждого клапана. Стандартизированная система значений расхода также используется для пневматики. В этом случае воздушный поток в SCFM вверх по потоку и падение давления 15 фунтов на квадратный дюйм при температуре 68 ° F.

СОЛЕНОИДНЫЙ ПРИВОД

Общей особенностью всех электромагнитных клапанов Omega является система соленоидов с эпоксидной изоляцией.В этой системе вся магнитная цепь — катушка, соединения, ярмо и направляющая трубка сердечника — объединены в один компактный блок. Это приводит к тому, что высокая магнитная сила удерживается в минимальном пространстве, обеспечивая первоклассную электрическую изоляцию и защиту от вибрации, а также внешних коррозионных воздействий.

КАТУШКИ

Катушки Omega доступны для всех обычно используемых напряжений переменного и постоянного тока. Низкое энергопотребление, особенно в случае соленоидных систем меньшего размера, означает, что возможно управление через полупроводниковую схему.

рисунок 7 Доступная магнитная сила увеличивается по мере уменьшения воздушного зазора между сердечником и заглушкой, независимо от того, используется ли переменный или постоянный ток. Электромагнитная система переменного тока имеет большую магнитную силу, доступную при большем ходе, чем сопоставимая соленоидная система постоянного тока. Графики характеристического хода в зависимости от силы, показанные на рис. 8, иллюстрируют эту взаимосвязь.

Ток, потребляемый соленоидом переменного тока, определяется индуктивностью. С увеличением хода индуктивное сопротивление уменьшается и вызывает увеличение потребления тока.Это означает, что в момент обесточивания ток достигает максимального значения. Противоположная ситуация применима к соленоиду постоянного тока, где потребление тока зависит только от сопротивления обмоток. Сравнение во времени характеристик включения соленоидов переменного и постоянного тока показано на рис. 9. В момент подачи питания, то есть когда воздушный зазор максимален, электромагнитные клапаны потребляют гораздо более высокие токи, чем когда сердечник полностью заполнен. втянут, т. е. воздушный зазор закрыт.Это приводит к высокой производительности и расширенному диапазону давления. В системах постоянного тока после включения тока поток увеличивается относительно медленно, пока не будет достигнут постоянный ток удержания. Таким образом, эти клапаны могут управлять только более низким давлением, чем клапаны переменного тока, при тех же размерах отверстий. Более высокое давление может быть получено только за счет уменьшения размера отверстия и, следовательно, пропускной способности.

ТЕПЛОВЫЕ ЭФФЕКТЫ

Когда на катушку соленоида подано напряжение, всегда выделяется определенное количество тепла.Стандартная версия электромагнитных клапанов имеет относительно небольшой подъем температуры. Они предназначены для достижения максимального повышения температуры 144 ° F в условиях непрерывной работы (100%) и при 10% перенапряжении. Кроме того, обычно допустима максимальная температура окружающей среды 130 ° F. Максимально допустимые температуры жидкости зависят от конкретных материалов уплотнения и корпуса. Эти цифры можно получить из технических данных.

ОПРЕДЕЛЕНИЕ ВРЕМЕНИ (VDE0580) ВРЕМЯ ОТВЕТА

Небольшие объемы и относительно высокие магнитные силы, связанные с электромагнитными клапанами, позволяют получить быстрое время отклика.Для специальных применений доступны клапаны с разным временем отклика. Время реакции определяется как время между подачей сигнала переключения и завершением механического открытия или закрытия.

ПО ПЕРИОДУ

Период включения определяется как время между включением и выключением тока соленоида.

ПЕРИОД ЦИКЛА

Общее время включенного и выключенного периодов — это период цикла. Предпочтительный период цикла: 2, 5, 10 или 30 минут.

ОТНОСИТЕЛЬНЫЙ РАБОЧИЙ ЦИКЛ

Относительный рабочий цикл (%) — это процентное отношение периода под напряжением к общему периоду цикла. Непрерывная работа (100% рабочий цикл) определяется как непрерывная работа до достижения установившейся температуры.

РАБОТА КЛАПАНА

Кодировка клапана всегда состоит из заглавной буквы. Сводка слева подробно описывает коды различных операций клапана и указывает соответствующие стандартные символы цепи.

ВЯЗКОСТЬ

Технические данные действительны для вязкости до указанного значения.Допускается более высокая вязкость, но в этих случаях диапазон допуска напряжения уменьшается, а время отклика увеличивается.

ДИАПАЗОН ТЕМПЕРАТУР

Температурные пределы для текучей среды всегда подробно описаны. Различные факторы, например однако условия окружающей среды, цикличность, скорость, допуск напряжения, детали установки и т. д. могут влиять на температурные характеристики. Поэтому приведенные здесь значения следует использовать только в качестве общего руководства. В случаях, когда речь идет о работе при экстремальных температурах, вам следует обратиться за советом в технический отдел Omega.

Техническое обучение Пример использования

Электромагнитный клапан прямого действия и пилотный электромагнитный клапан

Электромагнитный клапан является одним из продуктов для автоматизации управления жидкостями.По модели запуска электромагнитного клапана его можно разделить на два наиболее часто используемых типа: электромагнитный клапан с пилотным управлением и электромагнитный клапан прямого действия. Однако, если не выбрать правильный, электромагнитный клапан легко перестанет работать. Между тем, это несколько повлияет на безопасность приложения. Тогда как отличить электромагнитный клапан прямого действия от пилотного? Как выбрать подходящий для лучшего приложения? Следующее даст вам некоторое просветление.

Электромагнитный клапан прямого действия

Электромагнитный клапан прямого действия обычно используется в условиях малого калибра и низкого давления. Для такого типа конструкции, когда клапан открыт, он может запускаться при нулевом давлении, без необходимости минимального давления среды. Следовательно, он быстрее с точки зрения скорости пуска по сравнению с соленоидным клапаном с пилотным управлением. Таким образом, он особенно подходит для случаев, когда требуется быстрое подключение и отключение.

Энергопотребление электромагнитного клапана прямого действия выше, чем у электромагнитного клапана с пилотным управлением, обычно в диапазоне от 5 до 20 Вт. Под воздействием высокочастотного питания катушка легко перегорит. Но он прост в управлении и имеет широкую область применения. Он может нормально работать в условиях вакуума, отрицательного давления и нулевого давления. Тем не менее его диаметр не превышает 25 мм.

Электромагнитный клапан с пилотным управлением

Электромагнитный клапан с пилотным управлением обычно используется в случаях большого диаметра и высокого давления.Поскольку клапан открыт, минимальное давление электромагнитного клапана не может быть ниже 0,05 МПа. Значит, требуется пилотное давление, иначе его нельзя открыть. Кроме того, пропускная способность электромагнитного клапана с пилотным управлением больше, чем у электромагнитного клапана прямого действия. Он предъявляет относительно высокие требования к чистоте сжатого воздуха. Вместо этого к электромагнитному клапану прямого действия не предъявляются такие высокие требования.

Для электромагнитного клапана с пилотным управлением, электромагнитная головка небольшая, а потребление энергии низкое, обычно 0.1-0,2Вт. Его можно заряжать часто или на длительное время, не получая при этом ожогов. Это также экономия энергии. Что касается шкалы давления жидкости, то она имеет высокую верхнюю границу. Его можно устанавливать произвольно (необходимо настраивать), но при этом должны выполняться требования к условиям перепада давления жидкости. Из-за примесей в жидкости легко заблокировать отверстия пилотного клапана. Поэтому для жидкости он непригоден.

Различия между электромагнитным клапаном прямого и пилотного действия

  • Допуск давления
    Электромагнитный клапан с пилотным управлением имеет более высокий допуск по давлению жидкости, чем соленоидный клапан прямого действия.
  • Время отклика
    Пусковая скорость электромагнитного клапана прямого действия выше, чем у клапана прямого действия. В основном он используется для быстрого подключения и отключения. Потому что маленький клапан открывается первым, а главный клапан открывается позже, когда на электромагнитный клапан с пилотным управлением подается питание. Вместо этого соленоидный клапан прямого действия открывается непосредственно своим главным клапаном. Когда на электромагнитный клапан с пилотным управлением подается питание, сначала открывается маленький клапан, а позже — главный клапан.Однако, что касается электромагнитного клапана прямого действия, главный соленоид открывается напрямую.
  • Пропускная способность
    Пропускная способность электромагнитного клапана с пилотным управлением больше, чем у клапана прямого действия. Как правило, значение CV может достигать 3 и выше. Однако электромагнитный клапан прямого действия обычно имеет значение CV ниже 1.
  • Мощность и потребление
    Мощность и потребление электромагнитного клапана прямого действия выше, чем у клапана с пилотным управлением.
  • Чистота среды
    Электромагнитный клапан с пилотным управлением предъявляет относительно высокие требования к чистоте текущей среды. Однако к типу прямого действия таких строгих требований нет.

ATO.com предлагает вам высоконадежные пневматические электромагнитные клапаны с политическим управлением, 2-ходовые, 3-ходовые и 5-ходовые, а также 2-ходовые электромагнитные клапаны общего назначения для воздуха и воды.

Приводы и позиционеры регулирующих клапанов

Приводы

В блоке 5, «Теория управления», была использована аналогия для описания простого управления процессом:

• Мышца руки и кисть (привод) повернули клапан (управляемое устройство).

Рассмотрена одна форма регулирующего устройства, регулирующий клапан. Привод — следующая логическая область интереса.

Работа регулирующего клапана заключается в установке его подвижной части (плунжера, шара или лопасти) относительно неподвижного седла клапана. Привод клапана предназначен для точного позиционирования плунжера клапана в положении, определяемом управляющим сигналом.

Привод принимает сигнал от системы управления и в ответ переводит клапан в полностью открытое или полностью закрытое положение, или в более открытое, или в более закрытое положение (в зависимости от того, «включен / выключен» или используется непрерывное управляющее воздействие).

Есть несколько способов обеспечить это срабатывание. Этот модуль будет сосредоточен на двух основных:

Другие важные приводы включают гидравлические приводы и приводы прямого действия. Они обсуждаются в Блоке 7 «Управляющее оборудование: самодействующие элементы управления».

Пневматические приводы — управление и опции

Пневматические приводы обычно используются для приведения в действие регулирующих клапанов и доступны в двух основных формах; поршневые приводы (рисунок 6.6.1) и диафрагменных приводов (рисунок 6.6.2)

Поршневые приводы

Поршневые приводы

обычно используются там, где ход диафрагменного привода был бы слишком коротким или тяга слишком мала. Сжатый воздух подается к твердому поршню, находящемуся внутри твердого цилиндра. Поршневые приводы могут быть одностороннего или двустороннего действия, могут выдерживать более высокие входные давления и могут иметь цилиндры меньшего объема, которые могут действовать с высокой скоростью.

Мембранные приводы

В мембранных приводах сжатый воздух подается на гибкую мембрану, называемую диафрагмой.На рисунке 6.6.2 показана подвижная диафрагма, эффективная площадь которой практически постоянна на протяжении всего хода привода. Эти типы приводов одностороннего действия, в том смысле, что воздух подается только на одну сторону диафрагмы, и они могут быть как прямого действия (пружина втягивает), так и обратного действия (пружина выдвигает).

Обратное действие (пружина выдвигает)

Рабочее усилие определяется давлением сжатого воздуха, приложенного к гибкой диафрагме.Привод сконструирован так, что сила, возникающая в результате давления воздуха, умноженная на площадь диафрагмы, преодолевает силу, прилагаемую (в противоположном направлении) пружиной (пружинами).

Диафрагма (рисунок 6.6.2) толкается вверх, вытягивая шпиндель вверх, и если шпиндель подсоединен к клапану прямого действия, заглушка открывается. Привод сконструирован таким образом, что при определенном изменении давления воздуха шпиндель будет перемещаться достаточно, чтобы переместить клапан на весь его ход от полностью закрытого до полностью открытого.

По мере уменьшения давления воздуха пружина (и) перемещает шпиндель в противоположном направлении. Диапазон давления воздуха равен заявленному номиналу пружины привода, например 0,2 — 1 бар.

При работе с большим клапаном и / или более высоким перепадом давления требуется большее усилие для достижения полного движения клапана.

Для создания большего усилия требуется большая площадь диафрагмы или больший диапазон пружины. Вот почему производители средств управления предлагают ряд пневматических приводов, подходящих к ряду клапанов, включая увеличивающуюся площадь диафрагмы и выбор диапазонов пружин для создания различных сил.

На схемах на рисунке 6.6.3 показаны компоненты базового пневматического привода и направление движения шпинделя при увеличении давления воздуха.

Привод прямого действия (возвратная пружина)

Привод прямого действия спроектирован с пружиной под диафрагмой, при этом воздух подается в пространство над диафрагмой. В результате с увеличением давления воздуха шпиндель перемещается в направлении, противоположном направлению привода обратного действия.

Влияние этого движения на открытие клапана зависит от конструкции и типа используемого клапана и показано на рисунке 6.6.3.

Однако существует альтернатива, показанная на рисунке 6.6.4. Пневматический привод прямого действия соединен с регулирующим клапаном с заглушкой обратного действия (иногда называемой «подвесной заглушкой»).

Выбор между пневматическим управлением прямого и обратного действия зависит от того, в какое положение клапан должен вернуться в случае отказа подачи сжатого воздуха.Клапан должен быть закрыт или полностью открыт? Этот выбор зависит от характера приложения и требований безопасности. Имеет смысл закрывать паровые клапаны при отказе подачи воздуха, а клапаны охлаждения открываться при отказе подачи воздуха. Необходимо учитывать сочетание типа привода и клапана.

На рисунках 6.6.5 и 6.6.6 показан чистый эффект различных комбинаций.

Влияние перепада давления на подъем клапана

Воздух, подаваемый в камеру диафрагмы, является управляющим сигналом от пневматического регулятора.Наиболее широко используемое сигнальное давление воздуха составляет от 0,2 до 1 бара. Рассмотрим привод обратного действия (растягивающаяся пружина) со стандартной пружиной (пружинами) от 0,2 до 1,0 бар, установленный на клапан прямого действия (рисунок 6.6.7).

После калибровки клапана и привода в сборе (или «стендовой установки») он настраивается таким образом, чтобы давление воздуха 0,2 бара только начинало преодолевать сопротивление пружин и перемещать плунжер клапана от его гнезда.

По мере увеличения давления воздуха плунжер клапана постепенно перемещается все дальше от своего седла, пока, наконец, при давлении воздуха 1 бар клапан не откроется на 100%.Графически это показано на рисунке 6.6.7.

Теперь рассмотрим эту сборку, установленную в трубопроводе в системе понижения давления, с 10 бар изб. На входе и регулированием давления на выходе до 4 бар изб.

Перепад давления на клапане составляет 10–4 = 6 бар. Это давление действует на нижнюю часть плунжера клапана, создавая силу, стремящуюся открыть клапан. Эта сила добавляется к силе, создаваемой давлением воздуха в приводе.

Следовательно, если в привод подается воздух при 0.6 бар (на полпути между 0,2 и 1 бар), например, вместо того, чтобы клапан занимал ожидаемое положение открытия на 50%, фактическое открытие будет больше из-за дополнительной силы, создаваемой перепадом давления.

Кроме того, эта дополнительная сила означает, что клапан не закрывается при давлении 0,2 бар. Чтобы закрыть клапан в этом примере, управляющий сигнал должен быть уменьшен примерно до 0,1 бар.

Ситуация немного отличается с паровым клапаном, регулирующим температуру в теплообменнике, поскольку перепад давления на клапане будет варьироваться в пределах:

  • Минимум, когда технологический процесс требует максимального нагрева, а регулирующий клапан открыт на 100%.
  • Максимум, когда процесс идет до температуры и регулирующий клапан закрыт.

Давление пара в теплообменнике увеличивается с увеличением тепловой нагрузки. Это можно увидеть в Модуле 6.5, Примере 6.5.3 и Таблице 6.5.7.

Если давление перед регулирующим клапаном остается постоянным, то при повышении давления пара в теплообменнике перепад давления на клапане должен уменьшаться.

На рисунке 6.6.8 показана ситуация с воздухом, подаваемым на привод прямого действия.В этом случае сила на плунжере клапана, создаваемая перепадом давления, действует против давления воздуха. В результате, если в привод подается воздух под давлением 0,6 бар, например, вместо того, чтобы клапан занимал ожидаемое 50% -ное открытое положение, процент открытия будет больше из-за дополнительной силы, создаваемой перепадом давления. В этом случае управляющий сигнал необходимо увеличить примерно до 1,1. бар, чтобы полностью закрыть клапан.

Можно повторно откалибровать клапан и привод, чтобы учесть силы, создаваемые перепадом давления, или, возможно, использовать различные комбинации пружин, давления воздуха и привода.Такой подход может обеспечить экономичное решение для небольших клапанов с низким перепадом давления и там, где не требуется точное управление. Однако практичность такова:

  • Клапаны большего размера имеют большую площадь, на которую действует перепад давления, таким образом увеличивая создаваемые силы и увеличивая влияние на положение клапана.
  • Более высокие дифференциальные давления означают, что создаются более высокие усилия.
  • Клапаны и приводы создают трение, вызывая гистерезис.Клапаны меньшего размера, вероятно, будут иметь большее трение по сравнению с общими задействованными силами.

Решение состоит в том, чтобы установить позиционер на клапан / привод в сборе. (Более подробная информация о позиционерах представлена ​​далее в этом Модуле).

Примечание: Для простоты в приведенных выше примерах предполагается, что позиционер не используется, а гистерезис равен нулю.

Формулы, используемые для определения усилия, доступного для удержания клапана на его седле для различных комбинаций клапана и привода, показаны на рисунке 6.6.9.

Где:

A = эффективная площадь диафрагмы

Pmax = максимальное давление на привод (обычно 1,2 бар)

Smax = максимальная заводская настройка пружины

Pmin = минимальное давление на привод (обычно 0 бар)

Smin = Минимальная заводская установка пружины

Усилие, доступное для закрытия клапана, должно обеспечивать три функции:

  1. Для преодоления перепада давления жидкости в закрытом положении.
  2. Для преодоления трения в клапане и приводе, прежде всего в уплотнениях штока клапана и привода.
  3. Для обеспечения уплотняющей нагрузки между плунжером клапана и седлом клапана для обеспечения требуемой степени герметичности.

Производители регулирующих клапанов обычно предоставляют полную информацию о максимальных перепадах давления, против которых будут работать их различные комбинации клапана и привода / пружины; Таблица на Рисунке 6.6.10 является примером этих данных.

Примечание: При использовании позиционера необходимо обращаться к документации производителя для определения минимального и максимального давления воздуха.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *