Лекция 7. Газораспределительный механизм назначение и характеристика
Лекция 7. Газораспределительный механизм назначение и
характеристика
План
Назначение и характеристика.
Назначение и характеристика.
Газораспределительным называется механизм, осуществляющий открытие и закрытие впускных и выпускных клапанов двигателя.
Газораспределительный механизм служит для своевременного впуска горючей смеси или воздуха в цилиндры двигателя и выпуска из цилиндров отработавших газов. В двигателях автомобилей применяются газораспределительные механизмы с верхним расположением клапанов. Верхнее расположение клапанов позволяет увеличить степень сжатия двигателя, улучшить наполнение цилиндров горючей смесью или воздухом и упростить техническое обслуживание двигателя в эксплуатации.
Двигатели автомобилей могут иметь газораспределительные механизмы различных типов (рисунок 1.13), что зависит от типа двигателя и главным образом от взаимного расположения коленчатого вала, распределительного вала и впускных и выпускных клапанов. Число распределительных валов зависит от типа двигателя.
При верхнем расположении распределительный вал устанавливается в головке цилиндров, где размещены клапаны (см. рисунок 1.2, 1.5 — 1.7). Открытие и закрытие клапанов производится непосредственно от распределительного вала через толкатели или рычаги привода клапанов. Привод распределительного вала осуществляется от коленчатого вала с помощью роликовой цепи или зубчатого ремня.
Верхнее расположение распределительного вала упрощает конструкцию двигателя, уменьшает массу и инерционные силы возвратно-поступательно движущихся деталей механизма и обеспечивает высокую надежность и бесшумность его работы при большой частоте вращения коленчатого вала.
Цепной и ременный приводы распределительного вала также обеспечивают бесшумную работу газораспределительного механизма.
При нижнем расположении распределительный вал устанавливается в блоке цилиндров (см. рисунок 1.3, 1.4, 1.8) рядом с коленчатым валом. Открытие и закрытие клапанов производится от распределительного вала через толкатели, штанги и коромысла. Привод распределительного вала осуществляется с помощью шестерен от коленчатого вала. При нижнем расположении распределительного вала усложняется конструкция газораспределительного механизма и двигателя. При этом возрастают инерционные силы возвратно-поступательно движущихся деталей газораспределительного механизма.
Число распределительных валов в газораспределительном механизме и число клапанов на один цилиндр (см. рис. 2.7 — 2.15) зависят от типа двигателя. Так, при большем числе впускных и выпускных клапанов обеспечивается лучшее наполнение цилиндров горючей смесью и лучшая их очистка от отработавших газов.
Газораспределительный механизм
По числу распределительных валов
С одним
валом
С двумя
валами
По расположению распределительного вала
С верхним
расположением вала
С нижним расположением вала
По приводу распределительного вала
С шестеренным приводом
С цепным приводом
С зубчато-ременным приводом
По числу клапанов на цилиндр
С двумя
клапанами
С тремя
клапанами
С четырьмя клапанами
С пятью
клапанами
Рисунок – 1.
Лекция 8. Конструкция и работа газораспределительного механизма
Газораспределительные механизмы независимо от расположения распределительных валов в двигателе включают в себя клапанную группу, передаточные детали и распределительные валы с приводом.
В клапанную группу входят впускные и выпускные клапаны, направляющие втулки клапанов и пружины клапанов с деталями крепления.
Передаточными деталями являются толкатели, направляющие втулки толкателей, штанги толкателей, коромысла, ось коромысел; рычаги привода клапанов, регулировочные шайбы и регулировочные болты. Однако при верхнем расположении распределительного вала толкатели, направляющие втулки и штанги толкателей, коромысла и ось коромысел обычно отсутствуют.
На рисунке 1.14 представлен газораспределительный механизм двигателя (см. рисунок 2.7) легкового автомобиля ВАЗ с верхним расположением клапанов, с верхним расположением распределительного вата с цепным приводом и двумя клапанами на цилиндр.
Газораспределительный механизм состоит из распределительного вала 14 с корпусом подшипников 13, привода распределительного вала, рычагов 11 привода клапанов, опорных регулировочных болтов 18 клапанов 1 и 22, направляющих втулок 4, пружин 7 и 8 клапанов с деталями крепления.
Распределительный вал обеспечивает своевременное открытие и закрытие клапанов. Распределительный вал — пятиопорный, отлит из чугуна. Он имеет опорные шейки 15 и кулачки 16 (впускные и выпускные). Внутри вала проходит канал, через который подводится масло от средней опорной шейки к другим шейкам и кулачкам. К переднему торцу вала крепится ведомая звездочка 24 цепного привода. Вал устанавливается в корпусе 13 подшипников, отлитом из алюминиевого сплава, который закреплен на верхней плоскости головки блока цилиндров.
Привод распределительного вала осуществляется через установленную на нем ведомую звездочку 24 двухрядной роликовой цепью 25 от ведущей звездочки 28 коленчатого вала. Этой цепью также вращается звездочка 27 вала привода масляного насоса. Привод распределительного вала имеет полуавтоматический натяжной механизм, состоящий из башмака и натяжного устройства. Цепь натягивается башмаком 30, на который воздействуют пружины натяжного устройства 31. Для гашения колебаний ведущей ветви цепи служит успокоитель 26. Башмак и успокоитель имеют стальной каркас с привулканизированным слоем резины. Ограничительный палец 29 предотвращает спадание цепи при снятии на автомобиле ведомой звездочки распределительного вала.
Клапаны открывают и закрывают впускные и выпускные каналы. Клапаны установлены в головке блока цилиндров в один ряд под углом к вертикальной оси цилиндров двигателя. Впускной клапан 7 для лучшего наполнения цилиндров горючей смесью имеет головку большего диаметра, чем выпускной клапан. Он изготовлен из специальной хромистой стали, обладающей высокой износостойкостью и теплопроводностью. Выпускной клапан 22 работает в более тяжелых температурных условиях, чем впускной. Он выполнен составным. Его головку делают из жаропрочной хромистой стали, а стержень — из специальной хромистой стали.
Каждый клапан состоит из головки 2 и стержня 3. Головка имеет конусную поверхность (фаску), которой клапан при закрытии плотно прилегает к седлу из специального чугуна, установленному в головке блока цилиндров и имеющему также конусную поверхность. Стержень клапана перемещается в чугунной направляющей втулке 4, запрессованной и фиксируемой стопорным кольцом 23 в головке блока цилиндров, обеспечивающей точную посадку клапана. На втулку надевается маслоотражательный колпачок 5 из маслостойкой резины. Клапан имеет две цилиндрические пружины: наружную 8 и внутреннюю 7.
Газораспределительный механизм работает следующим образом.
При вращении распределительного вала его кулачки в соответствии с порядком работы цилиндров двигателя поочередно набегают на рычаги 11. Рычаги, поворачиваясь одним концом на сферических головках регулировочных болтов 18, другим концом воздействуют на стержни клапанов, преодолевают сопротивление пружин 7, 8 и открывают клапаны. При дальнейшем повороте распределительного вала кулачки сходят с рычагов, которые возвращаются в исходное положение под действием пружин 17, а клапаны закрываются под действием пружин 7 и 8.
При работе двигателя распределительный вал вращается в два раза медленнее, чем коленчатый вал. Это связано с тем, что за период рабочего цикла двигателя, протекающего за два оборота коленчатого вала, впускной и выпускной клапаны каждого цилиндра должны открываться по одному разу.
Нормальная работа газораспределительного механизма во многом зависит от теплового зазора между кулачками распределительного вала и рычагами привода клапанов. Этот зазор обеспечивает плотное закрывание клапанов при их удлинении в результате нагрева во время работы. При недостаточном тепловом зазоре или его отсутствии происходит неполное закрытие клапанов, что приводит к утечке газов, быстрому обгоранию фасок головок клапанов и снижению мощности двигателя /4/.
1, 22 — клапаны; 2 — головка; 3 — стержень; 4, 20 — втулки; 5 — колпачок; 6 — шайбы; 7, 8, 17—пружины; 9~ тарелка; 10— сухарь; 11 — рычаг; 12 — фланец; 13 — корпус подшипников; 14 — распределительный вал; 15 — шейка; 16 — кулачок; 18 — болт; 19 — гайка; 21 — пластина; 23 — кольцо; 24, 27, 28 — звездочки; 25 — роликовая цепь; 26 — успокоитель; 29 — палец; 30 — башмак; 31 —натяжное устройство
Рисунок – 1.14 Газораспределительный механизм двигателей легковых автомобилей ВАЗ
На рисунок 2.21 показан газораспределительный механизм двигателя с нижним расположением распределительного вала и двумя клапанами на цилиндр.
Механизм включает в себя распределительный вал 1, привод распределительного вала, толкатели 9, штанги 8 толкателей, регулировочные винты 7, ось 6 коромысел, коромысла 5, клапаны 2, направляющие втулки 3 клапанов и пружины 4 с деталями крепления.
Распределительный вал стальной, кованый, имеет пять опорных шеек 13, кулачки 15 (впускные и выпускные), шестерню 12 привода масляного насоса и распределители зажигания, а также эксцентрик 14 привода топливного насоса. Вал установлен в блоке цилиндров двигателя на запрессованных биметаллических втулках, изготовленных из стали и покрытых изнутри слоем свинцовистого баббита.
Привод распределительного вала осуществляется через прикрепленную к его переднему концу ведомую шестерню 10, изготовленную из текстолита.
Она находится в зацеплении с ведущей стальной шестерней 11, установленной на коленчатом валу. Обе шестерни выполнены косозубыми для уменьшения шума и плавной работы. Передаточное отношение шестеренного привода — отношение числа зубьев ведущей шестерни к числу зубьев ведомой шестерни — равно 1:2, т.е. ведомая шестерня 10 имеет в два раза больше зубьев, чем ведущая шестерня 11. Это необходимо для того, чтобы за два оборота коленчатого вала распределительный вал совершал один оборот, обеспечивая за полный цикл двигателя открытие впускного и выпускного клапанов каждого цилиндра по одному разу.
1 — распределительный вал; 2 — клапан; 3, 20 — втулки; 4 — пружина; 5 — коромысло; б — ось; 7 – винт; 8 — штанга; 9 — толкатель; 10— 12 — шестерни; 13 — шейка; 14 — эксцентрик; 15 — кулачок; 16 — сухари; 17, 19 — шайбы; 18 — колпачок
Рисунок – 1. 15 Газораспределительный механизм с нижним расположением распределительного вала
Толкатели 9 служат для передачи усилия от кулачков распределительного вала к штангам 8. Они изготовлены из стали, и их торцы, соприкасающиеся с кулачками, выполнены сферическими и наплавлены отбеленным чугуном для уменьшения изнашивания. Внутри толкатели имеют сферические углубления для установки штанг. Толкатели перемещаются в направляющих отверстиях блока цилиндров.
Штанги 8 передают усилие от толкателей к коромыслам 5. Они изготовлены из алюминиевого сплава и на их концы напрессованы стальные наконечники.
Коромысла 5 предназначены для передачи усилия от штанг к клапанам. Коромысла стальные, имеют неравные плечи для уменьшения высоты подъема толкателей и штанг, в их короткие плечи ввернуты винты 7 для регулировки теплового зазора. Коромысла установлены на втулках на полой оси 6, закрепленной в головке цилиндров.
Клапаны 2 изготовлены из легированных жаропрочных сталей. Для лучшего наполнения цилиндров двигателя горючей смесью диаметр головки у впускного клапана больше, чем у выпускного.
Пружины 4 изготовлены из рессорно-пружинной стали. Деталями их крепления являются шайбы 77 и 19, сухари 16 и втулки 20. Резиновые маслоотражательные колпачки 18, установленные на впускных клапанах, исключают проникновение масла через зазоры между направляющими втулками и стержнями клапанов.
Газораспределительный механизм работает следующим образом. При вращении распределительного вала его кулачки поочередно набегают на толкатели 9 в соответствии с порядком работы цилиндров двигателя. Усилие от толкателей 9 через штанги 8 передается к коромыслам 5, которые, поворачиваясь на оси 6, воздействуют на стержни клапанов 2, преодолевают сопротивление пружин 4 и открывают клапаны. При дальнейшем повороте распределительного вала кулачки сходят с толкателей, которые вместе со штангами и коромыслами возвращаются в исходное положение под действием пружин, закрывающих также клапаны.
В настоящее время в газораспределительных механизмах двигателей (см. рисунок 1.5) легковых автомобилей для привода впускных и выпускных клапанов находят широкое применение гидравлические толкатели.
Гидравлические толкатели автоматически обеспечивают постоянный (беззазорный) контакт кулачков распределительного вала с клапанами, компенсируют износ сопрягаемых деталей (распределительного вала и клапанной группы) и исключают необходимость регулировки теплового зазора клапанов в эксплуатации.
Гидравлический толкатель (рисунок 1.16) состоит из корпуса, компенсатора и шарикового клапана. В корпусе 2толкателя приварена направляющая втулка 1 в которой стопорным кольцом 3 закреплен компенсатор. Компенсатор состоит из корпуса 4 и поршня 5, между которыми установлена разжимная пружина 7, а в поршне размещен шариковый клапан 6. Внутренняя полость компенсатора заполнена маслом, которое поступает в компенсатор при открытом клапане 6 из корпуса гидротолкателя. В корпус гидротолкателя масло подастся из масляной магистрали головки цилиндров через наружную канавку и отверстие, выполненные в корпусе.
Гидротолкатель каждого клапана установлен между торцом стержня клапана и кулачком распределительного вала в отверстии, расточенном в головке цилиндров.
Гидравлический толкатель работает следующим образом.
При набегании кулачка распределительного вала на толкатель усилие от кулачка передается на торец его корпуса 2, который перемещает поршень 5 компенсатора, преодолевая сопротивление пружины 7. При этом шариковый клапан 6 закрывается и запирает находящееся внутри компенсатора масло, через которое и передается усилие от рас-
пределительного вала к впускному или выпускному клапану, и клапан открывается. При перемещении поршня 5 часть масла из компенсатора через зазор между поршнем и корпусом 4 вытекает в корпус 2 толкателя, и поршень немного вдвигается в корпус 4 компенсатора.
При сбегании кулачка распределительного вала с толкателя пружина 7 прижимает поршень 5 к корпусу 2 толкателя, обеспечивая его беззазорный контакт с кулачком распределительного вала. При этом шариковый клапан б открывается, впускает масло в компенсатор, а впускной или выпускной клапан закрывается.
Фазы газораспределения. Продолжительность открытия впускных и выпускных клапанов, выраженная в градусах угла поворота коленчатого вала относительно мертвых точек, называется фазами газораспределения.
Наивысшие мощностные показатели работы двигателя могуч’ быть достигнуты при наилучшем наполнении цилиндров горючей смесью и наиболее полной их очистке от отработавших газов. Поэтому продолжительность фаз впуска и выпуска установлена больше 180° из-за того, что моменты открытия и закрытия клапанов не совпадают с положениями поршня в верхней и нижней мертвых точках. Так, впускной клапан открывается в конце такта выпуска до прихода поршня в ВМТ с опережением на 12° (рисунок 1. 17, а) у двигателей заднеприводных автомобилей ВАЗ и 33° (рисунок 1.17, б) у двигателей переднеприводных автомобилей ВАЗ, а закрывается в начале такта сжатия после прихода поршня в НМТ с запаздыванием соответственно на 40 и 79°. Продолжительность впуска горючей смеси в цилиндры двигателей составляет соответственно 232 и 292°, что обеспечивает наилучшее их наполнение.
Выпускной клапан открывается в конце такта рабочего хода до прихода поршня в НМТ с опережением на 42 и 47°, а закрывается в начале такта впуска после прихода поршня в ВМТ с запаздыванием соответственно на 10 и 17°. Продолжительность выпуска отработавших газов из цилиндров двигателей составляет соответственно 232 и 244°, что обеспечивает наиболее полную их очистку от газов.
В конце такта выпуска и в начале такта впуска происходит перекрытие клапанов, когда оба клапана (впускной и выпускной) открыты одновременно. Продолжительность перекрытия клапанов составляет для рассматриваемых двигателей соответственно 22 и 50°. Перекрытие клапанов длится небольшой промежуток времени и не оказывает влияния на работу двигателей.
В процессе эксплуатации необходимо следить за правильной установкой фаз газораспределения. Она обеспечивается совмещением специальных меток на шкивах распределительного и коленчатого валов и соответствующих меток на двигателе или совмещением меток на шестернях привода. Постоянство фаз газораспределения сохраняется только при соблюдении регулируемых тепловых зазоров в газораспределительном механизме. При увеличении зазоров продолжительность открытия клапанов уменьшается, а при уменьшении — увеличивается.
1 — втулка; 2, 4 — корпуса; 3 — кольцо; 5 — поршень; 6 — клапан; 7 — пружина
Рисунок – 1.16 Гидравлический толкатель
Рисунок – 1.17 Фазы газораспределения двигателей
Контрольные вопросы
Каково назначение газораспределительного механизма?
Назовите основные части и детали газораспределительного механизма.
Что называется фазами газораспределения? Зачем нужно перекрытие клапанов?
Для чего выполняется регулировка газораспределительного механизма?
10
Назначение и принцип работы ГРМ
ГРМ — это один из наиболее ответственных и сложных узлов в автомобиле. Газораспределительный механизм управляет впускными и выпускными клапанами двигателя внутреннего сгорания. На такте впуска ГРМ выполняет открытие впускного клапана, благодаря чему воздух и бензин попадают в камеру сгорания. На такте выпуска открывается выпускной клапан и удаляются отработанные газы. Давайте подробно рассмотрим устройство, принцип действия, типичные поломки и многое другое.
Основные узлы ГРМ
Основным элементом газораспределительного механизма является распредвал. Их может быть несколько или же один в зависимости от конструктивных особенностей ДВС. Распределительный вал выполняет своевременное открытие и закрытие клапанов. Изготавливается из стали или чугуна, а устанавливается в блоке цилиндров или картере.
Отсюда можно сделать вывод, что есть несколько конструкций двигателей — с верхним и нижним расположением распределительного вала. На валу имеются кулачки, которые при вращении распредвала оказывают действие через толкатели на клапан. Для каждого клапана предусмотрен свой толкатель и кулачок.
Впускные и выпускные клапаны необходимы для подачи топливно-воздушной смеси в камеру сгорания и удаления отработанных газов. Впускные клапаны выполняют из стали с хромированным покрытием, а выпускные — из жаропрочной стали. Клапан имеет стержень, на котором крепится тарелка. Обычно впускные и выпускные клапаны отличаются между собой диаметром тарелки. Также к ГРМ стоит отнести штанги и привод.
Устройство газораспределительного механизма
Стоит еще несколько слов сказать об устройстве впускных и выпускных клапанов. Стержень клапана имеет цилиндрическую форму и канавку для установки пружины. Движение клапанов возможно только в одном направлении — к втулкам. Для того чтобы моторное масло не попадало в камеру сгорания, ставят уплотнительные колпачки из маслостойкой резины.
Есть еще такой узел, как привод ГРМ. Это передача вращения с коленчатого на распределительный вал. Примечательно то, что на два оборота коленвала приходится один распределительного. Собственно, это является рабочим циклом, при котором происходит открытие клапанов. Стоит заметить, что мотор с двумя распределительными валами более мощный и имеет выше КПД.
Особенно это заметно на высоких оборотах. К примеру, когда ДВС оснащается одним распредвалом, то маркировка выглядит так: 1,6 литра и 8 клапанов. А вот два вала — это уже всегда в два раза большее количество клапанов, то есть 16. Ну а сейчас пойдем дальше.
Принцип работы газораспределительного механизма
Принцип действия на всех моторах, если речь идет о таких типах, как ДВС, практически одинаков. Всю работу можно условно разделить на 4 этапа:
- впрыск топлива;
- сжатие;
- рабочий цикл;
- удаление отработанных газов.
Подача горючего в камеру сгорания осуществляется за счет движения коленчатого вала из верхней мертвой точки (ВМТ) в нижнюю мертвую точку (НМТ). При начале движения поршня открываются впускные клапаны, и топливно-воздушная смесь подается в камеру сгорания. После этого клапан закрывается, коленвал за это время проворачивается на 180 градусов от исходного положения.
После того как поршень доходит до НМТ, он поднимается вверх. Следовательно, начинается фаза сжатия. Когда достигается ВМТ, фаза считается законченной. Коленвал в это время проворачивается на 360 градусов от своего начального положения.
Рабочий ход и удаление газов
Когда поршень достигает ВМТ, происходит воспламенение рабочей смеси от свечей зажигания. В это время достигается максимальный момент сжатия и оказывается высокое давление на поршень, который начинает движение к нижней мертвой точке. Когда поршень опустится, то рабочий ход можно считать законченным.
Заключительная фаза — удаление отработанных газов из камеры сгорания. Когда поршень достиг НМТ и начинает свое движение к ВМТ, происходит открытие выпускного клапана и избавление камеры сгорания от газов, которые образовались в результате горения топливно-воздушной смеси.
При достижении поршня НМТ фазу удаления газов принято считать законченной. При этом коленчатый вал от своего начального положения проворачивается на 720 градусов. Для достижения максимальной точности необходима синхронизация газораспределительного механизма двигателя с коленчатым валом.
Основные неисправности ГРМ
От того, насколько своевременно и качественно будет проводиться техническое обслуживание мотора, зависит его техническое состояние. В процессе эксплуатации все элементы подвергаются износу. Это касается и ГРМ. Основные неисправности механизма выглядят следующим образом:
- Низкая компрессия и хлопки в выпускной системе. В процессе эксплуатации двигателя внутреннего сгорания образуется нагар, который становится причиной неплотного прилегания клапана к седлу. На клапанах появляются раковины, а иногда и сквозные отверстия (прогар). Также компрессия падает из-за деформации головки блока цилиндров и прохудившейся прокладки.
- Заметное падение мощности и тяги, посторонние металлические стуки и троение. Основная причина — неполное открытие впускных клапанов в результате большого теплового зазора. Часть воздушно-топливной смеси не попадает в камеру сгорания. Это происходит из-за выхода из строя гидрокомпенсаторов.
- Механический износ деталей. Происходит в процессе эксплуатации двигателя и считается нормальным явлением. В зависимости от периодичности и качества обслуживания ДВС признаки критического износа на одном типе силового агрегата могут проявляться при различном пробеге.
- Износ цепи или ремня ГРМ. Цепь растягивается и может перескочить или вовсе порваться. Это касается и ремня, срок службы которого ограничен не только пробегом, но и временем.
Как выполняется диагностика ГРМ?
Газораспределительный механизм ВАЗ или любой другой машины работает по одному принципу. Следовательно, способы диагностики и основные неисправности, как правило, одни и те же. Основные поломки — неполное открытие клапанов и неплотное прилегание к гнездам.
Если клапан не закрывается, то появляются хлопки во впускном и выпускном коллекторах, а также снижается тяга и мощность мотора. Происходит это из-за нагара на гнездах и клапанах, а также по причине потери упругости пружин.
Диагностика проводится довольно просто. Первым делом проверяют фазы газораспределения. Дальше замеряют тепловые зазоры между коромыслом и клапаном. Помимо этого проверяется зазор между седлом и клапаном. Если говорить о механическом износе деталей, то больше всего поломок связано с критическим износом шестеренок, в результате чего ремень или цепь неплотно прилегают к зубу и возможно проскальзывание.
Фазы ГРМ и тепловой зазор
Самостоятельно продиагностировать состояние фаз газораспределительного механизма довольно сложно. Для этого необходим набор таких инструментов, как малка-угломер, моментоскоп, указатель и др. Процедура выполняется на заглушенном двигателе.
Малка-угломер устанавливается на шкив коленчатого вала. Проверяется период открытия клапана всегда в 1-м цилиндре. Для этого вручную проворачивают коленчатый вал до появления зазора между клапаном и коромыслом. С помощью малки-угломера на шкиве определяют зазор и делают выводы.
Самый простой, но наименее точный метод замера теплового зазора выполняется с помощью набора пластин длиной 100 мм и максимальной толщиной 0,5 мм. Выбирается один из цилиндров, на котором будут проводиться замеры. Его необходимо довести до ВМТ с помощью ручного поворота коленчатого вала.
В сформировавшийся зазор вставляются пластины. Метод не дает 100%-й точности и результата. Ведь допустимая погрешность зачастую слишком велика. Кроме того, если имеется неравномерный износ бойка коромысла и штока, то полученные данные вообще можно во внимание не брать.
Обслуживание ГРМ
Как показывает практика, большая часть поломок газораспределительного механизма связана с несвоевременным ТО. К примеру, производитель рекомендует менять ремень каждые 120 тысяч километров. Владелец же не берет во внимание эти данные и использует ремень по 200 тысяч. В результате последний рвется, сбиваются метки ГРМ, клапаны сталкиваются с поршнями и требуется капитальный ремонт.
Это же касается и такого элемента механизма, как водяной насос. Он создает необходимое давление охлаждающей жидкости для ее циркуляции по системе. Разрушение крыльчатки или выход из строя уплотнительной прокладки приводят к серьезным проблемам с двигателем. Ролики и натяжитель тоже подлежат замене. Любой подшипник рано или поздно выходит из строя.
Если своевременно менять ролики и сам натяжитель, то шанс столкнуться с такой проблемой минимален. Заклинивание ролика очень часто приводит к обрыву ремня. Именно поэтому необходимо выполнять своевременное техническое обслуживание газораспределительного механизма.
О ремонте ГРМ
В большинстве случаев при обрыве ГРМ на средних и высоких оборотах требуется капитальный ремонт двигателя. Практически всегда замене подлежит цилиндро-поршневая группа. Но даже при нормальной эксплуатации детали подвергаются износу.
Первым делом страдают шейки, кулачки, а также существенно увеличиваются зазоры в подшипниках коленвала. Выполняются все работы только специалистами при помощи высокоточного оборудования.
Все проточки делаются под ремонтные размеры, которые закладываются заводом-изготовителем. Обычно предусмотрено 2 капитальных ремонта, после чего двигатель необходимо менять на аналогичный.
Немного информации о метках
Как уже было отмечено выше, ГРМ — узел сложный и крайне ответственный. Если привод газораспределительного механизма не синхронизирован, то завести автомобиль не выйдет. Основная причина рассинхронизации — сбитые метки. Ремень или цепь могут ослабиться из-за выхода из строя натяжителя или естественного износа.
Метки выставляются относительно коленчатого вала. Для этого снимается шкив, что позволит нам увидеть шестеренку, на ней есть метка, которая должна совпадать с отметкой на масляном насосе или блоке. Соответствующие метки имеются и на распределительных валах.
Используя инструкцию по эксплуатации, выставляют метки ГРМ. Очень важно понимать, что от правильности выполнения работ зависит результат. Перепрыгнувший на один зуб ремень — это не страшно, мотор будет работать, но с отклонениями. Если же метка уйдет на несколько делений, то завести авто будет невозможно.
Качественные запасные части
Мы разобрались с тем, каково назначение газораспределительного механизма. Вы уже знаете, что это очень ответственный узел, который должен регулярно обслуживаться. Но важно учитывать еще и качество запасных частей. Ведь именно от них зачастую зависит срок службы ГРМ.
Квалифицированная установка оригинальных комплектующих системы газораспределительного механизма практически полностью гарантирует бесперебойную работу узла в течение срока до планового обслуживания. Что касается сторонних производителей, то тут нет никаких гарантий, особенно если речь идет о комплектующих из Китая посредственного качества.
Подведем итоги
Чтобы узел работал исправно, его необходимо вовремя обслуживать. Стоит понимать, что чем сложнее мотор, тем дороже обойдется комплект ГРМ. Но экономить однозначно не стоит. Ведь скупой платит дважды. Поэтому лучше один раз купить дорогие запасные части и спать спокойно.
Замену водяной помпы при ее неисправности можно приравнять к полной замене механизма. Далеко не любая конструкция двигателя позволяет допускать такие ошибки, ведь это будет стоить приличных денег. На некоторых силовых агрегатах обрыв ремня не приводит к капиталке, но на это рассчитывать не стоит.
Смотрите также:Контрольные вопросы
1. Каково назначение перегородок в блок-картере?
2. Каковы особенности устройства цилиндра и его головки в двигателе воздушного охлаждения?
3. Каково назначение поршневых колец?
1.3.2. Газораспределительный ме6ханизм (грм)
В четырехтактных двигателях применяют клапанный газораспределительный механизм (рис. 15), служащий для своевременной подачи в цилиндры воздуха (в дизелях) или горючей смеси (в карбюраторных двигателях) и для выпуска из цилиндров отработавших газов.
Рис. 15. Схемы газораспределительных механизмов:
а — с грибовидным толкателем; контргайка; б — с качающимся толкателем; стойка валика коромысла; 1 — промежуточная шестерня; штанга; 2 — поршень; 3 — клапан; 4 — головка цилиндров; шестерня распределительного вала; 5 — направляющая втулка;
6 — пружины клапана; 7 — коромысло; 8 — ось (валик) коромысла; 9 — регулировочный винт; 10 — контргайка; 11 — стойка валика коромысла; 12 — штанга; 13 — толкатель; 14 — распределительный вал; 15 — шестерня распределительного вала; 16 — шестерня коленчатого вала; 17 — валик декомпрессора
Для этого клапаны в определенные моменты открывают и закрывают впускные и выпускные каналы головки цилиндров, которые сообщают цилиндры двигателя с впускными и выпускными трубопроводами. Различают два вида клапанных газораспределительных механизмов: с подвесными клапанами, расположенными в головке цилиндров, и боковыми, размещенными в блок-картере. В газораспределительный механизм входят впускные и выпускные клапаны с пружинами, передаточные детали от распределительного вала к клапанам, распределительный вал и шестерни.
Действует газораспределительный механизм следующим образом. Коленчатый вал с помощью шестерен вращает распределительный вал 14, каждый кулачок которого, набегая на толкатель 13, поднимает его вместе со штангой 12. Штанга поднимает один конец коромысла 7, а другой движется вниз и давит на клапан 3, опуская его и сжимая пружины б клапана. Когда кулачок распределительного вала сходит с толкателя, штанга и толкатель опускаются, а клапан под действием пружин, садясь в седло, плотно закрывает отверстие клапана.
Периоды с момента открытия клапанов до момента их закрытия, выраженные в градусах поворота коленчатого вала, называют фазами газораспределения. Их изображают в виде таблицы или круговой диаграммы. На рисунке 16 приведена диаграмма фаз газораспределения тракторного двигателя Д-240.
Рис. 16. Диаграммы газораспределения фаз | Опережение открытия и запаздывание закрытия впускного клапана позволило продлить впуск воздуха от 180° до 242°. После закрытия впускного клапана дизеля воздух сжимается, топливо впрыскивается в камеру сгорания, происходит рабочий ход поршня. Выпуск отработавших газов из цилиндра, или открытие впускного клапана, начинается до прихода поршня в НМТ за 56° по углу поворота коленчатого вала. К моменту прихода поршня в НМТ часть отработавших газов выходит из цилиндра, что уменьшает противодавление газов на поршень при выталкивании во время такта выпуска. Выпускной клапан закрывается после прохода поршнем ВМТ. Продолжительность открытия |
выпускного клапана по углу поворота коленчатого вала — 252°. В конце такта выпуска и начале такта впуска оба клапана некоторое время открыты одновременно, что соответствует, 32° по углу поворота коленчатого вала. Такое перекрытие клапанов способствует лучшей очистке цилиндра от отработавших газов в результате его продувки чистым воздухом.
Клапан 1 (рис. 17) состоит из тарелки и стержня. Переход от тарелки к стержню сделан плавным, что придает необходимую прочность, улучшает теплоотвод и уменьшает сопротивление движению отработавших газов. Для лучшего заполнения цилиндров воздухом, диаметры тарелок впускных клапанов больше диаметров тарелок выпускных клапанов.
Рис.17. Клапанный механизм:
1 — клапан; 2 — направляющая втулка клапана; 3 — тарелка пружины; 4 — сухарики; 5 — втулка сухариков; 6 — пружины; 7 — опорная шайба пружины;
А — фаска клапана
Сухарики 4 представляют собой коническое кольцо, разрезанное на две половинки. В некоторых двигателях между тарелкой пружин и сухариками находится втулка, которая зажимает сухарики и опирается на дно тарелки нижним узким торцом. Благодаря этому, клапан может проворачиваться относительно тарелки под воздействием коромысла и вследствие вибрации пружин. Это благоприятно отражается на работоспособности трущихся поверхностей клапана, его втулки и седлами обеспечивает их равномерный износ.
Направляющая втулка 2 обеспечивает направленное движение клапана и движение его в седло без перекоса.
Пружина 6 создает усилие, необходимое для закрытия клапана и плотной его посадки в седло.
Коромысло 5 (рис. 18) представляет собой двухплечий рычаг, изготовленный из стали. В средней его части, имеется утолщение с отверстием, куда запрессована втулка 11. На одном (длинном) плече коромысло имеет закаленный боек, которым оно давит на клапан, а на другом -резьбовое отверстие; в него ввертывают регулировочный винт 2, с помощью которого устанавливают зазор между клапаном и бойком коромысла, и обеспечивают плотное закрытие клапана.
Штанга 1 служит для передачи усилия от толкателя к коромыслу. Верхний наконечник может иметь шаровидную форму или углубление со сферической поверхностью. На него опирается головка регулировочного винта, ввернутого в коромысло.
Рис. 18. Коромысла и штанги
Рис. 19. Толкатели:
а — традиционные толкатели, б — качающийся толкатель;
1 — штанга; 2 — грибовидный толкатель; 3 — втулка толкателя; 4 — толкатель с выпуклым днищем; 5 — кулачки распределительного вала; 6 — толкатель в виде стаканчика; 7 — грибовидный толкатель с кольцевой выемкой; 8 — ось ролика; 9 — ролик; 10 — пятка; 11 — втулка; 12 — корпус толкателя
Толкатели (рис. 19) изготавливают из стали. По конструкции бывают цилиндрическими, грибовидными или качающимися роликовыми. На нижней части этих толкателей имеется плоская или сферическая опорная поверхность.
Для равномерного изнашивания толкатели при работе двигателя совершают одновременно поступательное и вращательное движение.
Распределительный вал 8 (рис. 20) нужен для своевременного открытия и закрытия клапанов в определенной последовательности. Заодно с валом изготовлены кулачки и опорные шейки. Каждый кулачок воздействует на один клапан — впускной или выпускной. В некоторых автомобильных двигателях заодно с распределительным валом изготовлены эксцентрик 5 привода бензинового насоса и шестерни 13 привода масляного насоса.
Рис. 20. Распределительный механизм V-образного двигателя (ЗИЛ-130): а — устройство; б, в — схемы ограничения осевого люфта
распределительного вала;
1 — шестерня; 2 — упорный фланец; 3 — распорное кольцо; 4 — опорные шейки; 5 — эксцентрик привода топливного насоса; б — кулачки выпускных клапанов; 7 — кулачки впускных клапанов; 8 — распределительный вал; 9 — втулка; 10 — впускной клапан; 11 — штанга; 12 — коромысло; 13 — шестерня привода масляного насоса и прерывателя; 14 — крышка распределительных шестерен; 15-подпятник
В одной (или двух) из шеек распределительного вала имеется отверстие (сечение II-II) для подвода масла в канал блока, откуда оно подается к коромыслам. Масло в канал поступает в момент совмещения отверстия в шейке с каналом в блоке. На переднем конце распределительного вала большинства двигателей установлена приводная шестерня 1. Между шестерней и передней шейкой вала установлены распорное кольцо 3 и ограничивающий осевое перемещение вала упорный фланец 2, который привертывают болтами к передней стенке блок картера.
Распределительные шестерни большинства двигателей расположены в передней части в специальном картере. Они необходимы для передачи вращения от коленчатого вала распределительному валу, валу топливного насоса, масляному насосу и другим механизмам.
Направление вращения распределительного вала и вала топливного насоса у большинства тракторных двигателей совпадает с направлением вращения коленчатого вала. Поэтому между шестернями этих валов устанавливают дополнительно промежуточную шестерню 3 (рис. 21, а).
Рис. 21. Установка распределительных шестерен по меткам:
а – при вращении валов распределительного и топливного насоса в одну сторону с коленчатым валом; б – при вращении в разные стороны коленчатого и распределительного валов; в – при вращении в разные стороны вала топливного насосе и распределительного вала; 1 – шестерня коленчатого вала; 2 – шестерня распределительного вала; 3 – промежуточная шестерня; 4 – шестерня привода гидронасоса; 5 – шестерня топливного насоса; 6 – ведущая шестерня масляного насоса; 7 – ведомые шестерни масляного насоса; 8 – ведущая шестерня привода топливного насоса; 9 – штанга.
За два оборота коленчатого вала распределительный вал делает только один оборот. Следовательно, диаметр шестерни 1 коленчатого вала (и число зубьев) в два раза меньше, чем шестерни 2 распределительного вала. В этом случае, если распределительный и коленчатый валы вращаются в разные стороны, то промежуточная шестерня между ними отсутствует (рис. 21,6).
В некоторых двигателях вал топливного насоса и распределительный вал вращаются в противоположные стороны (рис. 21, в).
Чтобы прокрутить коленчатый вал дизеля во время регулировки его или при пуске, требуется затратить значительные усилия на преодоление сопротивления воздуха, сжимаемого в цилиндрах. Для уменьшения этого сопротивления на ряде тракторных двигателей применяют вспомогательный Декомпрессионный механизм (декомпрессор), с помощью которого приоткрывают клапаны, и из цилиндров при такте сжатия воздух выходит в атмосферу. Благодаря этому значительно снижается усилие, необходимое для вращения коленчатого вала Декомпрессионный механизм входит в систему пуска двигателя, но конструктивно он объединен с газораспределительным механизмом.
Устройство деталей газораспределительного механизма | Устройство автомобиля
Какое назначение распределительного вала и как он устроен?
Распределительный вал (рис.21, а) служит для открытия клапанов 9 в соответствии с рабочим циклом двигателя. Изготовляется он из стали или специального чугуна. Опорные шейки и кулачки стальных валов закаляются токами высокой частоты; чугунные отбеливаются, что повышает их износостойкость.
Рис.21. Распределительный вал с шестерней привода:
а – ЗИЛ-130; б – ГАЗ-53А.
На распределительном валу выполняются кулачки 6 и опорные шейки 4 с разным диаметром, что необходимо для установки вала на неразъемных подшипниках 8, которые запрессовываются в картер двигателя. На валу также выполнены винтовая шестерня 10 для привода масляного насоса и прерывателя-распределителя, эксцентрик 5 для привода топливного насоса. В передней части вала с помощью шпонки 7 и болта 13 с шайбой 14 жестко крепится косозубная шестерня 1, изготавливаемая из текстолита (двигатели автомобилей ГАЗ), чугуна (ЗИЛ), стали (КамАЗ). Эта шестерня находится в постоянном зацеплении с шестерней коленчатого вала (см. рис.16).
Так как в четырехтактных двигателях рабочий цикл совершается за два оборота коленчатого вала, то за это время впускной и выпускной клапаны должны открыться по одному разу. Следовательно, распределительный вал должен повернуться на один оборот, то есть вращаться в два раза медленнее коленчатого вала. Поэтому шестерня распределительного вала имеет в два раза больше зубьев, чем шестерня коленчатого вала, что и обеспечивает передаточное отношение между ними 2:1. На обе шестерни наносят метки для установки фаз газораспределения (рис. 22).
Рис.22. Установочные метки на распределительных шестернях.
Между шестерней и валом устанавливают стальное распорное кольцо 3 (см. рис.21) и фланец 2, устраняющие осевое смещение распределительного вала, появляющееся из-за косых зубьев распределительных шестерен. Кулачкам при шлифовании придают небольшую конусность, что в сочетании со сферической поверхностью торца толкателя обеспечивает поворот толкателя при работе двигателя и уменьшает их износ.
Какие особенности устройства распределительного вала автомобиля ГАЗ-53А?
К особенностям устройства распределительного вала двигателя автомобиля ГАЗ-53А (см. рис.21, б) относится установка дополнительного выносного балансира 16, уравновешивающего силы инерции, вызванные наличием эксцентрика 15 привода топливного насоса. Эксцентрик и балансир крепятся болтом 13 с шайбой 14 совместно с шестерней привода распределительного вала.
Что устанавливается на переднем торце распределительного вала?
На переднем торце распределительного вала двигателей автомобилей ГАЗ-53А и ЗИЛ-130 устанавливается устройство для привода ротора пневмоцентробежного регулятора частоты вращения коленчатого вала двигателя.
Какое назначение толкателей, как они устроены?
Толкатели 12 (см. рис.21, а) служат для передачи усилия от кулачков распределительного вала к клапанам (при нижнем их расположении) или на штангу 11 и коромысло 17 (при нижнем расположении распределительного вала и верхнем расположении клапанов).
В двигателях с нижним расположением клапанов толкатель (рис.23, а) состоит из стержня 2, изготовленного вместе с опорной тарелкой 1, которой он опирается на кулачок. В верхнюю часть стержня ввернут регулировочный болт 5 с контргайкой 4. Кроме того, на стержне выполнены лыски 3 для удержания толкателя от вращения при регулировке зазора между стержнем клапана и толкателем.
В двигателях с верхним расположением клапанов толкатель (рис.23. б) обычно представляет собой металлический стакан, опирающийся днищем на кулачок распределительного вала. Толкатели перемещаются в направляющих, выполненных в стенках картера двигателя.
Рис.23. Толкатели и штанга:
а – ГАЗ-52; б – ГАЗ-53, ЗИЛ-130; в – штанга ГАЗ-24, ГАЗ-53, ЗИЛ-130.
Какое назначение штанг и как они устроены?
Штанги (рис.23, в) передают усилия от толкателей на коромысла. Изготавливают из стальных или дюралюминиевых трубок со сферическими стальными наконечниками. Штанга нижним концом опирается на толкатель, а верхним – в сферическую выемку головки регулировочного винта коромысла.
Какое назначение коромысла и как оно устроено?
Коромысло 17 (см. рис.21, а) передает усилие от штанги на стержень клапана. Изготавливают в виде двуплечего рычага, свободно установленного на пустотелую ось, жестко закрепленную на головке блока цилиндров с помощью стоек. Короткое плечо коромысла через регулировочный болт упирается в штангу, длинное – в стержень клапана. Разная длина плеч коромысла позволяет получить небольшую высоту хода толкателя и штанги и обеспечивает их бесшумную работу при повышенном сроке службы.
Коромысла изготавливают из стали или чугуна. Для уменьшения трения между осью и коромыслом в последнее запрессовывают бронзовые втулки. Для удержания коромысел на оси в заданном положении между ними установлены дистанционные втулки и распорные пружины.
Какое назначение клапанов и как они устроены?
Клапан открывает отверстие для впуска горючей смеси или воздуха в цилиндр двигателя или отверстие для выпуска, отработавших газов из цилиндра. Состоит он (рис.24, а) из тарелки 1 и стержня 3 с кольцевой выточкой 7. Тарелка клапана имеет рабочую фаску 11, выполненную под углом 45° или 30°. Этой фаской клапан плотно садится в гнездо 2 с такой же фаской. Рабочие фаски клапана тщательно притирают с тем, чтобы обеспечить герметичность посадки в гнезде. Притирку производят притирочной пастой ГОИ или иной специальной пастой. Для притирки клапана на его тарелке выполняется канавка для установки притирочного инструмента.
Рис.24. Клапан с пружиной и устройством для его проворачивания:
а – ГАЗ-53А; б – ЗИЛ-130.
Тарелку и гнездо выпускного клапана изготавливают из жаропрочного материала, впускного – из хромистой стали. Для лучшего наполнения цилиндров горючей смесью или воздухом на большинстве двигателей тарелки впускных клапанов имеют больший диаметр, чем выпускных.
Клапан удерживается в закрытом положении пружиной 8 с переменным шагом, которая одним концом упирается в упорную шайбу 12 или тело блока, а другим закрепляется на стержне клапана с помощью сухариков 9. Они буртиками входят в кольцевую выточку 7 на стержне клапана. Сухарики наружной конической поверхностью устанавливают во втулку 10 с внутренней конической поверхностью, втулку 10 – в опорную шайбу 11, в которую упирается пружина 8.
На двигателях автомобилей КамАЗ и некоторых других устанавливают по две пружины с противоположным направлением витков с тем, чтобы предотвратить вибрацию клапана. На стержень впускного клапана одевают резиновый колпачок 6, предотвращающий попадание масла в камеру сгорания. На двигателях ЗИЛ-130 и некоторых других верхняя часть стержня выпускного клапана выполняется пустотелой и заполняется натрием, который при нагревании плавится и эффективно охлаждает клапан путем переноса теплоты от головки к стержню и далее через направляющую втулку 4 к головке или блоку цилиндров. Направляющая втулка клапана удерживается в головке блока замочным кольцом 5.
Как устроено приспособление для проворачивания клапана?
С целью уменьшения подгорания посадочных фасок выпускных клапанов в некоторых двигателях устанавливают специальные приспособления для проворачивания клапана вокруг своей оси. В двигателе автомобиля ЗИЛ-130 это устройство (рис.24. б) состоит из корпуса 14, в наклонных канавках 20 которого установлены пять шариков 15 с возвратными пружинами 16. Над шариками находится дисковая пружина 17, опорная шайба 18 и замочное кольцо 19. Корпус устанавливают на направляющей втулке клапана. На опорную шайбу опирается рабочая пружина 8.
При закрытом клапане давление рабочей пружины невелико, дисковая пружина 17 не опирается на шарики и они под воздействием возвратных пружин 16 отжаты в крайнее положение.
Когда клапан открывается, рабочая пружина сжимается и давление на дисковую пружину 17 увеличивается. Она, прогибаясь, воздействует на шарики, которые под нагрузкой перемешаются в углубление канавок 20, вызывая поворот дисковой пружины и опорной шайбы 18, а вместе с ней и всего клапана с пружиной.
При закрытии клапана усилие его пружины уменьшается, дисковая пружина 17 возвращается в исходное положение, шарики освобождаются и под давлением пружин 16 закатываются в первоначальное положение.
На двигателях автомобилей ГАЗ-53А и других клапан проворачивается за счет установки промежуточной конической втулки между сухариками и упорной шайбой. Это происходит потому, что конические поверхности сухариков и втулки не совпадают по всей площади. В таблице 4 приведены краткие сведения о параметрах двигателей автомобилей ГАЗ-24 «Волга», ГАЗ-53А, ЗИЛ-130, КамАЗ-5320.
4. Краткие сведения о двигателях
Наименование | Двигатели автомобилей | |||
ГАЗ-24 | ГАЗ-53А | ЗИЛ-130 | КамАЗ-5320 | |
Тип двигателя | Рядный | V-образный | V-образный | |
Количество цилиндров | 4 | 8 | 8 | 8 |
Максимальная мощность, кВт | 70 | 85 | 110 | 154 |
Частота вращения коленчатого вала при максимальной мощности об/мин | 4500 | 3200 | 3200 | 2600 |
Максимальный крутящий момент, Н·м | 186 | 284 | 401 | 637 |
Частота вращения коленчатого вала при максимальном крутящем моменте, об/мин | 2200—2400 | 2000—2200 | 1800—2000 | 1400—1700 |
Диаметр цилиндра, мм | 92 | 92 | 100 | 120 |
Ход поршня, мм | 92 | 80 | 95 | 120 |
Литраж двигателя, л | 2,445 | 4,25 | 6,00 | 10,85 |
Степень сжатия | 8,2 | 6,7 | 6,5 | 17 |
Порядок работы цилиндров | 1-2-4-3 | 1-5-4-2-6-3-7-8 | ||
Масса двигателя с оборудованием и сцеплением, кг | 179 | 256 | 500 | 830 |
***
Проверьте свои знания и ответьте на контрольные вопросы по теме «Газораспределительный механизм»
газораспределительный механизм, клапан, коромысло, распределительный вал, штанга
Смотрите также:
Клапан двигателя.
Назначение, устройство, конструкцияЭто деталь двигателя и одновременно крайнее звено газораспределительного механизма. Клапанная группа включает в себя: пружину, направляющую втулку, седло, механизм крепления пружины. Все эти детали работают в тяжёлых механических и тепловых условиях, испытывая колоссальные нагрузки.
Сопряжение седло-клапан, подвергается наибольшему воздействию высоких температур и ударных нагрузок. Кроме того, детали постоянно испытывают недостаток в смазке по причине высоких скоростей работы. Это вызывает их интенсивный износ.
Требования, предъявляемые к группе:
- Герметичность работы клапана в сопряжении с седлом;
- Высокий коэффициент обтекаемости, при входе и выходе рабочей смеси из камеры сгорания;
- Небольшой вес деталей группы;
- Детали должны быть высокопрочными и одновременно жёсткими;
- Стойкость к высоким температурам;
- Эффективная теплоотдача клапанов;
- Высокое сопротивление механическим и ударным нагрузкам;
- Противодействие коррозии.
Назначение и особенности устройства
Назначение клапана, открывать и закрывать отверстия в головке блока цилиндров для выпуска отработанных газов либо впуска новой рабочей смеси. К основным элементам детали относятся головка и стержень. Переход от стержня к головке служит для плавного отвода газов, чем он плавней, тем лучше будет наполнение, либо очистка камеры сгорания.
Отработанные газы, выходя из камеры сгорания, создают сильное избыточное давление, а чем меньше площадь тарелки клапана, тем меньшие нагрузки он испытывает, вот почему выпускной клапан двигателя делается меньшего диаметра, а требования к нему выше. Так, при работе, головка выпускного клапана нагревается до 800-900.°С на бензиновых двигателях и до 500-700°С на дизельных моторах, впускной, нагревается до 300°С.
Именно по этим причинам при изготовлении выпускных клапанов нужны сплавы и материалы, обладающие повышенной жаропрочностью и содержащие большое количество легирующих присадок. Клапана делают из 2-х частей: головку из жаростойкого материала, стержень из углеродистой стали. Для изготовления клапана ДВС эти заготовки сваривают и шлифуют.
Выпускные клапана, в месте контакта с цилиндром, покрывают твёрдым сплавом. Толщина сплава порядка 1,5-2,5 мм. Такое покрытие позволяет избежать коррозии.
По причине меньших нагрузок при изготовлении впускных клапанов используют хромистые или хромоникелевые стали со средним содержанием углерода. При вводе рабочей жидкости в камеру сгорания, топливо отводит часть температуры от клапана и его составляющих, из-за чего температурные перепады у него ниже.
На эффективность работы клапана большое влияние оказывает его форма. Чем более она обтекаемая, тем выше скорость входящего или выходящего заряда смеси. Чаще всего головку клапана делают плоской, для облегчения изготовления детали, удешевления её производства и сохранения жёсткости.
Однако, в двигателях, испытывающих повышенные нагрузки, например, форсированных, в связи со спецификой самого двигателя применяют впускные клапана с вогнутыми головками. Такое устройство уменьшает массу детали и инерционную силу, возникающую при работе.
Стыковка клапана с седлом осуществляется по тонкому ободку на поверхности головки цилиндров — фаске. Стандартный угол наклона фаски впускных клапанов составляет 45°, у выпускных 45° или 30°. При изготовлении головок цилиндра фаски шлифуют, а затем, при установке клапана, каждый притирают к седлу. Ширина ободка должна быть не менее 0,8мм.
Ободок не должен прерываться по всему периметру окружности тарелки клапана. Сочленение между клапаном и седлом нужно уплотнить наверняка, вот зачем угол фаски клапана, по наружной стороне фаски, делают меньше угла седла на 0,5-1°.
В некоторых двигателях, для большей сохранности изделия, применяют устройство принудительного вращения клапана. В процессе работы на фасках откладывается нагар, нарушается уплотнение, появляются механические повреждения, это резко снижает эффективность работы мотора. Проворачиваясь, клапан ДВС распределяет нагрузку равномерно по всей поверхности фаски и принудительно очищает ее.
После фаски головки, у клапана имеется специальный поясок, в виде цилиндра. Эта конструктивная особенность позволяет уберечь его от перегрева и обгорания, а так же делает головку более жёсткой. Кроме того, при притирке, диаметр клапана остаётся прежним.
Пружинное стопорное кольцо предотвращает падение клапана в камеру сгорания двигателя, в случае, если элементы крепления хвостовика поломаются.
При соприкосновении с кулачком распределительного вала, или коромыслом, торцы клапана подвергаются большим нагрузкам. Поэтому для предания им жёсткости и износостойкости, их закаливают, или надевают на них специальные колпачки из высокопрочных сплавов.
Впускные клапана снабжают специальными резиновыми маслосъёмными колпачками, для предотвращения попадания через зазор масла в камеру сгорания в период такта впуска.
Выпускные клапана, работая в экстремальных температурных режимах, могут заклинить в отверстии направляющей втулки. Что бы этого не произошло, их стержни делают меньшего диаметра вблизи головки, по сравнению с поверхностью на остальной длине.
Сухарики, удерживающие клапанные пружины, держатся за сам клапан при помощи крепления, обеспеченного выточками.
Диаметр стержня выпускных клапанов больше диаметра стержня впускных, головка клапана — меньше. Такой конструктивный приём позволяет отвести от клапана больше тепла и понизить его температуру. Однако этот приём увеличивает сопротивление потока газов, делая очистку камеры сгорания менее эффективной. При расчётах, этот параметр сложно узнать, поэтому им пренебрегают, считая давление при выпуске большим, чем давление при впуске, что компенсирует недостаток с лихвой.
Для увеличения эффекта охлаждения выпускного клапана внутри его делают пустотелым. Пустое пространство заполняют металлом с низкой температурой плавления, обычно жидким натрием. Нагреваясь от головки клапана, пары жидкого натрия поднимаются в верхнюю, боле холодную часть, забирая большую часть тепла с собой. Там они соприкасаются с менее нагретой частью стержня и отдают тепло ей.
Пружины клапана
Пружина работает в условиях больших нагрузок. Основная её задача заключается в создании надёжной и плотной стыковки клапана и седла. Испытывая нагрузки, пружина может сломаться, зачастую это происходит по причине вхождения её в резонанс. С целью предотвращения этого явления, витки пружины делают с переменным шагом.
Так же можно изготовить коническую или двойную пружину. Двойные пружины обладают дополнительным плюсом, так как наличие двух деталей повышает надёжность механизма и уменьшает общий размер пружин.
Дабы исключить возможность резонанса в двойной пружине, направление витков внутренней и внешней пружин делают разными. Так же это позволяет удержать обломки детали, в случае поломки пружины, осколки задержатся между витками.
Пружины для клапанов изготавливают из проволоки, материал которой — сталь. После придания формы, изделие закаляют и подвергают отпуску. Для повышения прочности, обдувают воздухом с добавлением абразивного материала.
Что бы избежать коррозии, пружины обрабатывают оксидом цинка или кадмия. Концы пружин шлифуют и придают им плоскую форму. Это делается для более эффективной фиксации торцов пружин со специальными неподвижными тарелками в блоке цилиндров. Тарелки изготавливают из стали с низким содержанием углерода, верхнюю тарелку фиксируют на клапане при помощи сухарика.
Втулки клапанов и их направляющие
Отвод тепла от стержня клапана и его перемещение в возвратно поступательной плоскости обеспечивают направляющие втулки. В процессе работы сами втулки подвергаются воздействию высоких температур, омываясь горячими отработанными газами. При возвратно поступательном движении клапана между ним и поверхностью втулки возникает трение. Если смазки поступает не достаточно, то трение идёт практически на сухую.
Именно по этой причине к материалу втулок применяют ряд требований, таких, как: стойкость к износу, высоким температурам, трению. Некоторые составы чугуна, алюминиевая бронза, керамика обладают всеми свойствами, необходимыми для создания детали, удовлетворяющей таким требованиям.
Для впускных клапанов, в связи с разницей в температуре нагрева, зазоры между направляющей втулкой и стержнем делаются меньше. Нижнюю часть втулки делают под конус для предотвращения заклинивания клапана.
Выточки под клапана (седла)
Долговечность и правильная работа двигателя внутреннего сгорания напрямую зависят от качества изготовления выточки под клапана. При неправильной стыковке клапана и седла не будет обеспечиваться должная герметичность камеры сгорания, и скорый выход мотора из строя неизбежен. Седла изготавливают непосредственно в головке цилиндра, в данном случае речь идёт о чугунных головках. Либо делают их вставными, из стали, например, в алюминиевых головках.
Вставные седла удерживаются в головке путём запрессовки, или развальцовки.
Количество клапанов в двигателе
Когда речь заходит о клапанах, многие задаются вопросом: «сколько клапанов в двигателе должно быть?» Однозначного ответа нет, определить чёткое количество можно только изучив конструктивные особенности мотора. Учитывая, что в четырёхтактной силовой установке клапан осуществляет такты впуска и выпуска, значит минимальное количество на один цилиндр — два, один впускной и один выпускной.
Современные силовые установки наиболее часто используют конструкцию с четырьмя клапанами (двух впускных и двух выпускных) на каждый цилиндр. При открытии клапана в образовавшееся отверстие происходит заброс топливной смеси, или выход отработанных газов. Чем больше отверстие, тем эффективней будет наполнение или очистка. Соответственно коэффициент полезного действия мотора так же увеличится.
Увеличить отверстие за счёт увеличения тарелки клапана нельзя, поскольку её размер ограничен размером камеры сгорания. Поэтому для улучшения качества смесеобразования устанавливают большее количество клапанов на один цилиндр.
Встречаются схемы, в которых применяются два, три, и даже пять клапанов на цилиндр. Учитывая, что процесс наполнения более важен для работы двигателя, количество впускных клапанов в нечётных схемах всегда больше.
Типы грм. Назначение и характеристика 8 привод распределительного вала назначение и типы
Распределительный вал и его привод
Распределительный вал обеспечивает своевременное открытие и закрытие клапанов. Вал имеет впускные Г и выпускные Б кулачки, опорные шейки Л, шестерню Д для привода масляного насоса и распределителя системы зажигания и эксцентрик В для привода топливного насоса в карбюраторных двигателях.
Рис. 1. Типы распределительных валов
Вал штампуют из стали; кулачки и шейки его подвергают термической обработке для получения повышенной износостойкости, после чего шлифуют. Кулачки изготовляют как одно целое с валом. Применяют также литые чугунные распределительные валы.
Для каждого цилиндра у четырехтактных двигателей имеются два кулачка: впускной и выпускной. Форма (профиль) кулачка обеспечивает плавный подъем и опускание клапана и соответствующую продолжительность его открытия. Одноименные кулачки располагают в рядном четырехцилиндровом двигателе под углом 90° (рис. 1, а), в шестицилиндровом — под углом 60° (рис. 1, б). Разноименные кулачки устанавливают под углом, величина которого зависит от фаз газораспределения. Вершины кулачков располагаются в принятом для двигателя порядке работы с учетом направления вращения вала. По длине вала впускные и выпускные кулачки чередуются в соответствии с расположением клапанов.
В V-образных двигателях расположение кулачков на общем для обеих секций блока распределительном валу зависит от чередования тактов в цилиндрах, угла развала и принятых фаз газораспределения. Распределительный вал У-образного восьмицилиндрового карбюраторного двигателя показан на рис. 1, в.
В двухтактных дизелях (ЯАЗ -М204 и ЯАЗ -М206) для каждого цилиндра имеется по два выпускных кулачка, обращенных вершинами в одну сторону, и по одному кулачку, управляющему работой насос-форсунки.
При нижнем расположении распределительного вала его устанавливают в картере на опорах, представляющих собой отверстия в стенках и перегородках картера, в которые запрессованы стальные тонкостенные биметаллические или триметаллические втулки. Вал устанавливают иногда также в специальных вкладышах. Число опор распределительного вала для двигателей разных типов различно.
Осевые перемещения распределительного вала у большинства двигателей ограничиваются упорным фланцем (рис. 2), закрепленным на блоке и расположенным с определенным зазором между торцом передней шейки вала и ступицы шестерни; зазор между опорным фланцем и торцом шейки вала устанавливают для двигателей разных марок в пределах 0,05- 0,2 мм; величина этого зазора определяется толщиной распорного кольца, закрепленного на валу между торцом шейки и ступицей шестерни. У двухтактных дизелей ЯМЗ осевые перемещения вала ограничиваются бронзовыми упорными шайбами, установленными по обеим сторонам переднего подшипника.
Распределительный вал приводится во вращение от коленчатого вала с помощью зубчатой или цепной передачи. При зубчатой передаче на конце коленчатого и распределительного валов закрепляют распределительные шестерни.
Для повышения бесшумности и плавности работы шестерни изготовляют с косыми зубьями; шестерню распределительного вала обычно делают из пластмассы — текстолита, а шестерню коленчатого вала — из стали.
При цепной передаче, обеспечивающей большую бесшумность работы (автомобили ЗИЛ -111), на конце коленчатого вала и на конце распределительного вала закрепляются звездочки, соединенные стальной гибкой бесшумной цепью. Зубья цепи входят в зацепление с зубьями звездочек.
Рис. 2. Типы приводов распределительного вала: а — зубчатая передача; б — цепная передача
Распределительные шестерни или звездочки при сборке устанавливают одну относительно другой по меткам, имеющимся на их зубьях.
На новых моделях двигателей получает применение верхнее расположение распределительного вала (на головке блока). Привод вала осуществляется цепной передачей (автомобиль «Москвич-412»).
Газораспределительный механизм обеспечивает своевременное поступление в цилиндры двигателя горючей смеси (или воздуха) и выпуск отработавших газов.
Двигатели могут иметь нижнее расположение клапанов (ГАЗ -52, ЗИЛ -157К, ЗИЛ -1Э0К), при котором клапаны размещены в блоке цилиндров, и верхнее (ЗМЗ -24, 3M3-S3, ЗИЛ -130, ЯМЗ -740 и др.), когда они расположены в головке цилиндров.
При нижнем расположении клапанов усилие от кулачка распределительного вала передается клапану или через толкатель. Клапан перемещается в направляющей втулке, запрессованной в блок цилиндров. Закрытие клапана осуществляется пружиной, упирающейся в блок и шайбу, закрепленную двумя сухариками на конце стержня клапана.
При верхнем расположении клапанов усилие от кулачка распределительного вала передается толкателю, штанге, коромыслу и клапану. Преимущественно применяется верхнее расположение клапанов, так как такая конструкция позволяет получить компактную камеру сгорания, обеспечивает лучшее наполнение цилиндров, уменьшает потери тепла с охлаждающей жидкостью и упрощает регулировку клапанных зазоров.
Распределительный вал обеспечивает своевременное открытие и закрытие клапанов. Изготовляют его из стали или чугуна.
При сборке распределительный вал вставляют в отверстие торца картера двигателя, поэтому диаметры опорных шеек последовательно уменьшаются, начиная с передней шейки. Количество опорных шеек обычно равно количеству коренных подшипников коленчатого вала. Втулки 8 опорных шеек изготовляют из стали, бронзы (ЯМЗ -740) или из металлокерамики.
Внутреннюю поверхность стальных втулок заливают слоем баббита или сплава СОС -6-6.
На распределительном валу расположены кулачки, воздействующие на толкатели; шестерня привода масляного насоса и прерывателя-распределителя; эксцентрик привода топливного насоса. Кулачков имеется по два на каждый цилиндр. Углы их взаимного расположения зависят для одноименных кулачков — от числа цилиндров и чередования рабочих ходов в разных цилиндрах, для разноименных — от фаз газораспределения. Кулачки и шейки стальных распределительных валов подвергают закалке токами высокой частоты, а чугунных — отбеливанию. Кулачкам при шлифовании придают небольшую конусность, что в сочетании со сферической формой торца толкателей обеспечивает поворот толкателя во время работы.
Рис. 3. Газораспределительный механизм с нижним расположением клапанов: а-схема, 6—детали; 1-распределительный вал, 2 — толкатель, 3- контргайка, 4- регулировочный болт, 5-сухарики, б — упорная. шайба пружины, 7- пружина клапана, 8—выпускной клапан, 9- направляющая втулка клапана, 10 — вставное седло выпускного клапана, 11 — впускной клапан
Между шестерней распределительного вала и передней опорной шейкой установлены распорная шайба и упорный фланец, который привертывается болтами к блоку цилиндров и удерживает вал от осевых перемещений.
Распределительный вал получает вращение от коленчатого вала. В четырехтактных двигателях рабочий цикл происходит за два оборота коленчатого вала. За этот период впускные и выпускные клапаны каждого цилиндра должны открываться один раз, а следовательно, распределительный вал должен повернуться на один оборот. Таким образом, распределительный вал должен вращаться в два раза медленнее коленчатого вала. Поэтому шестерня распределительного вала имеет в два раза больше зубьев, чем шестерня на переднем конце коленчатого вала. Шестерня коленчатого вала стальная, шестерня на распределительном валу чугунная (ЗИЛ -130) или текстолитовая (ЗМЗ -24, 3M3-53). Зубья у шестерен косые.
Рис. 4. Газораспределительный механизм с верхним расположением клапанов (ЗИГМЗО ): 1 — шестерня распределительного вала, 2 — упорный фланец, 3 — распорное кольцо, 4-опорные шейки, 5-эксцентрик привода топливного насоса, 6 — кулачки выпускных клапанов, 7 — кулачки впускных клапанов, 8- втул-ки, 9 — впускной клапан, 10 — направляющая втулка, 11-упорная шайба, 12 — пружина, 13 — ось коромысел, 14 — коромысло, 15 — регулировочный винт, 16-стойка оси коромысел, 17 — механизм поворота выпускного клапана, 18 — выпускной клапан, 19 — штанга, 20-толкатели, 21 — шестерня привода масляного насоса и прерывателя-распределителя
Распределительные шестерни двигателя ЯМЗ -740 расположены на заднем торце блока цилиндров.
Распределительные шестерни входят в зацепление между собой при строго определенном положении коленчатого и распределительного валов. Это достигается совмещением меток на зубе одной шестерни и впадине между зубьями другой шестерни.
В высокооборотных двигателях («Москвич-412», ВАЗ -2101 «Жигули») распределительный вал располагается в головке цилиндров и его кулачки воздействуют непосредственно на коромысла, которые, поворачиваясь на осях, открывают клапаны. В таком клапанном механизме нет толкателей и штанг, упрощается отливка блока цилиндров, снижается шум при работе.
Ведомая звездочка распределительного вала приводится во вращение втулочно-роликовой цепью от ведущей звездочки коленчатого вала. Устройство для натяжения цепи имеет звездочку и рычаг.
Рис. 5. Газораспределительный механизм с верхним расположением распределительного вала («Москвич-412»): а- газораспределительный механизм, б — привод газораспределительного механизма; 1 — наконечник клапана, 2 — ось коромысел выпускных клапанов, 3,6 — коромысла, 4 — распределительный вал, 5 — ось коромысел впускных клапанов, 7 — контргайка, 8 — регулировочный винт, 9 — головка цилиндров, 10 — клапаны, 11 — ведущая звездочка, 12-звездочка натяжного устройства, 13 — рычаг, 14 — ведомая звездочка, 15 — цепь, 16 — коленчатый вал
К атегория: — Устройство и работа двигателя
Окт 26 2014
Двигатель автомобиля представляет собой сложнейший механизм, одним из важнейших элементов которого является распределительный вал, входящий в состав ГРМ. От точной и бесперебойной работы распределительного вала во многом зависит нормальная работа двигателя.
Одну из самых важных функций в работе двигателя автомобиля выполняет распределительный вал, который является составной частью газораспределительного механизма (ГРМ). Распредвал обеспечивает впуск-выпуск тактов работы двигателя.
В зависимости от того, каково устройство двигателя, газораспределительный механизм может иметь нижнее или верхнее расположение клапанов. На сегодняшний день чаще встречаются ГРМ с верхним расположением клапанов.
Такая конструкция позволяет ускорить и облегчить процесс обслуживания, включающий регулировку и ремонт распределительного вала, для которого потребуются запчасти на распредвал.
Устройство распределительного вала
С конструктивной точки зрения распределительный вал двигателя связан с коленвалом, что обеспечивается благодаря наличию цепи и ремня. Цепь или ремень распределительного вала надеваются на звездочку коленчатого вала или на шкив распредвала.
Такой шкив распредвала, как разрезная шестерня, считается наиболее практичным и эффективным вариантом, поэтому достаточно часто используется для тюнинга двигателей с целью увеличения их мощности.
Подшипники, внутри которых происходит вращение опорных шеек распредвала, располагаются на головке блока цилиндров. Если крепления шеек выходят из строя, для их ремонта используют ремонтные вкладыши распределительного вала.
Для того чтобы избежать осевого люфта, в конструкцию распределительного вала входят специальные фиксаторы. Непосредственно по оси вала проходит сквозное отверстие, предназначенное для смазки трущихся деталей. Это отверстие закрывается сзади при помощи специальной заглушки распределительного вала.
Важнейшей составной частью распредвала являются кулачки, количество которых указывает на количество впускных-выпускных клапанов. Кулачки отвечают за выполнение основной функции распределительного вала — регулирование фаз газораспределения двигателя и регулирование порядка работы цилиндров.
Каждый клапан оснащен кулачком. Кулачок набегает на толкатель, способствуя открыванию клапана. После того, как кулачок сходит с толкателя, мощная возвратная пружина обеспечивает закрывание клапана.
Кулачки распределительного вала находятся между опорными шейками. Газораспределительную фазу распредвала, зависящую от числа оборотов двигателя и от конструкции впускных-выпускных клапанов, определяют опытным путем. Подобные данные для конкретной модели двигателя можно найти в специальных таблицах и диаграммах, которые специально составляет производитель.
Как работает распределительный вал?
Конструктивно распредвал располагается в развале блока цилиндров. Зубчатая или цепная передача коленвала приводит в действие распредвал.
Когда распределительный вал вращается, кулачки оказывают воздействие на работу клапанов. Данный процесс будет происходить правильно только в случае строгого соответствия с порядком работы цилиндров двигателя и с фазами газораспределения.
Для того чтобы были установлены соответствующие фазы газораспределения, на приводной шкив или на распределительные шестерни наносятся специальные установочные метки. Кроме этого, необходимо, чтобы кулачки распределительного вала и кривошипы коленчатого вала находились в строго определенном положении по отношению друг к другу.
Когда установка производится по меткам, удается достичь соблюдения правильной последовательности тактов — порядка работы цилиндров двигателя, который, в свою очередь, зависит от расположения самих цилиндров, а также от особенности конструкции коленчатого и распределительного валов.
Рабочий цикл двигателя
Рабочим циклом двигателя называется период, за время которого впускной и выпускной клапаны открываются по одному разу. Как правило, период проходит за два оборота коленвала. За это время распределительный вал, шестерня которого имеет в два раза больше зубьев, чем шестерня коленчатого вала, делает один оборот.
Количество распределительных валов в двигателе
На количество распредвалов непосредственно влияет конфигурация двигателя. Двигатели, которые отличаются рядной конфигурацией, а также имеют одну пару клапанов на цилиндр, оснащаются одним распределительным валом. Если для каждого цилиндра предусмотрено по четыре клапана, двигатель оборудуется двумя распредвалами.
Двигатели оппозитные и V-образные отличаются наличием одного распредвала в развале либо имеют два распределительных вала, каждый из которых находится в головке блока. Бывают и исключения из общепринятых правил, связанные в первую очередь с конструктивными особенностями двигателя.
1. Подкатной гидравлический домкрат. Штатный домкрат автомобиля ваз 2107 часто или неудобен, или просто бесполезен при выполнении некоторых работ.
2. Опора под автомобиль, регулируемая по высоте и с допустимой нагрузкой не менее 1т. Желательно иметь четыре такие подставки.
3. Противооткатные упоры (не менее 2шт.).
4. Двухсторонние ключи для штуцеров тормозной системы на 8, 10 и 13мм. Наиболее распространены два типа таких ключей: зажимной ключ и накидной ключ с прорезью. Зажимной ключ позволяет отворачивать штуцеры с изношенными гранями. Чтобы надеть ключ на штуцер тормозной трубки, необходимо вывернуть стяжной болт. Накидной ключ с прорезью позволяет более оперативно выполнять работу, однако такой ключ должен быть изготовлен из качественной стали с соответствующей термической обработкой.
5. Специальные щипцы для снятия стопорных колец. Существует два типа таких щипцов: сдвижные — для извлечения стопорных колец из отверстий, и раздвижные — для снятия стопорных колец с валов, осей, тяг. Щипцы также бывают с прямыми и изогнутыми губками.
6. Съемник масляного фильтра.
7. Универсальный двухзахватный съемник для снятия шкивов, ступиц, шестерней.
8. Универсальные трехзахватные съемники для снятия шкивов, ступиц, шестерен.
9. Съемник карданного шарнира.
10. Съемник и оправка для замены маслосъемных колпачков.
11. Рассухариватель для разборки клапанного механизма головки блока цилиндров.
12. Приспособление для снятия шаровых опор.
13. Приспособление для извлечения поршневого пальца.
14. Приспособление для выпрессовки и запрессовки сайлентблоков рычагов передней подвески.
15. Приспособление для снятия рулевых тяг.
16. Ключ храповика коленчатого вала.
17. Съемник пружин.
18. Ударная отвертка с набором насадок.
19. Цифровой мультиметр для проверки параметров электрических цепей.
20. Специальный щуп или контрольная лампа на 12В для проверки электрических цепей автомобиля ваз 2107, находящихся под напряжением.
21. Манометр для проверки давления в шинах (при отсутствии манометра на шинном насосе).
22. Манометр для измерения давления в топливной рампе двигателя.
23. Компрессометр для проверки давления в цилиндрах двигателя.
24. Нутромер для измерения диаметра цилиндров.
25. Штангенциркуль с глубиномером.
26. Микрометры с пределом измерений 25-50 мм и 50-75 мм.
27. Набор круглых щупов для проверки зазора между электродами свечей зажигания. Можно использовать комбинированный ключ для обслуживания системы зажигания с набором необходимых щупов. Ключ имеет специальные прорези для подгибания бокового электрода свечи зажигания.
28. Набор плоских щупов для измерения зазоров при оценке технического состояния агрегатов.
29. Широкий щуп 0,15мм для проверки зазоров в клапанном механизме.
30. Оправка для центрирования ведомого диска сцепления.
31. Оправка для обжима поршневых колец при установке поршня в цилиндр.
32. Ареометр для измерения плотности жидкости (электролита в аккумуляторной батарее или антифриза в расширительном бачке).
33. Специальное приспособление с металлическими щетками для очистки клемм проводов и выводов аккумуляторной батареи.
34. Масляный шприц для заливки масла в коробку передач и задний мост.
35. Нагнетательный шприц для смазки шлицов карданного вала.
36. Шланг с грушей для перекачки топлива. Шланги можно использовать для удаления топлива из бака перед его снятием.
37. Медицинский шприц или груша для отбора жидкостей (например, при необходимости снятия бачка главного тормозного цилиндра без слива всей тормозной жидкости из системы). Шприц также незаменим для чистки деталей карбюратора.При выполнении ремонтных работ на автомобиле ваз 2107 могут также потребоваться: технический фен (термопистолет), электродрель с набором сверл по металлу, струбцина, пинцет, шило, рулетка, широкая слесарная линейка, бытовой безмен, широкая емкость для слива масла и охлаждающей жидкости объемом не менее 10л.
Расположение данного механизма целиком зависит от конструкции ДВС, поскольку в некоторых моделях распредвал размещается внизу, в основании блока цилиндров, а в других – вверху, прямо в головке блока цилиндров. На данный момент оптимальным считается верхнее расположение распредвала, поскольку это существенно упрощает сервисный и ремонтный доступ к нему. Распредвал напрямую связан с коленвалом. Они соединяются между собой цепной или ременной передачей посредством обеспечения связи между шкивом на валу ГРМ и звездочкой на коленвале. Это необходимо потому, что приводится в движение распредвал именно коленвалом.
Устанавливается распределительный вал в подшипники, которые в свою очередь надежно закрепляются в блоке цилиндров. Осевой люфт детали не допускается за счет применения в конструкции фиксаторов. Ось любого распредвала имеет сквозной канал внутри, через который осуществляется смазка механизма. Сзади данное отверстие закрыто заглушкой.
Важными элементами являются кулачки распредвала. По количеству они соответствуют числу клапанов в цилиндрах. Именно эти детали выполняют основную функцию ГРМ – регулирование порядка работы цилиндров.
На каждый клапан приходится отдельный кулачок, открывающий его через нажим на толкатель. Освобождая толкатель, кулачок позволяет распрямиться пружине, возвращающей клапан в закрытое состояние. Устройство распределительного вала предполагает наличие двух кулачков для каждого цилиндра – по числу клапанов.
Следует отметить, что от распределительного вала также осуществляется привод топливного насоса и распределителя масляного насоса.
Принцип действия и устройство распредвала
Распределительный вал соединяется с коленвалом при помощи цепи или ремня, надетого на шкив распредвала и звездочку коленчатого вала. Вращательные движения вала в опорах обеспечивают специальные подшипники скольжения, благодаря этому вал воздействует на клапана, запускающие работу клапанов цилиндров. Этот процесс происходит в соответствии с фазами образования и распределения газов, а также рабочим циклом двигателя.
Установка фаз распределения газов происходит согласно установочным меткам, которые имеются на шестернях или шкиве. Правильная установка обеспечивает соблюдение последовательности наступления рабочих циклов двигателя.
Основной деталью распредвала являются кулачки. При этом количество кулачков, которыми оснащается распредвал, зависит от количества клапанов. Основное назначение кулачков – осуществление регулировки фаз процесса газообразования. В зависимости от типа конструкции ГРМ кулачки могут взаимодействовать с коромыслом или толкателем.
Кулачки устанавливаются между опорными шейками, по два на каждый цилиндр двигателя. Распредвалу во время работы приходится преодолевать сопротивление пружин клапанов, которые служат возвратным механизмом, приводя клапана в исходное (закрытое) положение.
На преодоление этих усилий расходуется полезная мощность двигателя, поэтому конструкторы постоянно думают, как можно уменьшить потери мощности.
Для того чтобы уменьшить трение между толкателем и кулачком, толкатель может оснащаться специальным роликом.
Помимо этого, разработан специальный десмодромный механизм, в котором реализована беспружинная система.
Опоры распределительных валов оснащены крышками, при этом передняя крышка является общей. Она имеет упорные фланцы, которые соединяются с шейками валов.
Распредвал изготавливается одним из двух способов – ковкой из стали или литьем из чугуна.
Поломки распредвала
Существует довольно много причин, по которым в работу двигателя вплетается стук распредвала, что свидетельствует о появлении проблем с ним. Вот только наиболее типичные из них:
Распределительный вал требует должного ухода: замену сальников, подшипников и периодичной дефектовке.
- износ кулачков, что ведет к появлению стука сразу только при запуске, а потом и все время работы двигателя;
- износ подшипников;
- механическая поломка одного из элементов вала;
- проблемы с регулировкой подачи топлива, из-за чего возникает асинхронность взаимодействия распредвала и клапанов цилиндров;
- деформация вала, ведущая к осевому биению;
- некачественное моторное масло, изобилующее примесями;
- отсутствие моторного масла.
По утверждениям специалистов при возникновении легкого стука распредвала автомобиль может ездить еще не один месяц, но это ведет к усиленному износу цилиндров и других деталей. Поэтому при обнаружении проблемы следует заняться ее устранением. Распредвал – разборный механизм, поэтому ремонт чаще всего осуществляется методом замены его всего или только некоторых элементов, например, подшипников.свобождение камеры от выхлопных газов, имеет смысл начать открывать впускной клапан. Что и происходит при использовании тюнингового распредвала.
ГЛАВНЫЕ ХАРАКТЕРИСТИКИ РАСПРЕДВАЛА
Известно, что среди главных характеристик распредвала конструкторы форсированных двигателей часто используют понятие продолжительности открывания. Дело в том, что именно этот фактор непосредственно влияет на производимую мощность двигателя. Так, чем клапаны дольше открыты, тем мощнее агрегат. Таким образом, получается максимальная скорость двигателя. Например, когда продолжительность открытия составляет больше стандартного показателя, то двигатель сможет выработать дополнительную максимальную мощность, которая будет получаться от работы агрегата на низких оборотах. Известно, что для гоночных автомобилей максимальная скорость двигателя является приоритетной целью. Что касается классических машин, то при их разработке силы инженеров направлены на крутящий момент при низких оборотах и приемистость.
Увеличение мощности может также зависеть от увеличения подъема клапана, которое может прибавить максимальную скорость. С одной стороны, дополнительная скорость будет получаться при помощи короткой продолжительности открывания клапанов. С другой стороны, приводы клапанов имеют не такой простой механизм. Например, при высоких скоростях движения клапанов у двигателя не получится выработать дополнительную максимальную скорость. В соответствующем разделе нашего сайта вы сможете найти статью про основные особенности системы выпуска выхлопных газов. Так, при низкой продолжительности открывания клапана после закрытого положения клапану остается меньше времени, чтобы добраться до исходной позиции. После продолжительность становится еще меньше, что, главным образом, отражается на выработке дополнительной мощности. Дело в том, что в этот момент требуются клапанные пружины, у которых будет как можно больше усилий, что считается невозможным.
Стоит отметить, что сегодня существует понятие надежного и практичного подъема клапана. В этом случае величина подъема должна быть более 12,7 миллиметров, что обеспечит высокую скорость открывания и закрывания клапанов. Продолжительность такта насчитывает от 2 850 оборотов в минуту. Однако такие показатели создают нагрузку на механизмы клапана, что в итоге приводит к недолгой службе клапанных пружин, стержней клапанов и кулачков распредвала. Известно, что вал с высокими показателями скорости подъема клапанов работают без сбоя первое время, например, до 20 тысяч километров. Все же сегодня автопроизводители разрабатывают такие двигательные системы, где распредвал имеет одинаковые показатели продолжительности открывания клапанов и их подъема, что заметно увеличивает их срок службы.
Кроме того, на мощность двигателя влияет такой фактор, как открывание и закрывание клапанов по отношению к положению распредвала. Так, фазы распределения распредвала можно найти в таблице, которая к нему прилагается. Согласно этим данным, можно узнать об угловых положениях распредвала в момент открытия и закрытия клапанов. Все данные обычно берутся в момент поворота коленчатого вала до и после верхней и нижней мертвых точек, указываются в градусах.
Что касается продолжительности открывания клапанов, то она рассчитывает, согласно фазам распределения газа, которые указаны в таблице. Обычно в этом случае нужно суммировать момент открывания, момент закрывания и прибавить 1 800. Все моменты указываются в градусах.
Теперь стоит разобраться с соотношением фаз распределения газа мощности и распредвала. В этом случае представим, что один распредвал будет А, другой – В. Известно, что оба этих вала имеют аналогичные формы впускных и выпускных клапанов, а также схожую продолжительность открывания клапанов, которая составляет 2 700 оборотов. В данном разделе нашего сайта вы сможете найти статью троит двигатель: причины и методы устранения. Обычно такиераспредвалы называются конструкциями с одним профилем. Все же между этими распредвалами есть некоторые отличия. Например, у вала А кулачки расположены так, что впускной открывается за 270 до верхней мертвой точки, а закрывается в 630 после нижней мертвой точки.
Что касается выпускного клапана вала А, то он открывается в 710 до нижней мертвой точки и закрывается за 190 после верхней мертвой точки. То есть, фазы газораспределения выглядят следующим образом: 27-63-71 – 19. Что касается вала В, то у него прослеживается другая картина: 23 o67 — 75 -15. Вопрос: Как валы А и В могут повлиять на мощность двигателя? Ответ: вал А создаст дополнительную максимальную мощность. Все же стоит отметить, что двигатель будет иметь характеристики хуже, кроме того, у него будет прослеживаться более узкая кривая мощности по сравнению с валом В. Сразу стоит отметить, что на такие показатели никак не влияет продолжительность открывания и закрывания клапанов, так как она, как мы отметили выше, одинакова. На самом деле на такой результат влияют изменения в фазах распределения газа, то есть, в углах, находящихся между центрами кулачков в каждом распределительном вале.
Этот угол представляет собой угловое смещение, которое происходит между впускным и выпускным кулачками. Стоит отметить, что в этом случае данные будут указываться в градусах поворота распределительного вала, а не в градусах поворота коленчатого вала, которые указывались ранее. Так, перекрытие клапанов зависит, главным образом, от угла. Например, в момент уменьшения угла между центрами клапанов впускной и выпускной клапаны будут перекрываться больше. Кроме того, в момент увеличения продолжительности открывания клапанов, их перекрытие тоже повышается.
Распределительный вал или попросту распредвал в газораспределительном механизме обеспечивает выполнение основной функции – своевременного открытия и закрытия клапанов, за счет чего производится приток свежего воздуха и выпуск отработавших газов. В общем виде распределительный вал управляет процессом газообмена в двигателе.
Для уменьшения инерционных нагрузок, увеличения жесткости элементов газораспределительного механизма распределительный вал должен располагаться как можно ближе к клапанам. Поэтому стандартное положение распредвала на современном двигателе в головке блока цилиндров – т.н. верхнее расположение распределительного вала .
В газораспределительном механизме используется один или два распределительных вала на ряд цилиндров. При одновальной схеме обслуживаются впускные и выпускные клапаны (два клапана на цилиндр ). В двухвальном газораспределительном механизме один вал обсуживает впускные клапаны, другой – выпускные (два впускных и два выпускных клапана на цилиндр ).
Основу конструкции распределительного вала составляют кулачки . На каждый клапан используется, как правило, один кулачок. Кулачок имеет сложную форму, которая обеспечивает открытие и закрытие клапана в установленное время, и его подъем на определенную высоту. В зависимости от конструкции газораспределительного механизма кулачок взаимодействует либо с толкателем, либо с коромыслом.
При работе распределительного вала кулачки вынуждены преодолевать усилия возвратных пружин клапанов и силы трения от взаимодействия с толкателями. На все это расходуется полезная мощность двигателя. Указанных недостатков лишена беспружинная система, реализованная в десмодромном механизме . Для уменьшения силы трения между кулачком и толкателем плоская поверхность толкателя может заменяться роликом . В отдаленной перспективе использование магнитной системы для управления клапанами, обеспечивающей полный отказ от распределительного вала.
Распределительный вал изготавливается из чугуна (литьем) или стали (ковкой). Распредвал вращается в опорах, которые представляют собой подшипники скольжения. Число опор на одно превышает число цилиндров. Опоры, в основном, разъемные, реже – неразъемные (выполнены как одно целое с головкой блока). В опорах, выполненных в чугунной головке, используются тонкостенные вкладыши, которые при изнашивании заменяются.
От продольного перемещения распредвал удерживают упорные подшипники, располагающиеся около приводной шестерни (звездочки). Распределительный вал смазывается под давлением. Предпочтительным является индивидуальный подвод масла к каждому подшипнику. Значительно повышается эффективность газораспределительного механизма с использованием различных систем изменения фаз газораспределения , которые позволяют добиться повышения мощности, топливной экономичности, снижения токсичности отработавших газов. Различают несколько подходов к изменению фаз газораспределения:
- поворот распределительного вала на различных режимах работы;
- использования нескольких кулачков с различным профилем на один клапан;
- изменение положения оси коромысла.
Распределительный вал приводится в действие от коленчатого вала двигателя . В четырехтактном двигателе внутреннего сгорания привод обеспечивает вращение коленчатого вала со скоростью в два раза медленнее коленчатого вала.
На двигателях легковых автомобилей привод распределительного вала осуществляется с помощью цепной или ременной передачи. Данные виды привода на равных используются как в бензиновых двигателях, так и дизелях. Ранее для привода использовалась шестеренная передача, но ввиду громоздкости и повышенного шума перестала применяться.
Цепной привод объединяет металлическую цепь, которая обегает звездочки на коленчатом и распределительном валу. Помимо этого в приводе используются натяжитель и успокоитель. Цепь состоит из звеньев, соединенных шарнирами. Одна цепь может обслуживать два распределительных вала.
Цепной привод распределительного вала достаточно надежный, компактный, может использоваться на больших межосевых расстояниях. Вместе с тем, износ шарниров при эксплуатации, приводит к растяжению цепи, последствия которого могут быть самые печальные для ГРМ. Не спасают даже натяжитель с успокоителем. Поэтому цепной привод требует регулярного контроля состояния.
В ременном приводе распределительного вала используется зубчатый ремень, который охватывает соответствующие зубчатые шкивы на валах. Приводной ремень оборудуется натяжным роликом. Ременный привод компактный, почти бесшумный, достаточно надежный, что делает его популярным у производителей. Современные зубчатые ремни имеют значительный ресурс — до 100 тыс. км пробега и более.
Привод распределительного вала может использоваться для привода и других устройств – масляного насоса , топливного насоса высокого давления , распределителя зажигания.
Проверка и регулировка тепловых зазоров клапанов газораспределительного механизма двигателей
Изучить технологию регулировки тепловых зазоров клапанов газораспределительного механизма и приобрести навыки по ее проведению.
Двигатели ЗМЗ-53 и КамАЗ-740, набор щупов, пусковая рукоятка, отвертка, комплект ключей.
Тепловой зазор обеспечивает герметичную посадку клапана на седло при тепловом расширении деталей во время работы двигателя.
Для каждой модели двигателя установлена оптимальная величина теплового зазора в клапанных механизмах (таблица 1).
Таблица 1 Тепловые зазоры в клапанных механизмах
Двигатели | Впускной клапан | Выпускной клапан | |
ВАЗ-2101 — ВАЗ-2107, 412Э | 0,15 | 0,15 | |
ЗМЗ-2401 | 0,35-0,4 – для выпускных клапанов 1 и 4 цилиндров; 0,4-0,45 – для остальных | ||
ЗМЗ-53, ЗИЛ-130, ЯМЗ-236, ЯМЗ-238 | 0,25-0,30 | 0,25-0,30 | |
КамАЗ-740, КамАЗ-741 | 0,15-0,20 | 0,20-0,25 | |
РАБА-МАН | 0,2 | 0,25 | |
В процессе эксплуатации вследствие износа или нарушения регулировки величина теплового зазора может изменяться, отклоняясь от оптимальных значений. Как увеличение, так и уменьшение тепловых зазоров отрицательно сказывается на работе газораспределительного механизма и двигателя в целом. При слишком больших зазорах растут ударные нагрузки и увеличивается износ деталей привода клапанов. При очень малых зазорах не обеспечивается герметичность камеры сгорания, двигатель теряет компрессию и не развивает полной мощности, клапаны перегреваются, что может привести к прогару фасок. Таким образом, регулировка тепловых зазоров клапанов устраняет преждевременный износ деталей газораспределительного механизма, позволяет восстановить фазы газораспределения, повысить наполнение цилиндров, их компрессию и в итоге мощность двигателя.
Зазоры проверяют и при необходимости регулируют периодически во время выполнения технического обслуживания. Тепловые зазоры в газораспределительном механизме регулируют на холодном (15 – 25 ͦС) двигателе при полностью закрытых впускных и выпускных клапанах. Зазор измеряют плоским щупом. Пластинки щупа, по толщине равные требуемому зазору, должны проходить в зазор при легком нажатии. Если зазор задан допускаемым пределом, щуп, толщина которого равна нижнему значению предела, должен входить в зазор легко, а равный верхнему значению предела – с легким усилием. Перед регулировкой клапанов необходимо проверить крепление головки блока и гаек крепления стоек коромысел.
Рисунок 1 – Механизм газораспределения двигателя КамАЗ-740:
а – устройство механизма: А – тепловой зазор; 1 – распределительный вал; 2 – толкатель;
3 – направляющая толкателя; 4 – штанга; 5 – прокладка крышки; 6 – коромысло; 7 – гайка;
8 – регулировочный винт; 9 – болт крепления крышки головки; 10 – сухарь; 11 – втулка тарелки;
12 – тарелка пружины; 13 и 14 — клапанные пружины; 15 – направляющая клапана; 16 – упорная
шайба; 17 – клапан; б – регулировка тепловых зазоров в клапанном механизме.
Рисунок 2 – Механизм газораспределения двигателя ВАЗ-2101
а – устройство механизма: 1 – клапан; 2 – направляющая втулка клапана; 3 – уплотнительный
колпачок; 4 и 5 – клапанные пружины; 6 – сухарь; 7 – тарелка пружины; 8 – шпилечная пружина
рычага; 9 – рычаг; 10 – корпус распределительного вала; 11 – кулачок; 12 – крышка клапанного
механизма; 13 – сферическая опора рычага; 14 – регулировочный болт; 15 – контргайка
регулировочного болта; 16 – стальная втулка; 17 – нижняя опорная шайба; 18 – стопорное кольцо;
б – последовательность регулировки тепловых зазоров клапанов: А и Б – метки, при совмещении
которых поршень в четвертом цилиндре достигает в.м.т. в такте сжатия; В – регулировочный болт;
Г – контргайка; 1 – 4 – очередность регулировки клапанов.
Газораспределительные системы | Swagelok
Полностью собранные и протестированные газораспределительные панели для промышленного применения
Газораспределительные системы должны безопасно и эффективно доставлять газы от источника высокого давления до конечного процесса с давлением и скоростью потока, требуемыми для каждого приложения. Однако, когда работа системы не является интуитивно понятной, когда присутствуют утечки или когда газовые панели трудно обслуживать, могут возникнуть проблемы.
- Незаметные утечки дорогостоящих газов могут снизить вашу прибыльность
- Утечки бытовых газов могут угрожать эффективности процесса и увеличивать эксплуатационные расходы
- Многие типы утечек также могут создать угрозу безопасности для членов вашей команды
- Проблемы с системой подачи газа могут привести к остановке технологического процесса и незапланированным простоям
Часто промышленные предприятия не имеют опыта или ресурсов в области снижения давления, чтобы эффективно решать эти проблемы в своих газораспределительных системах.
Обратитесь за помощью в Swagelok
Узнайте, как наши консультанты помогают небольшим командам оптимизировать и лучше управлять обширными системами распределения газа с помощью нашей программы распределения газа.
Swagelok
® Газораспределительные системыЕсли вам нужно стандартное решение или индивидуальная компоновка, мы можем спроектировать и собрать систему подачи газа, которая подходит именно вам. Наши стандартные газовые панели полностью собраны и протестированы. Их легко заказать из нашего руководства по применению в виде отдельных номеров деталей, что сводит к минимуму время, которое ваши инженеры тратят на спецификацию и закупку новых систем.Они также имеют широкие возможности настройки — мы можем добавлять функции или вносить изменения по мере необходимости в соответствии с вашими требованиями.
Мы проектируем газораспределительные системы Swagelok на основе передового опыта. Наши модульные панели имеют минимальное количество резьбовых соединений для уменьшения потенциальных точек утечки, и они интуитивно промаркированы для обеспечения безопасного и простого использования и обслуживания. На все наши газораспределительные системы распространяется Ограниченная пожизненная гарантия Swagelok.
Послушайте, как наши инженеры рассказывают о различных разработанных Swagelok подсистемах газораспределения, которые мы предлагаем, и о преимуществах, которые они могут предоставить вам.
Выбор из модульных подсистем газораспределения
Газораспределительные системы Swagelok построены на одной или нескольких ступенях регулирования давления и могут включать четыре подсистемы:
- Swagelok ® Вход источника (SSI)
- Газовая панель Swagelok ® (SGP)
- Swagelok ® переключение на (SCO)
- Swagelok ® точка использования (SPU)
Загрузите наше руководство по применению
Swagelok
® Вход источника (SSI)Вход источника устанавливает соединение между источником газа высокого давления и распределительной системой.Важно, чтобы впускное отверстие было снабжено соответствующими соединениями цилиндра; шланги; НКТ; фильтры; а также функции вентиляции, продувки и сброса, чтобы обеспечить безопасную подачу газа в первичный регулятор давления газа или автоматическое переключение.
Для одного газового баллона сборка может быть такой же простой, как шланг и соединитель, в то время как для нескольких баллонов может потребоваться коллектор, включающий множество шлангов и клапанов.
Предлагаем:
- Широкие возможности настройки для продувки или удаления газов при замене баллонов, всегда обеспечивая безопасность оператора
- Доступна опция вентиляции отдельных линий для увеличения времени безотказной работы
Как консультанты Swagelok могут помочь
Легко предположить, что входной патрубок источника будет стандартно поставляться с новой газовой панелью и будет использовать правильный разъем баллона, но это не всегда так.Наши консультанты позаботятся о том, чтобы все компоненты были включены и правильно указаны с минимальным количеством точек подключения, шлангами, которые не падают на землю, и надлежащим образом поддерживаемыми компонентами. Кроме того, мы можем посоветовать, когда для некоторых газов может потребоваться использование специальных шлангов.
Swagelok
® Газовая панель (SGP)В качестве основного регулятора давления газа SGP завершает первое снижение давления исходного газа и обеспечивает его подачу с правильным расходом на следующую ступень системы.Снижение давления осуществляется либо в одну ступень с помощью одного регулятора давления, либо в две ступени с помощью сдвоенного регулятора давления.
Предлагаем:
- Модульные панели, которые легко обслуживать, поскольку любая часть может быть отсоединена через соединение Swagelok, поэтому панель не нужно снимать
- Дополнительные опции для регулятора и клапанов для цветовой кодировки, если это необходимо для вашего объекта
Как консультанты Swagelok могут помочь
Точное определение правильного давления на входе и выходе может быть трудным — наши консультанты четко объяснят, что нужно учитывать для различных сред.Мы также можем помочь вам понять, где требуется двухступенчатый регулятор — многие клиенты удивляются, узнав, что для большинства бутылок не требуется двухступенчатое решение.
Swagelok
® Преобразователь (SCO)Автоматическая система переключения плавно переключается с одного источника газа на другой, чтобы обеспечить бесперебойное снабжение. Это достигается за счет смещения уставок двух регуляторов давления, что позволяет системе продолжать работу при смене основного источника газа.Наша переключающая станция позволяет устанавливать заданные пользователем точки переключения, чтобы сократить потери газа, остающегося в баллонах.
Предлагаем:
- Больше уверенности, что точка переключения остается постоянной
- Дополнительное регулирование линии, если ваша система включает в себя регулятор точки использования на выходе — это может устранить дополнительные расходы на регулятор на SCO
- Гибкость настройки давления переключения в соответствии с вашими требованиями
Как консультанты Swagelok могут помочь
Системы автоматического переключения широко используются, но часто недостаточно изучены.Кроме того, универсальное решение, как правило, применяется ко многим различным системам, параметры и потребности которых могут различаться. Мы можем помочь вашей команде лучше понять функциональность системы, чтобы исключить неопределенность в работе, устранении неполадок и обслуживании.
Swagelok
® Место использования (SPU)Пункт использования обеспечивает последнюю критическую стадию регулирования давления перед использованием газа. Часто это наименее сложные из четырех основных подсистем, обычно имеющие регулятор давления, манометр и запорный клапан.Системы на месте использования предлагают удобный и точный метод регулировки давления в соответствии с потребностями испытательного стенда или оборудования.
Предлагаем:
- Стандартизация и последовательная работа в точке использования
- Поток сверху вниз или снизу вверх в соответствии с потребностями установки
- Варианты крепления на плоской пластине, снизу, сверху и на стене
- Компактная конструкция
Как консультанты Swagelok могут помочь
Мы можем показать вам скрытую экономию, например, как можно использовать одноступенчатый SGP для минимизации затрат там, где допустимо варьирование линейного давления между SGP и SPU.Все подсистемы Swagelok® легко настраиваются в соответствии с вашими требованиями, и наши консультанты помогут вам выбрать лучшие компоненты для работы и подберут подходящий вариант монтажа, который сводит к минимуму вероятность возникновения повреждений.
Запросить информацию о газораспределительных системах
Центр обработки данных по альтернативным видам топлива: Распределение природного газа
Сеть трубопроводов природного газа СШАИсточник: EIA
В Соединенных Штатах имеется обширная система трубопроводов природного газа, которая может быстро и экономично распределять природный газ практически в любое место в 48 штатах с низкими ценами.Газ распределяется с использованием 305 000 миль магистральных трубопроводов (см. Карту), в то время как дополнительные 2,2 миллиона миль распределительных труб транспортируют газ в пределах коммунальных служб. Система распределения также включает в себя тысячи точек доставки, получения и соединения; сотни складских помещений; и около 50 пунктов экспорта и импорта природного газа.
В дополнение к распределению через разветвленную сеть трубопроводов страны, возобновляемый природный газ (ГСЧ) может подаваться на производственных площадках, таких как свалки или очистные сооружения с возможностью очистки и повышения качества биогаза (газообразный продукт разложения органических веществ. ).Как и обычный природный газ, ГСЧ может быть сжат или сжижен для использования в транспортных средствах.
Распределение сжатого природного газа
Подавляющая часть поставок сжатого природного газа (КПГ) в стране распределяется через установленную систему распределения природного газа.
Большинство заправочных станций природного газа заправляют КПГ, который обычно сжимается на месте. КПГ используется в автомобилях малой, средней и большой грузоподъемности.
Чтобы найти это топливо, см. Расположение заправочных станций КПГ.
Распределение сжиженного природного газа
Сжиженный природный газ, или СПГ, необходимо переохлаждать и хранить в жидкой форме при температуре -260 ° F перед обратным преобразованием в газ. СПГ должен быть в газообразной форме, прежде чем он попадет в внутреннюю трубопроводную систему распределения и в конечном итоге будет доставлен конечному пользователю. СПГ можно использовать в транспортных средствах, хотя автомобили на СПГ более распространены.
В то время как большинство заправочных станций природного газа в Соединенных Штатах заправляют КПГ, доступно ограниченное количество заправочных станций СПГ.Многие пользователи СПГ — это автопарки, у которых есть собственная заправочная инфраструктура для своих автомобилей; Однако в последние годы открылись также многочисленные общественные заправочные станции СПГ. Крупные предприятия по сжижению природного газа обеспечивают СПГ-топливо для транспортировки по всей стране, и СПГ необходимо доставлять на станции грузовиками.
Чтобы найти это топливо, см. Расположение заправочных станций СПГ.
Газоснабжение — обзор
1 Введение
Природный газ обеспечивает примерно четверть мировых потребностей в первичной энергии, продаваемой на коммерческой основе.Непрерывный и неуклонный рост потребления газа в домашних хозяйствах, промышленности и на электростанциях постепенно превратил природный газ в основной источник энергии. Основными драйверами этого развития являются технические и экономические преимущества природного газа. Это чистое, универсальное и легко контролируемое топливо, для которого не требуется хранение на месте. Ожидается дальнейший рост потребления газа в связи с относительно низким содержанием углерода по сравнению с углем и нефтепродуктами. Исходя из этого, газ часто считается формой энергии, которая будет «топливным мостом» для устойчивой энергетической системы где-то после 2050 года.
В отличие от других основных источников энергии, таких как нефть и уголь, газ не продается на реальном мировом рынке. Это связано с тем, что газ становится доступным для потребителей посредством сложных систем добычи и транспортировки, через которые он часто перемещается с удаленных месторождений к своим пользователям. Географическая досягаемость этих трубопроводных систем транспортировки и распределения имеет важное значение для развития спроса и предложения.
Традиционно разработка и эксплуатация этих систем представляла собой серьезную проблему из-за больших рисков и неопределенностей.Огромные инвестиции должны быть направлены на объекты, которые после постройки будут иметь только одну цель и предназначение и не имеют альтернатив. Кроме того, производителей, перевозчиков и потребителей связывают отношения взаимной зависимости. В ответ на эти характеристики и специфические местные установки систем были установлены различные договорные отношения и организационные структуры, чтобы снизить связанный с этим риск и установить условия торговли на более длительный период времени, чтобы производители, а также потребители ‘инвестиции не будут поставлены под угрозу.
Это привело к развитию действительно региональных газовых рынков в различных регионах США, а затем и в континентальной Европе, Великобритании, Японии, Советском Союзе и Латинской Америке. Каждый рынок имеет свою собственную рыночную структуру, характерные институциональные рамки и роль правительств и местных властей, а также конкретные результаты с точки зрения экономики спроса и предложения.
В 1980-е годы в экономической мысли начал формироваться постепенный сдвиг, в ходе которого были поставлены под сомнение стабилизирующая роль государства и необходимость контроля рынков в целом.Утверждалось, что государство никогда не сможет координировать экономику более эффективно, чем рынок. Государство никогда не сможет получить и обработать необходимую для этого информацию, тогда как неудачи правительства подорвут эффективность экономики. Более того, в процессе планирования правительство подвергалось серьезному риску оказаться затронутым группами интересов или политическим тупиком. Аргументы в пользу реструктуризации были подкреплены призывом объединить национальные и региональные рынки товаров, поскольку теория международной торговли утверждала, что экономическое благосостояние повысится, если производство будет осуществляться в наиболее эффективном месте или стране.Поскольку страны сильно различаются по запасам энергоресурсов, национальные (энергетические) рынки должны быть интегрированы в такой степени, чтобы процесс производства и торговли энергией больше не ограничивался национальными территориями. Для достижения этого национальные торговые режимы должны были устранить существующие барьеры для торговли, тогда как физическая инфраструктура для эффективной транспортировки энергии между странами и внутри стран, такая как трубопроводы, порты и железные дороги, должна была быть развита.
Постепенно в нескольких газопотребляющих регионах начались процессы структурных и нормативных изменений.Опять же, на развитие этих процессов влияли местные, экономические и (гео) политические обстоятельства. Это отражается во времени этих процессов, скорости их развития и структурных моделях, выбранных для преобразования «систем» газоснабжения в реальные «газовые рынки». В этой статье представлены некоторые иллюстрации того, как были организованы некоторые из основных газовых рынков в прошлом, и как они реструктурируются в настоящее время. Из-за нехватки места в нем не дается широкий обзор таких разработок.Он также не дает количественного обзора фактического развития потребления и предложения газа в обсуждаемых странах и регионах.
Моделирование и оптимизация системы газоснабжения на переходной стадии: пример Китая | BMC Energy
Общая структура систем поставки природного газа
Общая структура систем поставки природного газа с несколькими регионами и периодами состоит из пяти частей, а именно, части внутреннего производства, импорта, передачи, хранения и спроса, как показано на Рис. .4.
Рис. 4Структура системы газоснабжения
Что касается внутренней добычи, ресурсы природного газа и производственные мощности различаются по регионам. Точно так же импортная мощность зависит от региона в зависимости от инфраструктуры импорта, включая трубопроводы и порты для СПГ. Транспортировка природного газа имеет четыре варианта: трубопроводы, порты СПГ, грузовики и отсутствие передачи. Стоимость передачи отличается при использовании этих технологий. Емкость хранилища, в зависимости от хранилищ, служит для управления ежемесячными колебаниями спроса на природный газ и поддержания порога безопасности выше определенного уровня для предотвращения неожиданных и непредсказуемых рисков.В разделе спроса годовой спрос на природный газ и ежемесячные колебания различаются в зависимости от региона.
Математическая модель
Метод смешанного целочисленного программирования (MIP) применяется для представления системы подачи природного газа. Общее выражение проблемы MIP показано в формуле. 1, где x, d, y, θ представляет вектор непрерывных рабочих переменных, непрерывных проектных переменных, двоичных проектных переменных и входных параметров соответственно. Функция , , f, h, g, , , представляет соответственно ограничения целевой функции, равенства и неравенства.
$$ {\ displaystyle \ begin {array} {c} \ boldsymbol {\ min} \ \ boldsymbol {f} \ left (\ boldsymbol {x}, \ boldsymbol {d}, \ boldsymbol {y}, \ boldsymbol { \ theta} \ right) \\ {} \ boldsymbol {s}. \ boldsymbol {t}. \ kern0.5em \ boldsymbol {h} \ left (\ boldsymbol {x}, \ boldsymbol {d}, \ boldsymbol {\ theta} \ right) = \ mathbf {0}, \\ {} \ \ boldsymbol {g} \ left (\ boldsymbol {x}, \ boldsymbol {d}, \ boldsymbol {y}, \ boldsymbol {\ theta} \ справа) \ le \ mathbf {0} \ end {array}} $$
(1)
В этой модели ежемесячная добыча, импорт, транспортировка и хранение природного газа в каждом регионе являются рабочими переменными.Расширение газопроводов, портов и хранилищ природного газа из года в год является переменным фактором при проектировании. Ресурсы, географическое положение, затраты, цены, ежемесячный спрос, годовая производственная мощность и инфраструктура природного газа в базовом году являются входными параметрами.
Баланс между спросом и предложением в каждом регионе, баланс хранения между периодами и развитие инфраструктуры год за годом в основном составляют ограничения равенства. Ограничения неравенства обычно возникают из-за ресурсов, ограничений инфраструктуры и географических ограничений.Целевая функция — это общая стоимость системы газоснабжения за длительный период. Эти переменные могут быть получены путем минимизации целевой функции.
Подробная информация представлена ниже. Следующее уравнение. 2–22 составляют проблему MIP. Задача MIP решается на платформе General Algebraic Modeling System (GAMS) [38]. Решатель CPLEX используется для решения проблемы. Обозначения перечислены в разделе сокращений.
Внутреннее производство и импорт
Внутреннее производство и чистый импорт составляют общие поставки природного газа.Модель предполагает недостаточную добычу природного газа внутри страны и достаточные поставки природного газа за рубеж. Следовательно, ежемесячная и общая добыча природного газа, обозначенная как pro r, t, m и pro r, t , ограничена производственной мощностью PR max, r, t и ресурсы RE r , где r, t, m представляют регион, год и месяц соответственно, как показано на Уравнения.2 и 3. Импорт природного газа i r, t, m ограничен объемом импорта I max, r, t , как показано в уравнении. 4. Учитывая, что добыча природного газа относительно стабильна, параметр A устанавливается для представления максимального разрыва между добычей природного газа и среднемесячной добычей, как показано в уравнении. 5.
$$ \ sum \ limits _ {\ boldsymbol {m}} {\ boldsymbol {pro}} _ {\ boldsymbol {r}, \ boldsymbol {t}, \ boldsymbol {m}} \ le {\ boldsymbol { PR}} _ {\ boldsymbol {\ max}, \ boldsymbol {r}, \ boldsymbol {t}} $$
(2)
$$ \ sum \ limits _ {\ boldsymbol {t}} {\ boldsymbol {pro}} _ {\ boldsymbol {r}, \ boldsymbol {t}} \ le {\ boldsymbol {RE}} _ {\ boldsymbol { r}} $$
(3)
$$ {\ boldsymbol {i}} _ {\ boldsymbol {r}, \ boldsymbol {t}, \ boldsymbol {m}} \ le {\ boldsymbol {I}} _ {\ boldsymbol {\ max}, \ полужирный символ {r}, \ boldsymbol {t}} / \ mathbf {12} $$
(4)
$$ \ left (\ sum \ limits _ {\ boldsymbol {m}} {\ boldsymbol {pro}} _ {\ boldsymbol {r}, \ boldsymbol {t}, \ boldsymbol {m}} / \ mathbf {12 } \ right) \ times \ left (\ mathbf {1} — \ boldsymbol {A} \ right) \ le {\ boldsymbol {pro}} _ {\ boldsymbol {r}, \ boldsymbol {t}, \ boldsymbol {m }} \ le \ left (\ sum \ limits _ {\ boldsymbol {m}} {\ boldsymbol {pro}} _ {\ boldsymbol {r}, \ boldsymbol {t}, \ boldsymbol {m}} / \ mathbf {12 } \ right) \ times \ left (\ mathbf {1} + \ boldsymbol {A} \ right) $$
(5)
Передача
Транспортировка природного газа в значительной степени зависит от специализированной инфраструктуры.Трубопроводные сети являются основным средством транспортировки природного газа на большие расстояния. В этой модели учитывается только передача между регионами, а передача внутри региона не учитывается. В связи с тем, что количество природного газа, передаваемого другими способами, например, грузовиком, незначительно по сравнению с транспортировкой по трубопроводу, другие способы транспортировки в данном исследовании не учитываются.
Природный газ может передаваться только между двумя соседними регионами, и объем передачи t r, rr, t, m не может превышать верхнюю границу, ограниченную инфраструктурой T max, r, rr, t , как показано в уравнении.6. Двоичная переменная yt r, rr вводится для представления географических ограничений, где yt r, rr равно нулю, что означает, что две области не являются смежными , как показано в формуле. 7.
$$ {\ boldsymbol {t}} _ {\ boldsymbol {r}, \ boldsymbol {r} \ boldsymbol {r}, \ boldsymbol {t}, \ boldsymbol {m}} \ le {\ boldsymbol {T}} _ {\ boldsymbol {\ max}, \ boldsymbol {r}, \ boldsymbol {r} \ boldsymbol {r}, \ boldsymbol {t}} / \ mathbf {12} $$
(6)
$$ {\ displaystyle \ begin {array} {c} — {\ boldsymbol {L}} _ {\ mathbf {1}} \ times {\ boldsymbol {yt}} _ {\ boldsymbol {r}, \ boldsymbol { rr}} \ le {\ boldsymbol {t}} _ {\ boldsymbol {r}, \ boldsymbol {rr}, \ boldsymbol {t}, \ boldsymbol {m}} \ le {\ boldsymbol {L}} _ {\ mathbf {1}} \ times {\ boldsymbol {yt}} _ {\ boldsymbol {r}, \ boldsymbol {rr}} \\ {} \ left ({\ boldsymbol {yt}} _ {\ boldsymbol {r}, \ boldsymbol {rr}} — \ mathbf {1} \ right) \ times {\ boldsymbol {L}} _ {\ mathbf {1}} \ le {\ boldsymbol {t}} _ {\ boldsymbol {r}, \ boldsymbol {rr}, \ boldsymbol {t}, \ boldsymbol {m}} \ end {array}} $$
(7)
Хранение
Хранилища природного газа играют важную роль в удовлетворении пикового спроса.Хранение природного газа ограничено емкостью и периодом, когда объем хранения s r, t, m не может превышать свою максимальную емкость S max, r, t , как показано в формуле. 8, и конечный запас этого периода с 1 r, t, m — 1 , равняется началу следующего периода с 0 r, t, m , как показано в уравнении.9.
$$ {\ boldsymbol {s}} _ {\ boldsymbol {r}, \ boldsymbol {t}, \ boldsymbol {m}} \ le {\ boldsymbol {S}} _ {\ boldsymbol {\ max}, \ boldsymbol {r}, \ boldsymbol {t}} $$
(8)
$$ \ boldsymbol {s} {\ mathbf {0}} _ {\ boldsymbol {r}, \ boldsymbol {t}, \ boldsymbol {m}} = \ boldsymbol {s} {\ mathbf {1}} _ { \ boldsymbol {r}, \ boldsymbol {t}, \ boldsymbol {m} — \ mathbf {1}} $$
(9)
Баланс спроса и предложения
Эта работа проводится в ежемесячном масштабе, чтобы отразить сезонные колебания спроса на природный газ.В каждом регионе и в каждом месяце общее предложение равно общему спросу. Общее предложение включает внутреннее производство, чистый импорт, чистую передачу из других регионов и чистое сокращение хранения, как показано в уравнении. 10.
$$ {\ boldsymbol {D}} _ {\ boldsymbol {r}, \ boldsymbol {t}, \ boldsymbol {m}} = {\ boldsymbol {pro}} _ {\ boldsymbol {r}, \ boldsymbol {t }, \ boldsymbol {m}} + {\ boldsymbol {i}} _ {\ boldsymbol {r}, \ boldsymbol {t}, \ boldsymbol {m}} + \ sum \ limits _ {\ boldsymbol {r} \ boldsymbol { r}} \ left ({\ boldsymbol {t}} _ {\ boldsymbol {r} \ boldsymbol {r}, \ boldsymbol {r}, \ boldsymbol {t}, \ boldsymbol {m}} — {\ boldsymbol {t }} _ {\ boldsymbol {r}, \ boldsymbol {r} \ boldsymbol {r}, \ boldsymbol {t}, \ boldsymbol {m}} \ right) — {\ boldsymbol {e}} _ {\ boldsymbol {r }, \ boldsymbol {t}, \ boldsymbol {m}} + \ boldsymbol {s} {\ mathbf {0}} _ {\ boldsymbol {r}, \ boldsymbol {t}, \ boldsymbol {m}} — \ boldsymbol {s} {\ mathbf {1}} _ {\ boldsymbol {r}, \ boldsymbol {t}, \ boldsymbol {m}} $$
(10)
Месячная потребность в природном газе во всех регионах является входными параметрами в этой модели.Ежемесячные колебания спроса у конечных пользователей, а именно для отопления, производства электроэнергии и других промышленных потребностей, различны. Региональные колебания могут быть получены в соответствии с долей спроса на природный газ среди конечных пользователей.
Расширение инфраструктуры
Наряду с увеличением спроса на природный газ будет построено больше трубопроводов, портов СПГ и хранилищ. Увеличивающаяся инфраструктура будет способствовать увеличению поставок природного газа. Расширение хранилищ природного газа — это постоянные проектные переменные, показанные в формуле.11, в то время как расширения трубопроводов и портов являются переменными переменными разрывами. Новая емкость является целым числом, кратным стандартной емкости, обозначенной как NT 0 и NI 0 . Двоичные проектные переменные ynt r, rr, t, i , yni r, t, i применяются для его описания, как показано в уравнениях. {\ boldsymbol {i} — \ mathbf {1}} \ right) \ end {array}} $$
(15)
Целевая функция
Целью оптимизации является общая стоимость поставки системы подачи природного газа в переходный период.Общая стоимость суммируется из годовых затрат с использованием ставки дисконтирования, как показано в уравнении. 16. Годовые затраты включают затраты на внутреннее производство, затраты на импорт, затраты на передачу, затраты на хранение и затраты на строительство инфраструктуры, как показано в уравнении. 17.
Внутренние производственные затраты рассчитываются путем умножения стоимости устья скважины на добычу природного газа, как показано в уравнении. 18. Затраты на импорт состоят из импортных цен, налогов и затрат на газификацию, как показано в уравнении. 19. Уравнение 20 показывает, что затраты на передачу равны ценам передачи, умноженным на количество передач.{\ boldsymbol {t} — \ mathbf {1}} $$
(16)
$$ {\ boldsymbol {c}} _ {\ boldsymbol {t}} = \ sum \ limits _ {\ boldsymbol {r}, \ boldsymbol {m}} \ left ({\ boldsymbol {c} \ boldsymbol {p }} _ {\ boldsymbol {r}, \ boldsymbol {t}, \ boldsymbol {m}} + {\ boldsymbol {c} \ boldsymbol {i}} _ {\ boldsymbol {r}, \ boldsymbol {t}, \ boldsymbol {m}} + \ sum \ limits _ {\ boldsymbol {r} \ boldsymbol {r}} {\ boldsymbol {c} \ boldsymbol {t}} _ {\ boldsymbol {r}, \ boldsymbol {rr}, \ boldsymbol {t}, \ boldsymbol {m}} + {\ boldsymbol {c} \ boldsymbol {s}} _ {\ boldsymbol {r}, \ boldsymbol {t}, \ boldsymbol {m}} \ right) + \ sum \ ограничения _ {\ boldsymbol {r}} {\ boldsymbol {c} \ boldsymbol {c}} _ {\ boldsymbol {t}} $$
(17)
$$ {\ boldsymbol {cp}} _ {\ boldsymbol {r}, \ boldsymbol {t}, \ boldsymbol {m}} = {\ boldsymbol {PP}} _ {\ boldsymbol {r}, \ boldsymbol { t}, \ boldsymbol {m}} \ ast {\ boldsymbol {pro}} _ {\ boldsymbol {r}, \ boldsymbol {t}, \ boldsymbol {m}} $$
(18)
$$ {\ boldsymbol {ci}} _ {\ boldsymbol {r}, \ boldsymbol {t}, \ boldsymbol {m}} = {\ boldsymbol {i}} _ {\ boldsymbol {r}, \ boldsymbol { t}, \ boldsymbol {m}} \ ast \ left ({\ boldsymbol {PI}} _ {\ boldsymbol {r}, \ boldsymbol {t}, \ boldsymbol {m}} + {\ boldsymbol {PG}} _ {\ boldsymbol {r}, \ boldsymbol {t}, \ boldsymbol {m}} \ right) \ ast \ left (\ mathbf {1} + \ boldsymbol {Tax} \ right) $$
(19)
$$ {\ boldsymbol {ct}} _ {\ boldsymbol {r}, \ boldsymbol {rr}, \ boldsymbol {t}, \ boldsymbol {m}} = {\ boldsymbol {t}} _ {\ boldsymbol { r}, \ boldsymbol {rr}, \ boldsymbol {t}, \ boldsymbol {m}} \ ast {\ boldsymbol {PT}} _ {\ boldsymbol {r}, \ boldsymbol {rr}, \ boldsymbol {t}, \ boldsymbol {m}} $$
(20)
$$ {\ boldsymbol {cs}} _ {\ boldsymbol {r}, \ boldsymbol {rr}, \ boldsymbol {t}, \ boldsymbol {m}} = \ boldsymbol {s} {\ mathbf {1}} _ {\ boldsymbol {r}, \ boldsymbol {t}, \ boldsymbol {m}} \ ast {\ boldsymbol {P}} _ {\ boldsymbol {r}, \ boldsymbol {t}, \ boldsymbol {m}} \ ast \ boldsymbol {DR} / \ mathbf {12} $$
(21)
$$ {\ boldsymbol {cc}} _ {\ boldsymbol {t}} = {\ boldsymbol {NS}} _ {\ boldsymbol {r}, \ boldsymbol {t}} \ times {\ boldsymbol {PNS}} _ {\ boldsymbol {t}} + {\ boldsymbol {NI}} _ {\ mathbf {0}} \ times \ left ({\ boldsymbol {yni}} _ {\ boldsymbol {r}, \ boldsymbol {t}, \ boldsymbol {i}} \ times {\ mathbf {2}} ^ {\ boldsymbol {i} — \ mathbf {1}} \ right) \ times {\ boldsymbol {PNI}} _ {\ boldsymbol {r}, \ boldsymbol {t}} + {\ boldsymbol {NT}} _ {\ mathbf {0}} \ times \ left ({\ boldsymbol {ynt}} _ {\ boldsymbol {r}, \ boldsymbol {rr}, \ boldsymbol { t}, \ boldsymbol {i}} \ times {\ mathbf {2}} ^ {\ boldsymbol {i} — \ mathbf {1}} \ right) \ times {\ boldsymbol {PNT}} _ {\ boldsymbol {r }, \ boldsymbol {rr}, \ boldsymbol {t}} $$
(22)
В этой работе целевая функция учитывает только затраты в цепочках поставок.Ожидается, что это отразит результат рыночной конкуренции, учитывая политическую ситуацию, когда рынок природного газа Китая реформируется в более конкурентном направлении, с большим количеством поставщиков и централизованным управлением трубопроводами. Самая низкая стоимость в цепочках поставок эквивалентна состоянию рыночного равновесия. В противном случае, если существует стратегия, которая снижает затраты, то на рынке должны быть игроки, которые применяют эту стратегию, чтобы получить выгоду за счет снижения затрат. Социальные издержки и издержки, связанные с нехваткой поставок, действительно существуют, но они не отражены в текущих рыночных механизмах, что означает, что стоимость не повлияет на транспортировку природного газа.Поэтому считается, что только затраты в цепочках поставок отражают результат рыночной конкуренции.
Анализ неопределенности
Эта модель разработана для определения оптимального плана расширения инфраструктуры и стратегии распределения природного газа путем минимизации общих затрат. По этой причине основные неопределенности модели связаны с разрывом между спросом и предложением, затратами в цепочке поставок и ставкой дисконтирования. В данном исследовании эта методология применяется в системе поставок природного газа Китая, где внутреннего природного газа недостаточно и по более низким ценам, чем импортный природный газ.Следовательно, прогноз спроса, стоимость передачи, стоимость импорта и ставка дисконтирования являются основными параметрами, которые могут сильно повлиять на результат.
Анализ неопределенности модели выполняется путем увеличения или уменьшения этих основных параметров на 5%. Некоторые индикаторы выбраны, чтобы показать влияние на результаты, а именно: общая стоимость, совокупные инвестиции в трубопроводы, совокупная мощность импорта СПГ и совокупная емкость хранилищ. Эти четыре индикатора отражают влияние на общую стоимость, план расширения трубопровода, план расширения порта СПГ и план увеличения емкости хранилища.Результат приведен в Таблице 1.
Таблица 1 результаты анализа неопределенностиРезультаты показывают, что прогноз спроса оказывает большее влияние, чем другие параметры. Более высокий прогноз спроса приведет к дальнейшему расширению инфраструктуры и увеличению объемов транспортировки природного газа.
Защита от избыточного давления для систем распределения природного газа
Автор Джон Дево, Бейкер Хьюз
Природный газ — это топливо, которое в изобилии используется как для производства энергии в промышленности, так и в жилых домах, и является одним из немногих источников энергии, которые доставляются непосредственно в наши дома.Поскольку это также легковоспламеняющаяся, потенциально взрывоопасная жидкость, коммунальные и распределительные компании должны уделять приоритетное внимание безопасности и уделять внимание своим системам защиты для предотвращения несчастных случаев.
Как мы видели на недавних событиях, даже при наличии этих знаний и мер предосторожности все еще возможно, что что-то пойдет не так.
Каждая система природного газа спроектирована и одобрена для максимально допустимого рабочего давления (MAOP). Для поддержания давления в системе ниже этого максимального номинального значения используются устройства регулирования или контроля давления.В системах бытового электроснабжения MAOP может быть чрезвычайно низким; часто всего несколько дюймов водяного столба (<1 фунт / кв. дюйм).
Такие системы низкого давления могут быть уязвимы даже для незначительных скачков давления и могут привести к серьезным последствиям. Вот почему оборудование или системы защиты от избыточного давления критически важны, чтобы гарантировать, что единственная точка отказа не может привести к превышению MAOP системы.
Системы подачи природного газа различаются по конструкции и давлению, и коммунальное предприятие или оператор должны выбрать соответствующие защитные устройства для своей системы в соответствии с федеральными постановлениями, правилами и стандартами проектирования компании.Ниже приводится общий обзор распространенных сегодня методов защиты от избыточного давления.
Клапан сброса давления
Раньше предохранительные клапаны (PRV) были наиболее распространенным методом защиты газопроводов от избыточного давления. Когда предохранительные клапаны обнаруживают, что давление на выходе превышает заданное значение, они автоматически открываются, чтобы сбросить избыточное давление. Хотя этот метод хорошо зарекомендовал себя, он также имеет некоторые недостатки.
- Для обеспечения достаточной производительности для всех условий может потребоваться более одного предохранительного клапана, при этом каждый клапан настроен на немного разное установленное давление, так что они срабатывают последовательно в зависимости от уровня избыточного давления в системе.Это повышение давления при такой конструкции необходимо учитывать при определении безопасной работы и сброса давления.
- При сбросе давления эти клапаны не только шумят, но и выделяют легковоспламеняющиеся, вредные парниковые газы (90-95% метана) прямо в нашу атмосферу.
Предохранительные клапаны, используемые в этих системах, могут быть сбросными регуляторами (регуляторами противодавления), подпружиненными или пилотными, регулирующими клапанами, как правило, для систем большей производительности.
Наиболее распространенная система, используемая сегодня для станций регулирования природного газа, — это два регулятора с пилотным управлением или регулирующих клапанов, последовательно включенных, один из которых работает в качестве «рабочего», а другой установлен с немного более высоким заданным давлением в качестве «монитора». Это приводит к тому, что Worker является основным управляющим устройством, которое функционирует в нормальных условиях. Монитор будет оставаться открытым, если только он не обнаружит, что давление на выходе превышает его более высокое установленное давление, и в это время он начнет закрываться и регулировать давление на своем более высоком значении.Это создает резервную систему, которая статистически снижает риск полного отказа на 400%.
Эта система может быть сконструирована с использованием регулирующих клапанов или пилотных регуляторов. Пилотные регуляторы обычно имеют более простую конструкцию и не имеют внешних отводов (без отвода в окружающую среду) во время работы и часто предпочтительны, когда позволяют требования к мощности. Конструкции с пилотным управлением предпочтительнее подпружиненных версий, поскольку они более чувствительны, что обеспечивает более высокую точность — обычно в пределах 1% по сравнению с 15% для конструкций с пружинным возвратом.
Еще одно преимущество — пилот может полностью открыть регулятор, если давление ниже уставки. Это позволяет использовать его при настройке широкоэкранного монитора. пока рабочий выполняет свою работу правильно, монитор будет оставаться широко открытым, сводя к минимуму ограничение потока. Подпружиненный регулятор в аналогичной установке останется частично закрытым. (рисунок 1)
Система рабочих / наблюдателей
Регулирующие клапаныпредпочтительны для использования в качестве рабочих / наблюдателей и становятся необходимыми в системах с большим объемом или высоким перепадом давления.В качестве регулирующего клапана часто используется поворотный шаровой клапан из-за его высокой собственной пропускной способности и низкого ограничения при полном открытии.
Поскольку регулирующие клапаны не являются самоуправляемыми, для обеспечения обратной связи по регулируемому давлению требуется устройство измерения давления, а для изменения положения клапана в ответ на это давление необходим контроллер. В промышленных приложениях, где доступны приборный воздух или источники энергии, эти устройства обычно имеют пневматическое или электрическое управление. Но эти ресурсы не всегда доступны в удаленных местах, где может потребоваться регулирование газа, поэтому следует рассмотреть другой, более простой вариант.
Используя природный газ с более высоким давлением со стороны входа в систему, регулирующие пилоты клапана могут приводить в действие регулирующий клапан напрямую без какого-либо внешнего источника питания, по существу объединяя датчик / преобразователь давления и контроллер в одном устройстве. Существуют версии с очень низким уровнем утечки, а также конструкции с обратным выбросом в трубопровод, исключающим выброс воздуха из атмосферы. Эти устройства могут преобразовывать регулирующий клапан в автономный регулятор, сохраняя при этом высокую пропускную способность и способность к падению давления сверхмощного клапана. (рис. 2 и 3)
Преимущества широко открытого монитора
(пассивный / резервный):
- Минимальное значение ΔP на мониторе снижает его износ.
- Рабочий, ведущий добычу, может поймать мусор перед монитором.
- Downstream worker более точный и отзывчивый.
- Пониженный поток газа через пилотную систему монитора.
- Недорогая сборка.
- Монитор всегда готов взять на себя управление.
Преимущества системы работник / монитор перед предохранительным клапаном:
- Нет выброса в атмосферу.
- Газ непрерывно подается в систему на безопасном уровне.
- Простота обслуживания и экономичность.
- Точный контроль.
- Пониженный уровень шума с монитором.
Другой вариант — подход «Рабочий монитор». Эта система очень похожа на широкоэкранную систему мониторинга, за исключением того, что в этом случае оба компонента все время активно дросселируют.В рабочей установке монитора каждый регулятор принимает на себя часть спада давления, чтобы ступенчато уменьшить давление. Первый регулятор настроен на немного более высокое давление по сравнению со вторым и становится редуктором первой ступени.
Давление на выходе регулятора выше по потоку становится давлением на входе второго регулятора, что завершает снижение давления до желаемого давления ниже по потоку. Второй пилот / контроллер используется для измерения давления в системе ниже по потоку и запуска монитора первой ступени для срабатывания в случае избыточного давления и поддержания этого давления ниже по потоку. (рисунок 4)
Преимущества рабочего монитора
- Двухступенчатое отключение давления снижает нагрузку на регуляторы за счет распределения рабочей нагрузки.
- Распределенная рабочая нагрузка снижает частоту обслуживания системы.
- Пониженный системный шум при одинаковом массовом расходе.
- Состояние регулятора монитора можно определить до возникновения аварийной ситуации.
- Рентабельно и долго.
Предохранительный запорный клапан также может быть оборудован для защиты от пониженного давления и обеспечивает дополнительный уровень защиты от повышенного давления в случае потери регулирования давления.Разница в том, что с другими методами, описанными выше, газ продолжает течь, а дополнительные устройства работают для его регулирования. Но если что-то пойдет не так с этими вторичными устройствами, что тогда? Хотя это нежелательно в качестве первого метода защиты, если регулирующие устройства, как первичные, так и вторичные, выходят из строя, система отсекающего клапана изолирует поток газа.
Клапаны отсечкимогут быть автономными устройствами или как неотъемлемая часть пилотного регулятора, каждая опция разработана с собственными механизмами обнаружения и управления.
Его функция проста: при обнаружении давления, превышающего заданное значение, для защиты от избыточного давления или ниже заданного значения для пониженного давления, внутренний механизм разблокируется и изолирующая заслонка закрывается. Заслонка остается в этом положении, останавливая весь поток газа, до тех пор, пока ее не сбросят вручную. Это обеспечивает защиту системы и удерживает ее в выключенном состоянии до тех пор, пока не будет выявлена и устранена причина сбоя. (рисунок 5)
Во время нормальной работы фиксатор удерживает заслонку открытой.Давление на выходе контролируется мембранами регулятора избыточного и разреженного давления. Сила, создаваемая чувствительным давлением, уравновешивается пружиной регулировки уставки, расположенной в кожухе пружины. Регулировочный винт может использоваться для изменения силы пружины и управления уставкой избыточного давления или дополнительной уставкой пониженного давления.
Дополнительным преимуществом ПЗК является двойная безопасность, обеспечиваемая в случае защиты от пониженного давления. Газовые приборы рассчитаны на работу при определенном давлении подачи газа.Что произойдет, если давление будет меньше этого? Мы видим контрольные лампы в старых домашних печах, водонагревателях, печах, каминах и т. Д.
Если давление газа упадет слишком низко для поддержания этой контрольной лампы, газ может не загореться при подаче. Если это произойдет, в местной атмосфере может скопиться газ, и в худшем случае это скопление газа может воспламениться, что приведет к взрыву. По этой причине защита от пониженного давления, которая перекрывала бы весь поток газа, если давление упадет ниже безопасной точки, также является важным фактором при проектировании системы.
Заключение
Общая безопасность системы природного газа является приоритетом для всех участников. Газовые системы могут быть очень сложными, и каждая система должна быть оценена, чтобы определить наиболее подходящую систему регулирования и безопасности для использования. Цель этой статьи — предоставить обзор нескольких методов и оборудования, которые можно использовать для обеспечения безопасного регулирования и подачи газа. P&GJ
Автор: Джон Дево — старший менеджер по продукции компании Becker and Mooney в области газового контроля и регуляторов в Baker Hughes, компании GE.Он имеет 35-летний опыт работы в сфере регулирующих клапанов и регуляторов.
Статьи по теме
(PDF) Развитие методов виброакустического контроля газораспределительного механизма ДВС
FME Transactions VOL. 48, № 1, 2020 ▪ 135 двигателей
. Energy Convers. Manag., Vol. 99, pp. 299-
312, 2015.
[16] Fugate, M.Л., Сон, Х. и Фаррар, C.R .: Обнаружение повреждений на основе вибрации
с использованием статистического процесса
control, Mechanical Systems and Signal Proces-
sing, Vol. 15, No. 4, pp. 707-721, 2001.
[17] Doebling, SW, Farrar, CR and Prime, MB: A
сводный обзор вибрационных повреждений
методы идентификации, Shock and Vibration Digest ,
Т. 30, вып. 2, pp. 91-105, 1998.
[18] Jiang, Z., Mao, Z., Wang, Z. и Чжан Дж.: Неисправность
диагностика клапана двигателя внутреннего сгорания
зазор с использованием метода обнаружения начала удара
, Датчики, Том 17, № 12, 2017.
[19] Флекевич, Б. и Флекевич, М .: Газовая форсунка
калибровка и диагностика с помощью виброакустического сигнала
, в: Proceedings of the Noise and Vibration
Conference and Exhibition, 16-19.05.2011, Rapids,
United States.
[20] Merkisz, J., Waligorski, M., Bajerlein, M. и
Markowski, J .: Применение анализа частоты и
JTFA сопутствующих процессов для
OBD Конструкция монитора процесса горения в
турбированных двигателях CI с прямым впрыском топлива HDV
внедорожные транспортные средства, в: Proceedings of the World
Congress and Exhibition, 12.04.2011, Detroit,
United States.
[21] Гу, Ф., Ли, У., Болл, А.Д. и Люнг, AYT:
мониторинг состояния дизельных двигателей с использованием
акустических измерений, часть 1:
Акустические характеристики двигателя и
представление акустические сигналы, в:
Proceedings of theWorld Congress, 6-9.03.2000,
Детройт, США.
[22] Бадави, Т., Шреста, А. и Хенейн, Н .: Обнаружение
резонанса горения с помощью датчика ионного тока
в дизельных двигателях, в: Proceedings of
the Internal Combustion Division Fall
Техническая конференция, 2-5.10.2011, Моргантаун,
США, стр. 755-763.
[23] Матиевич Д.В. и Попович В.М .: Обзор
современных достижений в области шума и вибрации транспортных средств
Усовершенствование с особым упором на диагностику,
FME Transactions, Vol.45, No. 3, pp. 448-458,
2017.
[24] Илич, З., Расуо, Р., Йованович, М. и Янкович, Д .:
Влияние изменения качества воздуха / топливная смесь
в полете самолета с поршневым двигателем относительно
к низкочастотному спектру вибрации, FME
Транзакции, Vol. 41, No. 1, pp. 25-32, 2013.
[25] Клинхеам, С. и Нивесрангсан, П.: Условие
Мониторинг неисправности зазора клапана на небольшом четырехтактном бензиновом двигателе
с использованием сигналов вибрации,
Сонгкланакарин Дж.Sci. Technol., Vol. 32, No. 6, pp.
619-625, 2010.
[26] Марвала, Т. и Хант, HEM: Возможна ли идентификация повреждения
с использованием данных о вибрации в группе из
цилиндров? Journal of Sound и вибрация,
Vol. 237, № 4, pp. 727-732, 2000.
[27] Kurihara, N., Fu, J., Sirayama, Y. and Furumaya,
H .: Быстрое обнаружение детонационного горения с использованием вейвлет-преобразования
для искрообразования. двигатель с зажиганием (SI), в:
Труды 12-го Международного Конгресса по
Звук и вибрация, 11-14.07.2005, Лиссабон,
Portugal, Vol. 2. С. 1737-1744.
[28] Наир Ю.К., Кумар С. и Соман К.П .: Обнаружение и анализ неисправностей автомобильных двигателей в реальном времени
с использованием платформ bigdata, Достижения в области интеллектуальных систем и вычислений
, Том. 515, pp. 507-514,
2017.
[29] Durand, J.-F., Gagliardini, L. and Soize, C.:
Непараметрическое моделирование изменчивости
виброакустического поведения транспортного средства, in : Материалы конференции и выставки
, посвященной шуму и вибрации,
16-19.05.2005, Траверс-Сити, США.
[30] Богус, П., Меркиш, Дж., Гжещик, Р. и
Мазурек, С .: Нелинейный анализ горения
виброакустических сигналов двигателя для обнаружения пропусков зажигания,
в: Proceedings of the World Congress, 3-
6 марта 2003 г., Детройт, США.
[31] Шайк Мохаммад, А.Б., Равиндран, В. и Рао,
PN: Виброакустическая оптимизация компонентов 3-цилиндрового дизельного двигателя
для снижения уровня шума
излучения с использованием методов конечных элементов, in:
Proceedings of the 16-й симпозиум по
International Automotive Technology, 16-
19.01.2019, Махараштра, Индия.
[32] Thomasson, A., Nikkar, S. и Höckerdal, E .:
Оценка заряда цилиндра на основе давления в цилиндре
в дизельных двигателях с двойной независимой переменной
фаз газораспределения, in: Proceedings of 2018 SAE
World Congress Experience, 10-12.04.2018, Кобо
Центр Детройта, США.
[33] Цзян, З., Мао, З., Ван, З. и Чжан, Дж .: Неисправность
диагностика клапана двигателя внутреннего сгорания
зазор с использованием начала удара
метод обнаружения, датчики (Швейцария) , Vol.
17 (12), 2017.
[34] Delvecchio, S., Bonfiglio, P. and Pompoli, F .:
Виброакустический мониторинг состояния двигателей внутреннего сгорания
: критический обзор существующих
техники, Механические системы и сигналы
Обработка, Vol. 99, pp. 661-683, 2018.
[35] Юсеф Т., Чадли М., Карими, Х.Р. и Ван,
Р.: Оценка неисправностей привода и датчика на основе пропорционального интегрального наблюдателя
для TS нечеткая модель,
Журнал Института Франклина, Vol.354 (6), pp.
2524-2542, 2017.
[36] Gao, Z., Cecati, C. и Ding, SX: Обзор
диагностики неисправностей и отказоустойчивых методов — часть I:
Диагностика неисправностей с помощью подходов на основе модели и сигнала
, IEEE Transactions on Industrial
Electronics, Vol. 62 (6), pp. 3757-3767, 2015.
[37] Ftoutou, E., Chouchane, M. and Besbès, N .:
Неисправность зазора клапана двигателя внутреннего сгорания
классификация с использованием многомерного дисперсионного анализа
и дискриминантный анализ, Пер.Inst. Измер.
Контроль, Том. 34, pp. 566-577, 2012.
Natural Gas 101 — KMEA
Природный газ — это надежный, универсальный, относительно экологически чистый и эффективный продукт. В первую пятерку потребителей природного газа в США в 2013 году вошли: электроэнергетика, промышленное, бытовое, коммерческое и автомобильное топливо. Большая часть природного газа, потребляемого в Соединенных Штатах, производится в Соединенных Штатах.
Как природный газ попадает из скважины в вашу городскую распределительную систему?
Для того, чтобы природный газ соответствовал стандартам «качества трубопроводов», продукт может пройти множество этапов преобразования от устья скважины до наконечника горелки.
Системы сбора состоят из трубопроводов малого диаметра и низкого давления, которые «собирают» неочищенный газ с устья скважины и перемещают его на перерабатывающие предприятия.
Перерабатывающие предприятия удаляют из продукта нефть, воду, сжиженный природный газ и другие примеси, такие как сера, гелий, азот, сероводород и диоксид углерода. После того, как природный газ прошел стадии переработки, продукт теперь соответствует стандартам качества трубопроводов.
Для транспортировки обработанного продукта в вашу городскую распределительную систему с перерабатывающего завода требуется, чтобы природный газ транспортировался по межгосударственным или внутригосударственным трубопроводам.При движении по трубопроводу природный газ может проходить еще несколько ступеней, например:
• Компрессорные станции — природный газ должен находиться под высоким давлением для прохождения по трубопроводам. Периодически требуется сжатие природного газа вдоль трубопровода.
• Хранилища — хранение природного газа в основном используется для удовлетворения сезонного спроса. Большая часть газа для хранения закупается и закачивается в хранилища в сезон низкого спроса (летние месяцы) и изымается из хранилища для удовлетворения пиковых потребностей в зимний сезон.Подземные хранилища обычно представляют собой истощенные нефтяные или газовые месторождения или резервуары с соляными кавернами.
• Регулирующие станции — давление газа, движущегося по трубе, должно быть уменьшено перед перемещением в более мелкие линии и распределительные системы. Регулирующие станции размещаются вдоль трубопровода, чтобы снизить давление газа до соответствующего рабочего давления для каждой системы.
Природный газ отводится по трубопроводу в городскую распределительную систему через городскую пограничную станцию (TBS).В момент передачи газа из трубопровода в распределительную систему трубопровод будет иметь станцию измерения объема, чтобы знать, какой объем перемещается из трубы в вашу систему. Большинство измерительных станций оснащены электронным измерителем расхода (EFM).
Именно через городскую распределительную систему газ доставляется вашим конечным потребителям. На приведенной ниже диаграмме показаны различные стадии, по которым природный газ может проходить от устья скважины до конечных потребителей.
Дополнительную информацию также можно найти на следующих веб-страницах:
Природный газ 101 | Американская газовая ассоциация
Spectra Energy — природный газ 101
Природный газ — Объяснение энергии — EIA
.