Как бензин поступает в двигатель: Система питания двигателя автомобиля – схемы подачи питания бензиновых и дизельных двигателей автомобиля, а также устройство и принцип работы, что такое обратка

Содержание

Система питания топливом бензинового (карбюраторного) двигателя

Система питания топливом бензинового двигателя ⭐ предназначена для размещения и очистки топлива, а также приготовления горючей смеси определенного состава и подачи ее в цилиндры в необходимом количестве в соответствии с режимом работы двигателя (за исключением двигателей с непосредственным впрыском, система питания которых обеспечивает поступление бензина в камеру сгорания в необходимом количестве и под достаточным давлением).

Бензин, как и дизельное топливо, является продуктом перегонки нефти и состоит из различных углеводородов. Число атомов углерода, входящих в молекулы бензина, составляет 5 — 12. В отличие от дизелей в бензиновых двигателях топливо не должно интенсивно окисляться в процессе сжатия, так как это может привести к детонации (взрыву), что отрицательно скажется на работоспособности, экономичности и мощности двигателя. Детонационная стойкость бензина оценивается октановым числом. Чем больше оно, тем выше детонационная стойкость топлива и допустимая степень сжатия. У современных бензинов октановое число составляет 72—98. Кроме антидетонационной стойкости бензин должен также обладать низкой коррозионной активностью, малой токсичностью и стабильностью.

Поиск (исходя из экологических соображений) альтернатив бензину как основному топливу для ДВС привел к созданию этанолового топлива, состоящего в основном из этилового спирта, который может быть получен из биомассы растительного происхождения. Различают чистый этанол (международное обозначение — Е100), содержащий исключительно этиловый спирт; и смесь этанола с бензином (чаще всего 85 % этанола с 15 % бензина; обозначение — Е85). По своим свойствам этаноловое топливо приближается к высокооктановому бензину и даже превосходит его по октановому числу (более 100) и теплотворной способности. Поэтому данный вид топлива может с успехом применяться вместо бензина. Единственный недостаток чистого этанола — его высокая коррозионная активность, требующая дополнительной защиты от коррозии топливной аппаратуры.

К агрегатам и узлам системы питания топливом бензинового двигателя предъявляются высокие требования, основные из которых:

  • герметичность
  • точность дозирования топлива
  • надежность
  • удобство в обслуживании

В настоящее время существуют два основных способа приготовления горючей смеси. Первый из них связан с использованием специального устройства — карбюратора, в котором воздух смешивается с бензином в определенной пропорции. В основу второго способа положен принудительный впрыск бензина во впускной коллектор двигателя через специальные форсунки (инжекторы). Такие двигатели часто называют инжекторными.

Независимо от способа приготовления горючей смеси ее основным показателем является соотношение между массой топлива и воздуха. Смесь при ее воспламенении должна сгорать очень быстро и полностью. Этого можно достичь лишь при хорошем смешении в определенной пропорции воздуха и паров бензина. Качество горючей смеси характеризуется коэффициентом избытка воздуха а, который представляет собой отношение действительной массы воздуха, приходящейся на 1 кг топлива в данной смеси, к теоретически необходимой, обеспечивающей полное сгорание 1 кг топлива. Если на 1 кг топлива приходится 14,8 кг воздуха, то такая смесь называется нормальной (а = 1). Если воздуха несколько больше (до 17,0 кг), смесь обедненная, и а = 1,10… 1,15. Когда воздуха больше 18 кг и а > 1,2, смесь называют бедной. Уменьшение доли воздуха в смеси (или увеличение доли топлива) называют ее обогащением. При а = 0,85… 0,90 смесь обогащенная, а при а < 0,85 — богатая.

Когда в цилиндры двигателя поступает смесь нормального состава, он работает устойчиво со средними показателями мощности и экономичности. При работе на обедненной смеси мощность двигателя несколько снижается, но заметно повышается его экономичность. На бедной смеси двигатель работает неустойчиво, его мощность падает, а удельный расход топлива возрастает, поэтому чрезмерное обеднение смеси нежелательно. При поступлении в цилиндры обогащенной смеси двигатель развивает наибольшую мощность, но и расход топлива также увеличивается. При работе на богатой смеси бензин сгорает неполностью, что приводит к снижению мощности двигателя, росту расхода топлива и появлению копоти в выпускном тракте.

Карбюраторные системы питания

Рассмотрим сначала карбюраторные системы питания, которые еще недавно были широко распространены. Они более просты и дешевы по сравнению с инжекторными, не требуют высококвалифицированного обслуживания в процессе эксплуатации и в ряде случаев более надежны.

Система питания топливом карбюраторного двигателя включает в себя топливный бак 1, фильтры грубой 2 и тонкой 4 очистки топлива, топливоподкачивающий насос 3, карбюратор 5, впускной трубопровод 7 и топливопроводы. При работе двигателя топливо из бака 1 с помощью насоса 3 подается через фильтры 2 и 4 к карбюратору. Там оно в определенной пропорции смешивается с воздухом, поступающим из атмосферы через воздухоочиститель 6. Образовавшаяся в карбюраторе горючая смесь по впускному коллектору 7 попадает в цилиндры двигателя.

Топливные баки в силовых установках с карбюраторными двигателями аналогичны бакам систем питания дизелей. Отличием баков для бензина является лишь их лучшая герметичность, не позволяющая бензину вытечь даже при опрокидывании ТС. Для сообщения с атмосферой в крышке наливной горловины бака обычно устанавливают два клапана — впускной и выпускной. Первый из них обеспечивает поступление в бак воздуха по мере расходования топлива, а второй, нагруженный более сильной пружиной, предназначен для сообщения бака с атмосферой, когда давление в нем выше атмосферного (например, при высокой температуре окружающего воздуха).

Фильтры карбюраторных двигателей аналогичны фильтрам, применяемым в системах питания дизелей. На грузовых автомобилях устанавливаются пластинчато-щелевые и сетчатые фильтры. Для тонкой очистки используют картон и пористые керамические элементы. Кроме специальных фильтров в отдельных агрегатах системы имеются дополнительные фильтрующие сетки.

Топливоподкачивающий насос служит для принудительной подачи бензина из бака в поплавковую камеру карбюратора. На карбюраторных двигателях обычно применяют насос диафрагменного типа с приводом от эксцентрика распределительного вала.

В зависимости от режима работы двигателя карбюратор позволяет готовить смесь нормального состава (а = 1), а также обедненную и обогащенную смеси. При малых и средних нагрузках, когда не требуется развивать максимальную мощность, следует готовить в карбюраторе и подавать в цилиндры обедненную смесь. При больших нагрузках (продолжительность их действия, как правило, невелика) необходимо готовить обогащенную смесь.

Схема системы питания топливом карбюраторного двигателя

Рис. Схема системы питания топливом карбюраторного двигателя:
1 — топливный бак; 2 — фильтр трубой очистки топлива; 3 — топливоподкачивающий насос; 4 — фильтр тонкой очистки; 5 — карбюратор; 6 — воздухоочиститель; 7 — впускной коллектор

В общем случае в состав карбюратора входят главное дозирующее и пусковое устройства, системы холостого хода и принудительного холостого хода, экономайзер, ускорительный насос, балансировочное устройство и ограничитель максимальной частоты вращения коленчатого вала (у грузовых автомобилей). Карбюратор может содержать также эконостат и высотный корректор.

Главное дозирующее устройство функционирует на всех основных режимах работы двигателя при наличии разрежения в диффузоре смесительной камеры. Основными составными частями устройства являются смесительная камера с диффузором, дроссельная заслонка, поплавковая камера, топливный жиклер и трубки распылителя.

Пусковое устройство предназначено для обеспечения пуска холодного двигателя, когда частота вращения проворачиваемого стартером коленчатого вала невелика и разрежение в диффузоре мало. В этом случае для надежного пуска необходимо подать в цилиндры сильно обогащенную смесь. Наиболее распространенным пусковым устройством является воздушная заслонка, устанавливаемая в приемном патрубке карбюратора.

Система холостого хода служит для обеспечения работы двигателя без нагрузки с малой частотой вращения коленчатого вала.

Система принудительного холостого хода позволяет экономить топливо во время движения в режиме торможения двигателем, т. е. тогда, когда водитель при включенной передаче отпускает педаль акселератора, связанную с дроссельной заслонкой карбюратора.

Экономайзер предназначен для автоматического обогащения смеси при работе двигателя с полной нагрузкой. В некоторых типах карбюраторов кроме экономайзера для обогащения смеси используют эконостат. Это устройство подает дополнительное количество топлива из поплавковой камеры в смесительную только при значительном разрежении в верхней части диффузора, что возможно лишь при полном открытии дроссельной заслонки.

Ускорительный насос обеспечивает принудительный впрыск в смесительную камеру дополнительных порций топлива при резком открытии дроссельной заслонки. Это улучшает приемистость двигателя и соответственно ТС. Если бы ускорительного насоса в карбюраторе не было, то при резком открытии заслонки, когда расход воздуха быстро растет, из-за инерционности топлива смесь в первый момент сильно обеднялась бы.

Балансировочное устройство служит для обеспечения стабильности работы карбюратора. Оно представляет собой трубку, соединяющую приемный патрубок карбюратора с воздушной полостью герметизированной (не сообщающейся с атмосферой) поплавковой камеры.

Ограничитель максимальной частоты вращения коленчатого вала двигателя устанавливается на карбюраторах грузовых автомобилей. Наиболее широко распространен ограничитель пневмоцентробежного типа.

Инжекторные топливные системы

Инжекторные топливные системы в настоящее время применяются гораздо чаще карбюраторных, особенно на бензиновых двигателях легковых автомобилей. Впрыск бензина во впускной коллектор инжекторного двигателя осуществляется с помощью специальных электромагнитных форсунок (инжекторов), установленных в головку блока цилиндров и управляемых по сигналу от электронного блока. При этом исключается необходимость в карбюраторе, так как горючая смесь образуется непосредственно во впускном коллекторе.

Различают одно- и многоточечные системы впрыска. В первом случае для подачи топлива используется только одна форсунка (с ее помощью готовится рабочая смесь для всех цилиндров двигателя). Во втором случае число форсунок соответствует числу цилиндров двигателя. Форсунки устанавливают в непосредственной близости от впускных клапанов. Топливо впрыскивают в мелко распыленной виде на наружные поверхности головок клапанов. Атмосферный воздух, увлекаемый в цилиндры вследствие разрежения в них во время впуска, смывает частицы топлива с головок клапанов и способствует их испарению. Таким образом, непосредственно у каждого цилиндра готовится топливовоздушная смесь.

В двигателе с многоточечным впрыском при подаче электропитания к электрическому топливному насосу 7 через замок 6 зажигания бензин из топливного бака 8 через фильтр 5 подается в топливную рампу 1 (рампу инжекторов), общую для всех электромагнитных форсунок. Давление в этой рампе регулируется с помощью регулятора 3, который в зависимости от разрежения во впускном патрубке 4 двигателя направляет часть топлива из рампы обратно в бак. Понятно, что все форсунки находятся под одним и тем же давлением, равным давлению топлива в рампе.

Когда требуется подать (впрыснуть) топливо, в обмотку электромагнита форсунки 2 от электронного блока системы впрыска в течение строго определенного промежутка времени подается электрический ток. Сердечник электромагнита, связанный с иглой форсунки, при этом втягивается, открывая путь топливу во впускной коллектор. Продолжительность подачи электрического тока, т. е. продолжительность впрыска топлива, регулируется электронным блоком. Программа электронного блока на каждом режиме работы двигателя обеспечивает оптимальную подачу топлива в цилиндры.

Схема системы питания топливом бензинового двигателя с многоточечным впрыском

 

Рис. Схема системы питания топливом бензинового двигателя с многоточечным впрыском:
1 — топливная рампа; 2 — форсунки; 3 — регулятор давления; 4 — впускной патрубок двигателя; 5 — фильтр; 6 — замок зажигания; 7 — топливный насос; 8 — топливный бак

Для того чтобы идентифицировать режим работы двигателя и в соответствии с ним рассчитать продолжительность впрыска, в электронный блок подаются сигналы от различных датчиков. Они измеряют и преобразуют в электрические импульсы значения следующих параметров работы двигателя:

  • угол поворота дроссельной заслонки
  • степень разрежения во впускном коллекторе
  • частота вращения коленчатого вала
  • температура всасываемого воздуха и охлаждающей жидкости
  • концентрация кислорода в отработавших газах
  • атмосферное давление
  • напряжение аккумуляторной батареи
  • и др.

Двигатели с впрыском бензина во впускной коллектор имеют ряд неоспоримых преимуществ перед карбюраторными двигателями:

  • топливо распределяется по цилиндрам более равномерно, что повышает экономичность двигателя и уменьшает его вибрацию, вследствие отсутствия карбюратора снижается сопротивление впускной системы и улучшается наполнение цилиндров
  • появляется возможность несколько повысить степень сжатия рабочей смеси, так как ее состав в цилиндрах более однородный
  • достигается оптимальная коррекция состава смеси при переходе с одного режима на другой
  • обеспечивается лучшая приемистость двигателя
  • в отработавших газах содержится меньше вредных веществ

Вместе с тем системы питания с впрыском бензина во впускной коллектор имеют ряд недостатков. Они сложны и поэтому относительно дорогостоящи. Обслуживание таких систем требует специальных диагностических приборов и приспособлений.

Наиболее перспективной системой питания топливом бензиновых двигателей в настоящее время считается довольно сложная система с непосредственным впрыском бензина в камеру сгорания, позволяющая двигателю длительное время работать на сильно обедненной смеси, что повышает его экономичность и экологические показатели. В то же время из-за существования ряда проблем системы непосредственного впрыска пока не получили широкого распространения.

Видео: Система питания двигателя. Инжектор

Система питания

Система питания двигателя служит для приготовления горючей смеси из паров топлива и воздуха в определенных пропорциях, подачи ее в цилиндры двигателя и отвода из них отработавших газов. За подачу топлива в цилиндры в современных автомобилях отвечает система впрыска топлива, основными элементами, которой являются форсунки.

Устройство системы питания

В систему питания карбюраторного двигателя входят: топлив­ный бак, фильтр-отстойник, топливопроводы, топливный насос, фильтр тонкой очистки топлива, карбюратор, воздухоочиститель, впускной трубо­провод, выпускной трубопровод, приемные трубы, глушитель, приборы контроля уровня топлива.

Работа система питания

При работе двигателя топливный насос засасывает топливо из топлив­ного бака и через фильтры подает в поплавковую камеру карбюратора. При такте впуска в цилиндре двигателя создается разрежение и воздух, пройдя через воздухоочиститель, поступает в карбюратор, где смешивается с парами топлива и в виде горючей смеси подается в цилиндр, и там, сме­шиваясь с остатками отработавших газов, образуется рабочая смесь. После совершения рабочего хода, отработавшие газы выталкиваются поршнем в выпускной трубопровод и по приемным трубам через глушитель в окру­жающую среду.

Устройство системы питания

Системы питания и выпуска отработавших газов двигателя автомобиля:

1 — канал подвода воздуха к воздушному фильтру; 2 — воздушный фильтр; 3 — карбюратор; 4 — рукоятка ручного управления воздушной заслонкой; 5 — рукоятка ручного управления дроссельны­ми заслонками; 6 — педаль управления дроссельными заслонками; 7 — топливо проводы; 8 — фильтр-отстойник; 9 — глушитель; 10 — приемные трубы; 11 — выпускной трубопровод; 12 — фильтр тонкой очистки топлива; 13 — топливный насос; 14 — указатель уровня топлива; 15 — датчик указателя уровня топлива; 16 — топливный бак; 17— крышка горловины топливного бака; 18 — кран; 19 — выпускная труба глушителя.

Топливо. В качестве топлива в карбюраторных двигателях обычно ис­пользуют бензин, который получают в результате переработки нефти.

Требования, предъявляемые к бензинам:

• быстрое образование топливовоздушной смеси;

• скорость сгорания не более 40 м/с;

• минимальное коррозирующее воздействие на детали двигателя;

• минимальное отложение смолистых веществ в элементах системы питания;

• минимальное вредное воздействие на организм человека и окружаю­щую среду;

• способность длительное время сохранять свои свойства.

Автомобильные бензины в зависимости от количества легко испаряющихся фракций подразделяют на летние и зимние.

 Для автомобильных карбюраторных двигателей выпускают бензины А-76, АИ-92, АИ-98 и др. Буква «А» обозначает, что бензин автомобильный, цифра — наименьшее октановое число, характеризующее детонационную стойкость бензина. Наибольшей детонационной стойкостью обладает изооктан, (его стой­кость принимают за 100), наименьшей —  н-гептан (его стойкость равна 0). Октановое число, характеризующее детонационную стойкость бензи­на, — процентное содержание изооктана в такой смеси с н-гептаном, ко­торая по детонационной стойкости равноценна испытуемому топливу. Например, исследуемое топливо детонирует так же, как смесь 76 % изо­октана и 24 % н-гептана. Октановое число данного топлива равно 76. Октановое число определяется двумя методами: моторным и исследова­тельским. При определении октанового числа вторым методом в марки­ровке бензина добавляется буква «И». Октановое число определяет до­пустимую степень сжатия.

 

 

Устройство системы питаниякарбюратор

Топливный бак. На автомобиле устанавливают один или несколько топливных баков. Объем топливного бака должен обеспечивать 400—600 км пробега автомобиля без заправки. Топливный бак  состоит из двух сварных половинок, выполненных штамповкой из освинцованной стали. Внутри бака имеются перегородки, придающие жесткость конструкции и препятствующие образованию волн в топливе. В верхней части бака приварена наливная горловина, которая закрывается пробкой. Иногда для удобства заправки бака топливом используют выдвижную горловину с сетчатым фильтром. На верхней стенке бака крепится датчик указателя уровня топлива и топливо заборная трубка с сетчатым фильтром. В днище бака имеется резьбовое отверстие для слива отстоя и удаления механических примесей, которое закрыто пробкой. Наливную горловину бака закрывают плотно пробкой, в корпусе которой имеется два клапана — паровой и воздушный. Паровой клапан при повышении давления в баке открывается и выводит пар в окружающую среду. Воздушный клапан открывается, когда идет расход топлива и создается разрежение.

 

Топливные фильтры. Для очистки топлива от механических примесей применяют фильтры грубой и тонкой очистки. Фильтр-отстойник грубой очистки отделяет топливо от воды и крупных механических примесей. Фильтр-отстойник  состоит из корпуса, отстойника и фильтрующего элемента, который собран из пластин толщиной 0,14 мм. На пластинах имеются отверстия и выступы высотой 0,05 мм. Пакет пластин установлен на стержень и пружиной поджимается к корпусу. В собранном состоянии между пластинами имеются щели, через которые проходит топливо. Крупные механические примеси и вода собираются на дне отстойника и через отверстие пробки в днище периодически удаляются.

Топливный бак и его устройство

Топливный бак (а) и работа выпускного (б) и впускного (в) клапанов: 1— фильтр-отстойник; 2 — кронштейн крепления бака; 3 — хомут крепления бака; 4 — датчик указателя уровня топлива в баке; 5 — топливный бак; 6 — кран; 7 — пробка бака; 8 — горловина; 9 — облицовка пробки; 10 — резиновая прокладка; П — корпус пробки; 12 — выпускной клапан; 13 — пружина выпускного клапана; 14 — впускной клапан; 15 — рычаг пробки бака; 16 -пружина впускного клапана.

Ремонт бензобака

Фильтр-отстойник: 1 — топливо провод к топливному насосу; 2 — прокладка корпуса; 3 — корпус-крышка; 4 — топливо провод от топливного бака; 5 — прокладка фильтрующего элемента; 6 — фильтрующий элемент; 7— стойка; 8 — отстойник; 9— сливная пробка; 10 — стержень фильтрующего элемента; 11 — пружина; 12 — пластина фильтрующего элемента; 13 — отверстие в пластине для прохода очищенного топлива; 14 — выступы на пластине; 15 — отверстие в пластине для стоек; 16 — заглушка; 17 — болт крепления корпуса-крышки.

Ремонт бензобака

Фильтры тонкой очистки топлива с фильтрующими элементами: a — сетчатый; б — керамический; 1— корпус; 2— входное отверстие; 3— прокладка; 4— фильтрующий элемент; 5— съемный стакан-отстойник; 6 — пружина; 7— винт креплении стакана; 8— канал для отвода топлива.

Фильтр тонкой очистки. Для очистки топлива от мелких механических примесей применяют фильтры тонкой очистки , которые состоят из корпуса, стакана-отстойника и фильтрующего сетчатого или керамического элемента. Керамический фильтрующий элемент — пористый материал, обеспечивающий лабиринтное движение топлива. Фильтр удерживается скобой и винтом.
Топливо проводы соединяют приборы топливной системы и изготовляются из медных, латунных и стальных трубок.

Топливный насос системы питания

Топливный насос служит для подачи топлива через фильтры из бака в поплавковую камеру карбюратора. Применяют насосы диафрагменного типа с приводом от эксцентрика распределительного вала. Насос  состоит из корпуса, в котором крепится привод — двуплечий рычаг с пружиной, головки, где размещены впускные и нагнетательные клапаны с пружинами, и крышки. Между корпусом и головкой зажаты края диафрагмы. Шток диафрагмы к рычагу привода крепится шарнирно, что позволяет диафрагме работать с переменным ходом.
Когда двуплечий рычаг (коромысло) опускает диафрагму вниз, в полости над диафрагмой создается разрежение, за счет чего открывается впускной клапан и наддиафрагменная полость заполняется топливом. При сбегании рычага (толкателя) с эксцентрика диафрагма поднимается вверх под действием возвратной пружины. Над диафрагмой давление топлива повышается, впускной клапан закрывается, открывается нагнетательный клапан и топливо поступает через фильтр тонкой очистки в поплавковую камеру карбюратора. При смене фильтров поплавковую камеру заполняют топливом с помощью устройства для ручной подкачки. В случае выхода диафрагмы из строя (трещина, прорыв и т. п.) топливо поступает в нижнюю часть корпуса и вытекает через контрольное отверстие.

Воздушный фильтр служит для очистки воздуха, поступающего в карбюратор, от пыли. Пыль содержит мельчайшие кристаллы кварца, который, оседая на смазанных поверхностях деталей, вызывает их изнашивание.

Требования, предъявляемые к фильтрам:


• эффективность очистки воздуха от пыли;
• малое гидравлическое сопротивление;
• достаточная пылеемкость:
• надежность;
• удобство в обслуживании;
• технологичность конструкции.


По способу очистки воздуха фильтры делятся на инерционно-масляные и сухие.
Инерционно-масляный фильтр состоит из корпуса с масляной ванной, крышки, воздухозаборника и фильтрующего элемента из синтетического материала.
При работе двигателя воздух, проходя через кольцевую щель внутри корпуса и, соприкасаясь с поверхностью масла, резко изменяет направление движения. Вследствие этого крупные частицы пыли, находящиеся в воздухе, прилипают к поверхности масла. Далее воздух проходит через фильтрующий элемент, очищается от мелких частиц пыли и поступает в карбюратор. Таким образом, воздух проходит двухступенчатую очистку. При засорении фильтр промывают.
Воздушный фильтр сухого типа состоит из корпуса, крышки, воздухозаборника и фильтрующего элемента из пористого картона. При необходимости фильтрующий элемент меняют.

Подача топлива в бензиновый двигатель

 

Подача топлива в бензиновый двигатель — это система устройств, обеспечивающих бесперебойное поступление топлива в цилиндры двигателя. Подача топлива в бензиновый двигатель находится в постоянной динамике и совершенствуется до настоящего времени. Вот о том, что представляет собой подача топлива в бензиновом двигателе, мы и поговорим в этой статье.

 

Содержание

 

 

Подачи топлива с впрыском во впускной трубопровод

 

В бензиновых двигателях используются системы подачи топлива с впрыском во впускной трубопровод различ­ной конфигурации, работающие при типичном значении давления 300 — 400 кПа (3-4 бар).

Система с возвратом топлива

 

Подача топлива и создание давления впрыска осуществляется электроприводным топливным насосом (см. рис. «Система подачи топлива с впрыском во впускной трубопровод с возвратом топлива в топливный бак» ). Топливо засасывается из топливного бака и, пройдя через топливный фильтр, по топливопроводу высокого давления поступает в смонтированную на двигателе то­пливную рампу. Из топливной рампы топливо подается к форсункам. Регулятор давления то­плива, установленный на рампе, поддерживает постоянный перепад давления между топлив­ными форсунками и впускным трубопроводом независимо от абсолютного давления во впуск­ном трубопроводе, т.е. нагрузки двигателя.

Излишки топлива возвращаются в топлив­ный бак по возвратной линии, подсоединенной к регулятору давления топлива. Избыточное то­пливо, нагретое в моторном отсеке, вызывает повышение температуры топлива в топливном баке. При этом увеличивается выделение па­ров топлива. В соответствии с требованиями к защите окружающей среды пары топлива собираются системой улавливания паров то­плива. Далее они направляются в угольный фильтр для временного хранения до возврата во впускной трубопровод для сжигания в двигателе (см. «Система улавливания паров топлива»).

 

 

Система без возврата топлива

 

В такой системе подачи топлива регулятор давления располагается в топливном баке или вблизи него, что исключает необходи­мость в линии возврата топлива из двига­теля в топливный бак.

Поскольку регулятор давления топлива, за счет места его установки, не связан с впуск­ным трубопроводом, относительное давление впрыска не зависит от нагрузки двигателя. Это учитывается при вычислении продолжитель­ности впрыска в блоке управления двигателем

В топливную рампу подается только такое количество топлива, которое подлежит впры­ску. Излишнее топливо, подаваемое электроприводным топливным насосом, возвращается прямо в топливный бак, не проходя длинный путь через моторный отсек. Таким образом, нагрев топлива в топливном баке и, следова­тельно, выделение паров топлива значительно ниже, чем в системах с возвратом топлива.

В связи с этими преимуществами в на­стоящее время в основном используются системы подачи без возврата топлива.

Подача топлива без возврата топлива с регулированием по потребности

 

В системе подачи топлива с регулированием по потребности топливный насос подает только количество топлива, требуемое в данный мо­мент времени для двигателя и необходимое для создания требуемого давления. Регулирова­ние давления топлива осуществляется блоком управления двигателем в режиме замкнутого регулирования. Текущее давление топлива регистрируется датчиком низкого давления (см. рис. «Система подачи топлива с впрыском во впускной трубопровод с регулированием по потребности» ). Это исключает необходимость в регуляторе давления топлива. Регулирование объемного расхода топлива осуществляется посредством изменения напряжения питания топливного насоса, осуществляемого специаль­ным модулем в блоке управления двигателем.

Система снабжена предохранительным клапаном, предотвращающим чрезмерное повышение давления даже после отсечки подачи топлива или выключения двигателя.

Регулирование по потребности позволяет избежать подачи избыточного топлива и, сле­довательно, свести к минимуму требуемую производительность топливного насоса. Это дает снижение расхода топлива по сравнению с системами с неуправляемым электроприводным топливным насосом. Применение таких систем позволяет в еще большей степени сни­зить температуру топлива в топливном баке.

Еще одно преимущество системы регули­рованием по потребности заключается в воз­можности регулирования давления топлива. С одной стороны, давление может быть уве­личено во время пуска горячего двигателя во избежание образования пузырьков паров топлива. С другой стороны, прежде всего, на двигателях с наддувом появляется возмож­ность впрыска как очень больших, так и очень малых количеств топлива, повышая давление топлива при полной нагрузке и снижая его при низкой нагрузке двигателя.

Кроме того, измерение давления топлива в та­кой системе дает дополнительные возможности диагностики по сравнению с другими системами. За счет учета текущего давления топлива при вычислении продолжительности впрыска обе­спечивается более точное дозирование топлива.

 

 

Подача топлива прямым впрыском топлива

 

По сравнению с системами с впрыском то­плива во впускной трубопровод при прямом впрыске имеется только ограниченное вре­менное окно для впрыска топлива прямо в камеру сгорания. Поэтому здесь более ва­жен процесс смесеобразования, и давление впрыска должно быть до 50 раз больше по сравнению с системами с впрыском топлива во впускной трубопровод. Топливная система подразделяется на контур низкого давления и контур высокого давления.

Система подачи топлива низкого давления

 

В системах прямого впрыска топлива для бензиновых двигателей система низкого дав­ления служит для питания топливом системы высокого давления с использованием тех же компонентов, что и в системах с впрыском топлива во впускной трубопровод. Вследствие высоких температур в насосе высокого дав­ления в условиях пуска горячего двигателя и работы двигателя при высоких температурах наружного воздуха для предотвращения об­разования пузырьков газа в топливе требуется более высокое предварительное давление (давление на впуске). Отсюда вытекает целе­сообразность использования систем с регули­руемым низким давлением. Эти системы обе­спечивают давление на впуске, оптимальное для любого рабочего состояния двигателя; давление на впуске обычно регулируется в диапазоне 300 — 600 кПа (3-6 бар).

Система подачи топлива высокого давления

 

В системах высокого давления в основном используются регулируемые насосы высо­кого давления или насосы высокого давления с постоянной подачей. Система включает то­пливный распределитель (топливную рампу высокого давления) с топливными форсун­ками высокого давления и датчик высокого давления (см рис. ниже) Для системы с по­стоянной подачей топлива также требуется отдельный клапан регулирования давления.

Требуемое давление устанавливается в соответствии с сигналом давления, измеряе­мым системой управления двигателя и обра­батываемым программой регулирования вы­сокого давления. В зависимости от рабочей точки двигателя в системах с непрерывной подачей топлива давление регулируется в диапазоне от 5 до 11 МПа (50 — 110 бар), а в системах с регулированием давления по по­требности — до 20 МПа (200 бар). Сигнал дат­чика давления используется для вычисления продолжительности впрыска топлива и для диагностики топливной системы.

 

 

Непрерывная подача топлива

 

Насос высокого давления, приводимый во вра­щение распределительным валом двигателя, обычно представляет собой трехцилиндровый радиально-поршневой насос (см. «Насосы высо­кого давления для систем прямого впрыска то­плива» ), который нагнетает топливе в топливную рампу, преодолевая давление в системе (см. рис. «Система прямого впрыска топлива для бензиновых двигателей с непрерывной подачей топлива» ). Величина подачи топлива насоса не регули­руется. Давление излишнего топлива не требуе­мого для впрыска, или поддержания давления, сбрасывается клапаном регулирования давле­ния. После этого топливо возвращается в контур низкого давления. С этой целью блок управления двига­телем управляет клапаном регулирования дав­ления таким образом, чтобы получить давление впрыска, требуемое для данного режима работы. Клапан регулирования давления также служит в качестве клапана ограничения давления.

 

 

В системах с непрерывной подачей топлива в большинстве рабочих точек двигателя в си­стему высокого давления подается значительно больше топлива, чем требуется двигателю. Это приводит к потерям энергии и, следовательно, к более высокому расходу топлива по сравнения с системами с регулированием по потребности. Кроме того, излишнее топливо, сбрасываемое через клапан регулирования давления, спо­собствует повышению температуры в топлив­ной системе. По этой причине в современных двигателях с прямым впрыском топлива при­меняются только системы высокого давления с регулированием по потребности.

Система подачи топлива с регулированием по потребности

 

В системе с регулированием по потребности топливный насос высокого давления, обычно одноцилиндровый радиально-поршневой насос (см. «Насосы высокого давления для систем прямого впрыска топлива» ), подает топливо в топливную рампу только в количе­стве, фактически необходимом для впрыска и обеспечения требуемого давления. Насос обычно приводится в действие распреде­лительным валом (однопоршневые насосы приводятся в действие специальными ку­лачками, приводящими в движение плунжер насоса). Подача топлива регулируется встро­енным в насос высокого давления регули­ровочным клапаном. (см.рис. «Система прямого впрыска топлива для бензиновых двигателей с регулированием подачи топлива по потребности» ). Блок управления дви­гателем управляет этим клапаном с высокой точностью, что обеспечивает подачу топлива в количестве, требуемом для создания необ­ходимого для данного режима работы двига­теля давления в топливной рампе.

 

 

В целях обеспечения безопасности контур высокого давления включает предохрани­тельный клапан, обычно встраиваемый в на­сос высокого давления. В случае превышения давлением допустимого уровня топливо воз­вращается через клапан ограничения давле­ния в контур низкого давления.

 

 

Система улавливания паров топлива

 

Система улавливания паров топлива требу­ется для автомобилей с двигателями с ис­кровым зажиганием (SI). Ее назначением является улавливание и сбор паров топлива из топливного бака в целях соблюдения требований законодательства в отношении предельно допустимого выделения паров то­плива. Следует отметить, что интенсивность испарения топлива возрастает при повы­шении его температуры. Повышение темпе­ратуры топлива может вызываться высокой температурой наружного воздуха, нагревом топливного насоса, встроенного в топливный бак или, в зависимости от системы подачи топлива, возвратом в топливный бак топлива, нагретого в двигателе. Выделение паров то­плива также усиливается при понижении атмосферного давления или вовремя дви­жения на подъем.

Система улавливания паров топлива вклю­чает угольный фильтр, к которому присоеди­нен шланг вентиляции топливного бака, а также регенерационного клапана, подсоеди­ненного к угольному фильтру и впускному трубопроводу (см. рис. «Система улавливания паров топлива» ). Активированный уголь поглощает пары топлива и позволяет выходить в атмосферу только воздуху. Вследствие разрежения во впускном трубо­проводе свежий воздух прогоняется через угольный фильтр, когда во время движения автомобиля продувочный клапан открывает линию, соединяющую угольный фильтр с впускным трубопроводом. Свежий воздух за­хватывает поглощенное фильтром топливо и уносит его в двигатель для сжигания. Этот процесс известен под названием продувки угольного фильтра.

Регулирование объемного расхода про­дувочного воздуха осуществляется блоком управления двигателем в зависимости от режима работы двигателя. Чтобы угольный фильтр всегда был способен поглощать пары топлива, активированный уголь необходимо регулярно регенерировать. В системах с прямым впрыском топлива из-за небольшой разности атмос­ферного давления и давления во впускном трубопроводе при работе в режиме послойного распределения заряда топлива, для про­дувки необходимо перейти в режим работы на гомогенной смеси.

В следующей статье я расскажу о системе подачи топлива.

 

Рекомендую еще почитать:

Устройство системы питания бензинового двигателя

Двигатель внутреннего сгорания является первоисточником крутящего момента и всех последующих процессов механического и электронного типа в транспортном средстве. Его функционирование обеспечивает целый комплекс устройств. Это система питания бензинового двигателя.

Как она устроена, какие бывают поломки, следует рассмотреть каждому владельцу транспортных средств с бензиновым двигателем. Это поможет правильно эксплуатировать и проводить техобслуживание системы.

Общая характеристика

Устройство системы питания бензинового двигателя позволяет обеспечить нормальное функционирование транспортного средства. Для этого внутри топливного агрегата происходит приготовление смеси из горючего и воздуха. Система питания бензинового двигателя также хранит и обеспечивает подачу компонентов для приготовления топлива. Смесь распределяется по цилиндрам мотора.

При этом система питания ДВС работает в разных режимах. Сначала мотор должен запуститься и прогреться. Затем проходит период холостого хода. На двигатель действуют частичные нагрузки. Существуют также переходные режимы. Двигатель должен правильно функционировать при полной нагрузке, которая может возникать в неблагоприятных условиях.

Система питания двигателя бензинового

Чтобы мотор работал максимально правильно, нужно обеспечить два основных условия. Топливо должно сгорать быстро и полностью. При этом образуются отработанные газы. Их токсичность не должна превышать установленные нормы.

Чтобы обеспечить нормальные условия для функционирования узлов и механизмов, система питания топливом бензинового двигателя должна выполнять ряд функций. Она обеспечивает не только подачу топлива, но и производит его хранение и очистку. Также система питания очищает воздух, который подается в топливную смесь. Еще одной функцией является смешение в правильной пропорции компонентов горючего. После этого топливная смесь передается в цилиндры мотора.

Независимо от разновидности бензинового ДВС, система питания включает в себя ряд конструкционных элементов. В нее входит топливный бак, который обеспечивает хранение определенного количества бензина. Также система включает в себя насос. Он обеспечивает подачу топлива, его перемещение по топливопроводу. Последний состоит из металлических труб, а также шлангов из специальной резины. По ним передается бензин из бака к двигателю. Излишек горючего также по трубкам возвращается обратно.

Система подачи бензина обязательно имеет в своем составе фильтры. Они очищают горючее и воздух. Еще одним обязательным элементом являются устройства, которые готовят топливную смесь.

Бензин

Назначение системы питания бензинового двигателя заключается в подаче, очистке и хранении бензина. Это особый вид топлива, который обладает определенным уровнем испаряемости и детонационной стойкости. От его качества во многом зависит работа двигателя.

Система питания бензинового двигателя

Показатель испаряемости говорит о способности бензина менять свое агрегатное состояние из жидкого в парообразное. Этот показатель в значительной степени влияет на особенности образования топливной смеси и ее горение. В процессе работы ДВС участвуют только газообразная часть топлива. Если же бензин находится в жидком виде, он отрицательно влияет на работу мотора.

Жидкое топливо стекает по цилиндрам. При этом с их стенок смывается масло. Такая ситуация влечет за собой быстрый износ металлических поверхностей. Также жидкий бензин препятствует правильному сгоранию топлива. Медленное сгорание смеси приводит к падению давления. При этом мотор не сможет развивать требуемую мощность. Токсичность отработанных газов повышается.

Также еще одним неблагоприятным явлением при наличии жидкого бензина в двигателе является появление нагара. Это ведет к быстрому разрушению мотора. Чтобы поддерживать показатель испаряемости в норме, нужно приобретать топливо в соответствии с погодными условиями. Существует летний и зимний бензин.

Рассматривая назначение системы питания бензинового двигателя, следует рассмотреть еще одну характеристику топлива. Это детонационная стойкость. Этот показатель оценивается при помощи октанового числа. Для определения детонационной стойкости новый бензин сравнивают с показателями эталонных типов топлива, октановое число которых известно заранее.

В состав бензина входят гептан и изооктан. По своим характеристикам они противоположны. У изооктана отсутствует способность к детонации. Поэтому его октановое число составляет 100 ед. Гептан же, наоборот, сильный детонатор. Его октановое число составляет 0 ед. Если смесь в ходе испытаний состоит на 92% из изооктана и на 8% из гептана, октановое число составляет 92.

Способ приготовления топливной смеси

Работа системы питания бензинового двигателя в зависимости от особенностей ее конструкции может значительно отличаться. Однако независимо от того, как она устроена, к узлам и механизмам выдвигают ряд требований.

Система подачи топлива должна быть герметичной. В противном случае появляются сбои в различных ее участках. Это приведет к неправильной работе мотора, его быстрому разрушению. Также система должна производить точную дозировку топлива. Она должна быть надежной, обеспечивать нормальные условия функционирования двигателя в любых условиях.

Инжекторная система питания бензинового двигателя

Еще одним немаловажным требованием, которое сегодня выдвигается к системе приготовления топливной смеси, является простота в обслуживании. Для этого конструкция имеет определенную конфигурацию. Что позволяет владельцу транспортного средства самостоятельно проводить техобслуживание при необходимости.

Сегодня система питания бензинового двигателя отличается по способу приготовления топливной смеси. Она может быть двух типов. В первом случае при приготовлении смеси применяется карбюратор. В нем смешивается определенное количество воздуха с бензином. Вторым способом приготовления топлива является принудительный впрыск во впускной коллектор бензина. Этот процесс происходит через инжекторы. Это специальные форсунки. Такой тип двигателей называется инжекторным.

Обе представленные системы обеспечивают правильную пропорцию бензина и воздуха. Топливо при правильной дозировке сгорает полностью и очень быстро. На этот показатель в значительной степени влияет количество обоих ингредиентов. Нормальным считается соотношение, в котором присутствует 1 кг бензина и 14,8 кг воздуха. Если же происходят отклонения, можно говорить о бедной или богатой смеси. В этом случае условия для правильной работы мотора ухудшаются. Важно, чтобы система обеспечивала нормальное качество топлива, которое подается в ДВС.

Процедура происходит в 4 такта. Существуют также и двухтактные бензиновые моторы, но для автомобильной техники они не применяются.

Карбюратор

Система питания бензинового карбюраторного двигателя основана на действии сложного агрегата. Он смешивает бензин и воздух в определенной пропорции. Это карбюратор. Чаще всего он имеет поплавковую конфигурацию. Конструкция включает в себя камеру с поплавком. Также в системе есть диффузор и распылитель. Топливо готовится в смесительной камере. Также конструкция имеет дроссельную и воздушную заслонки, каналы для подачи ингредиентов смеси с жиклерами.

Назначение системы питания бензинового двигателя

Ингредиенты в карбюраторе смешиваются по пассивному принципу. При движении поршня в цилиндре создается пониженное давление. В это разряженное пространство устремляется воздух. Он сначала проходит через фильтр. В смесительной камере карбюратора происходит формирование топлива. Бензин, который вырывается из распределителя, в диффузоре дробится потоком воздуха. Далее эти две субстанции смешиваются.

Карбюраторный тип конструкции включает в себя разные дозирующие устройства, которые последовательно включаются при работе. Иногда несколько из этих элементов работают одновременно. От них зависит правильная работа агрегата.

Далее через впускной коллектор и клапаны топливная смесь попадает в цилиндр мотора. В необходимый момент эта субстанция воспламеняется под воздействием искры свечей зажигания.

Система питания бензинового двигателя карбюраторного типа еще называется механической. Сегодня ее практически не применяют для создания моторов современных автомобилей. Она не может обеспечить выполнение существующих энергетических и экологических требований.

Инжектор

Инжекторный двигатель является современной конструкцией ДВС. Она значительно превышает по всем показателям карбюраторные системы питания бензинового двигателя. Инжектор является устройством, которое обеспечивает впрыск топлива в мотор. Такая конструкция позволяет обеспечить высокую мощность двигателя. При этом токсичность отработанных газов значительно снижается.

Система питания бензинового двигателя инжектор

Инжекторные двигатели отличаются стабильностью работы. Автомобиль при разгоне демонстрирует улучшенную динамику. При этом количество бензина, которое требуется транспортному средству для передвижения, будет значительно ниже, чем у карбюраторной системы питания.

Топливо при наличии инжекторной системы сгорает более качественно и полноценно. При этом система управления процессами полностью автоматизирована. Вручную не потребуется производить настройки агрегата. Инжектор и карбюратор значительно отличаются конструкцией и принципом работы.

Инжекторная система питания бензинового двигателя имеет в своем составе специальные форсунки. Они под давлением впрыскивают бензин. Затем он смешивается с воздухом. Такая система позволяет сэкономить расход топлива, увеличить мощность мотора. Она увеличивается до 15%, если сравнивать с карбюраторными типами ДВС.

Насос инжекторного мотора является не механическим, как это было в карбюраторных конструкциях, а электрическим. Он обеспечивает требуемое давление при впрыске бензина. При этом система подает топливо в нужный цилиндр в определенное время. Весь процесс контролирует бортовой компьютер. При помощи датчиков он оценивает количество и температуру воздуха, двигателя и прочие показатели. После проведения анализа собранной информации, компьютер принимает решение о впрыске топлива.

Особенности инжекторной системы

Инжекторная система питания бензинового двигателя может иметь разную конфигурацию. В зависимости от особенностей конструкции бывают устройства представленного класса нескольких видов.

К первой группе относятся моторы с одноточечным впрыском топлива. Это самая ранняя разработка в области инжекторных двигателей. Она включает в себя всего одну форсунку. Она находится во впускном коллекторе. Эта инжекторная форсунка распределяет бензин для всех цилиндров мотора. Эта конструкция имеет ряд недостатков. Ныне ее практически не используют при изготовлении бензиновых двигателей транспортных средств.

Более современной разновидностью стал распределительный тип конструкции впрыска. Например, такая конфигурация системы питания у бензинового двигателя «Хендай Икс 35».

Хендай Икс 35 система питания бензиновый двигательЭта конструкция имеет коллектор и несколько отдельных форсунок. Они смонтированы над впускным клапаном для каждого цилиндра отдельно. Это одна из самых современных разновидностей системы впрыска топлива. Каждая форсунка подает горючее в отдельный цилиндр. Отсюда топливо попадает в камеру сгорания.

Распределительная система впрыска может быть нескольких видов. К первой группе относятся устройства одновременного впрыска топлива. В этом случае все форсунки одновременно впрыскивают топливо в камеру сгорания. Ко второй группе относятся попарно-параллельные системы. Их форсунки открываются по две. Они приводятся в движение в определенный момент. Первая форсунка открывается перед тактом впрыска, а вторая – перед выпуском. К третьей группе относятся фазированные распределительные системы впрыска. Форсунки открываются перед тактом впрыска. Они вводят под давлением топливо непосредственно в цилиндр.

Устройство инжектора

Система питания бензинового двигателя с впрыском топлива имеет определенное устройство. Чтобы произвести техобслуживание такого мотора самостоятельно, нужно понимать принцип его работы и конструкции.

Инжекторная система имеет в своем составе несколько обязательных элементов (схема представлена далее).

Система питания бензинового двигателя с впрыском топлива В нее входят электронный блок управления (бортовой компьютер) (2), электронасос (3), форсунки (7). Также имеется топливная рампа (6) и регулятор давления (8). Обязательно систему контролируют датчики температуры (5). Все перечисленные компоненты вступают между собой во взаимодействие по определенной схеме. Также в системе присутствует бензобак (1) и фильтр очистки бензина (4).

Чтобы понять принцип работы представленной системы питания, нужно рассмотреть взаимодействие представленных элементов на примере. Новые автомобили часто оснащаются инжекторной системой с распределенным по нескольким точкам впрыском. При запуске мотора топливо поступает на бензонасос. Он находится в топливном баке в горючем. Далее горючее под определенным давлением поступает в магистраль.

В рампе установлены форсунки. По ней производится подача бензина. В рампе есть датчик, который регулирует давление топлива. Он определяет давление воздуха в инжекторах и на впуске. Датчики системы передают информацию бортовому компьютеру о состоянии системы. Он синхронизирует процесс подачи компонентов смеси, корректируя их количество для каждого цилиндра.

Зная, как устроен инжекторный процесс, можно провести самостоятельно техническое обслуживание системы питания бензинового двигателя.

Техобслуживание карбюраторной системы

Техобслуживание и ремонт приборов системы питания бензинового двигателя можно произвести своими руками. Для этого нужно выполнить ряд манипуляций. Они сводятся к проверке креплений топливопроводов, герметичности всех компонентов. Также проводится оценка состояния системы выпуска отработанных газов, тяги дроссельных приводов, воздушной заслонки карбюратора. Кроме того, нужно проводить контроль состояния ограничителя коленчатого вала.

При необходимости нужно проводить очистку трубопроводов, замену уплотнителей. Особенностью техобслуживания карбюратора является необходимость проведения его настройки весной и осенью.

В некоторых случаях причиной ухудшения работы карбюраторного мотора могут быть неисправности в других узлах. Перед началом техобслуживания системы подачи топлива нужно проверить другие компоненты механизмов.

Неисправности системы питания бензинового двигателя карбюраторного типа можно проверить при работающем и выключенном двигателе.

Если мотор заглушен, можно оценить количество бензина в баке, а также состояние уплотнительных резинок под пробкой горловины. Также оценивается крепление бензобака, топливопровода и всех его элементов. Иные элементы системы тоже следует проверить на прочность крепежа.

Затем нужно запустить мотор. Проверяется отсутствие протечек в местах соединений. Также следует оценить состояние фильтров тонкой очистки и отстойника. Карбюратор нужно правильно настроить. В соответствии с рекомендациями производителя проводится выбор соотношения воздуха и бензина.

Частые неисправности инжектора

Ремонт системы питания бензинового двигателя инжекторного типа происходит несколько иначе. Существует перечень частых неисправностей подобных систем. Зная их, установить причину неправильной работы мотора будет проще. Со временем из строя выходят датчики, которые контролируют разные показатели состояния системы. Периодически их нужно проверять на работоспособность. В противном случае бортовой компьютер не сможет выбрать адекватную дозировку и оптимальный режим впрыска топлива.

Также со временем в системе загрязняются фильтры или даже сами форсунки инжектора. Такое возможно при использовании бензина недостаточного качества. Периодически фильтр нужно менять. Также нужно обращать внимание на сеточный очиститель бензонасоса. В некоторых случаях его можно чистить. Один раз в несколько лет нужно мыть бензобак. В этот момент также желательно поменять все фильтры системы.

Если же со временем засорятся инжекторные форсунки, мотор станет терять мощность. Расход бензина также увеличится. Если вовремя не устранить эту неисправность, система будет перегреваться, клапаны будут перегорать. В некоторых случаях форсунки могут недостаточно плотно закрываться. Это чревато переизбытком топлива в камере сгорания. Бензин будет смешиваться с маслом. Чтобы предотвратить неблагоприятные последствия, форсунки нужно периодически очищать.

Система питания бензинового двигателя инжекторного типа может потребовать промывки форсунок. Эту процедуру можно выполнить двумя способами. В первом случае инжекторные форсунки не демонтируют из автомобиля. Через них пропускается специальная жидкость. Топливную магистраль нужно отсоединить от рампы. При помощи специального компрессора промывочная жидкость поступает в форсунки. Это позволяет эффективно очистить их от загрязнений. Второй вариант чистки предполагает снятие форсунок. Далее их обрабатывают в специальной ультразвуковой ванне или на промывочном стенде.

Советы экспертов

Эксперты рекомендуют учесть, что система питания бензинового двигателя в условиях эксплуатации на российских дорогах подвергается повышенным нагрузкам. Поэтому техобслуживание нужно производить часто. Топливные фильтры нужно менять через каждые 12-15 тыс. км пробега, проводить чистку форсунок через каждые 30 тыс. км.

Важно уделять внимание качеству топлива. Чем оно выше, тем долговечнее будет работа двигателя и всей системы. Поэтому важно приобретать бензин в проверенных точках реализации.

Рассмотрев особенности и устройство системы питания бензинового двигателя,можно понять принцип ее работы. При необходимости техобслуживание и ремонт можно произвести собственными руками.

Бензиновый двигатель внутреннего сгорания — Википедия

Бензиновые двигатели — класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.

Одним из видов дросселя является карбюраторная дроссельная заслонка, регулирующая поступление горючей смеси в цилиндры двигателя внутреннего сгорания. Рабочий орган представляет собой пластину, закрепленную на вращающейся оси, помещённую в трубу, в которой протекает регулируемая среда. В автомобилях управление дросселем производится с места водителя от ноги педалью. В современных автомобилях нет прямой механической связи между педалью акселератора и дроссельной заслонкой. Заслонка поворачивается с помощью электродвигателя, управляемого электронным блоком управления (ЭБУ). В педальном блоке находится потенциометр, изменяющий своё сопротивление в зависимости от положения педали.

Классификация бензиновых двигателей[править | править код]

  • По способу смесеобразования — карбюраторные и инжекторные;
  • По способу осуществления рабочего цикла — четырёхтактные и двухтактные. Двухтактные двигатели обладают большей мощностью на единицу объёма, однако меньшим КПД. Поэтому двухтактные двигатели применяются там, где очень важны небольшие размеры, но относительно неважна топливная экономичность, например, на мотоциклах, небольших моторных лодках, бензопилах и моторизированных инструментах. Четырёхтактные же двигатели устанавливаются на абсолютное большинство остальных транспортных средств. Следует заметить, что дизели также могут быть четырёхтактными или двухтактными; двухтактные дизели лишены многих недостатков бензиновых двухтактных двигателей, однако применяются в основном на больших судах (реже на тепловозах и грузовиках).;
  • По числу цилиндров — одноцилиндровые, двухцилиндровые и многоцилиндровые;
  • По расположению цилиндров — с вертикальным или наклонным расположением цилиндров в один ряд (т. н. «рядный» двигатель), V-образные с расположением цилиндров под углом (при расположении цилиндров под углом 180 двигатель называется двигателем с противолежащими цилиндрами, или оппозитным),W-образные, использующие 4 ряда цилиндров, расположенных под углом с 1 коленвалом (у V-образного двигателя 2 ряда цилиндров), звездообразные;
  • По способу охлаждения — с жидкостным или воздушным охлаждением;
  • По типу смазки смешанный тип (масло смешивается с топливной смесью) и раздельный тип (масло находится в картере)
  • По виду применяемого топлива — бензиновые и многотопливные [1];
  • По степени сжатия— двигатели высокого (E=12…18) и низкого (E=4…9) сжатия;
  • По способу наполнения цилиндра свежим зарядом: двигатели без наддува (атмосферные), у которых впуск воздуха или горючей смеси осуществляется за счет разрежения в цилиндре при всасывающем ходе поршня; двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым турбокомпрессором, с целью увеличения заряда воздуха и получения повышенной мощности и КПД двигателя;
  • По частоте вращения: тихоходные, повышенной частоты вращения, быстроходные;
  • По назначению различают двигатели стационарные, автотракторные, судовые, тепловозные, авиационные и др.
  • Практически не употребляемые виды моторов — роторно-поршневые Ванкеля (производились только фирмами NSU (Западная Германия), Mazda (Япония) и ВАЗ (СССР/Россия)), с внешним сгоранием Стирлинга и т. д..

См. также: Классификация автотракторных двигателей

Рабочий цикл четырёхтактного двигателя[править | править код]

Как следует из названия, рабочий цикл четырёхтактного двигателя состоит из четырёх основных этапов — тактов.

1. Впуск. Поршень опускается из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ). При этом кулачки распредвала открывают впускной клапан, и через этот клапан в цилиндр засасывается свежая топливно-воздушная смесь.
2. Сжатие. Поршень идёт из НМТ в ВМТ, сжимая рабочую смесь. При этом значительно возрастает температура смеси. Отношение рабочего объёма цилиндра в НМТ и объёма камеры сгорания в ВМТ называется степень сжатия. Степень сжатия — очень важный параметр, обычно, чем она больше, тем больше топливная экономичность двигателя. Однако для двигателя с большей степенью сжатия требуется топливо с бо́льшим октановым числом, которое дороже.
3. Сгорание и расширение (рабочий ход поршня). Незадолго до конца цикла сжатия топливовоздушная смесь поджигается искрой от свечи зажигания. Во время пути поршня из ВМТ в НМТ топливо сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, толкая поршень. Степень «недоворота» коленчатого вала двигателя до ВМТ при поджигании смеси называется углом опережения зажигания. Опережение зажигания необходимо для того, чтобы основная масса бензовоздушной смеси успела воспламениться к моменту, когда поршень будет находиться в ВМТ (процесс воспламенения является медленным процессом относительно скорости работы поршневых систем современных двигателей). При этом использование энергии сгоревшего топлива будет максимальным. Сгорание топлива занимает практически фиксированное время, поэтому для повышения эффективности двигателя нужно увеличивать угол опережения зажигания при повышении оборотов. В старых двигателях эта регулировка производилась механическим устройством, центробежным вакуумным регулятором воздействующим на прерыватель. В более современных двигателях для регулировки угла опережения зажигания используют электронику. В этом случае используется датчик положения коленчатого вала, работающий обычно по индуктивному принципу.
4. Выпуск. После НМТ рабочего цикла открывается выпускной клапан, и движущийся вверх поршень вытесняет отработанные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается и цикл начинается сначала.

Необходимо также помнить, что следующий процесс (например, впуск), необязательно должен начинаться в тот момент, когда закончится предыдущий (например, выпуск). Такое положение, когда открыты сразу оба клапана (впускной и выпускной), называется перекрытием клапанов. Перекрытие клапанов необходимо для лучшего наполнения цилиндров горючей смесью, а также для лучшей очистки цилиндров от отработанных газов.

Рабочий цикл двухтактного двигателя[править | править код]

Рабочий цикл двухтактного двигателя

В двухтактном двигателе рабочий цикл полностью происходит в течение одного оборота коленчатого вала. При этом от цикла четырёхтактного двигателя остаётся только сжатие и расширение. Впуск и выпуск заменяются продувкой цилиндра вблизи нижней мёртвой точки поршня, при которой свежая рабочая смесь вытесняет отработанные газы из цилиндра.

Более подробно цикл двигателя устроен следующим образом: когда поршень идёт вверх, происходит сжатие рабочей смеси в цилиндре. Одновременно, движущийся вверх поршень создаёт разрежение в кривошипной камере. Под действием этого разрежения открывается клапан впускного коллектора и свежая порция топливовоздушной смеси (как правило, с добавкой масла) засасывается в кривошипную камеру. При движении поршня вниз давление в кривошипной камере повышается и клапан закрывается. Поджиг, сгорание и расширение рабочей смеси происходят так же, как и в четырёхтактном двигателе. Однако, при движении поршня вниз, примерно за 60° до НМТ открывается выпускное окно (в смысле, поршень перестаёт перекрывать выпускное окно). Выхлопные газы (имеющие ещё большое давление) устремляются через это окно в выпускной коллектор. Через некоторое время поршень открывает также впускное окно, расположенное со стороны впускного коллектора. Свежая смесь, выталкиваемая из кривошипной камеры идущим вниз поршнем, попадает в рабочий объём цилиндра и окончательно вытесняет из него отработавшие газы. При этом часть рабочей смеси может выбрасываться в выпускной коллектор. При движении поршня вверх свежая порция рабочей смеси засасывается в кривошипную камеру.

Можно заметить, что двухтактный двигатель при том же объёме цилиндра, должен иметь почти в два раза большую мощность. Однако, полностью это преимущество не реализуется, из-за недостаточной эффективности продувки по сравнению с нормальным впуском и выпуском. Мощность двухтактного двигателя того же литража, что и четырёхтактный больше в 1,5 — 1,8 раза.

Важное преимущество двухтактных двигателей — отсутствие громоздкой системы клапанов и распределительного вала.

  • Больший ресурс.
  • Бо́льшая экономичность.
  • Более чистый выхлоп.
  • Не требуется сложная выхлопная система.
  • Меньший шум.
  • Не требуется добавление масла к топливу.

Преимущества двухтактных двигателей[править | править код]

  • Отсутствие громоздких систем смазки и газораспределения.
  • Бо́льшая мощность в пересчёте на единицу рабочего объёма.
  • Проще и дешевле в изготовлении.
  • Проще в ремонте.
  • Меньший вес.

Карбюраторные и инжекторные двигатели[править | править код]

В карбюраторных двигателях процесс приготовления горючей смеси происходит в карбюраторе — специальном устройстве, в котором топливо смешивается с потоком воздуха за счёт аэродинамических сил, вызываемых энергией потока воздуха, засасываемого двигателем.

В инжекторных двигателях впрыск топлива в воздушный поток осуществляют специальные форсунки, к которым топливо подаётся под давлением, а дозирование осуществляется электронным блоком управления — подачей импульса тока, открывающим форсунку или же, в более старых двигателях, специальной механической системой.

Переход от классических карбюраторных двигателей к инжекторам произошёл в основном из-за возрастания требований к чистоте выхлопа (выпускных газов), и установке современных нейтрализаторов выхлопных газов (каталитических конвертеров или просто катализаторов). Именно система впрыска топлива, контролируемая программой блока управления, способна обеспечить постоянство состава выхлопных газов, идущих в катализатор. Постоянство же состава необходимо для нормальной работы катализатора, так как современный катализатор способен работать лишь в узком диапазоне данного состава, и требует строго определённого содержания кислорода. Именно поэтому в тех системах управления, где установлен катализатор, обязательным элементом является лямбда-зонд, он же кислородный датчик. Благодаря лямбда-зонду система управления, постоянно анализируя содержание кислорода в выхлопных газах, поддерживает точное соотношение кислорода, недоокисленных продуктов сгорания топлива, и оксидов азота, которое способен обезвредить катализатор. Дело в том, что современный катализатор вынужден не только окислять не полностью сгоревшие в двигателе остатки углеводородов и угарный газ, но и восстанавливать оксиды азота, а это — процесс, идущий совершенно в другом (с точки зрения химии) направлении. Желательно также ещё раз окислять окончательно весь поток газов. Это возможно лишь в пределах так называемого «каталитического окна», то есть узкого диапазона соотношения топлива и воздуха, когда катализатор способен выполнить свои функции. Соотношение топлива и воздуха в данном случае составляет примерно 1:14,7 по весу (зависит также от соотношения С к Н в бензине), и удерживается в коридоре приблизительно плюс-минус 5 %. Так как одной из труднейших задач является удержание нормативов по оксидам азота, дополнительно необходимо снижать интенсивность их синтеза в камере сгорания. Делается это в основном снижением температуры процесса горения с помощью добавления определённого количества выхлопных газов в камеру сгорания на некоторых критичных режимах (система рециркуляции выхлопных газов).

Основные вспомогательные системы бензинового двигателя[править | править код]

Системы, специфические для бензиновых двигателей[править | править код]

  • Система зажигания — обеспечивает поджиг топлива в нужный момент. Она может быть контактной, бесконтактной или микропроцессорной. Контактная система включает в себя: прерыватель-распределитель, катушку, выключатель зажигания, свечи. Бесконтактная система включает то же самое оборудование, только вместо прерывателя стоит датчик Холла или индукционный датчик. Микропроцессорная система зажигания управляется специальным блоком-компьютером, она включает в себя датчик положения коленвала, блок управления зажиганием, коммутатор, катушки, свечи, датчик температуры двигателя. У инжекторного двигателя к этой системе добавляются датчик положения дроссельной заслонки и датчик массового расхода воздуха.
  • Система приготовления топливовоздушной смеси — карбюратор или же инжекторная система.

Некоторые особенности современных бензиновых двигателей[править | править код]

  • Для повышения надёжности работы используется индивидуальная катушка зажигания для каждой свечи.
  • Используется по 2 впускных и 2 выпускных клапана на цилиндр вместо одного впускного и одного выпускного. Это позволяет увеличить суммарную площадь отверстий клапанов в головке цилиндра; кроме того, при 4 клапанах на цилиндр каждый отдельный клапан получается более лёгким, что ускоряет закрывание клапанов под действием пружин — это может быть критичным на больших оборотах двигателя. Также 4 клапана на цилиндр позволяют разместить свечу зажигания в центре головки, а не сбоку.
  • Для управления дроссельной заслонкой используется электропривод, а не тросик педали акселератора.

Системы, общие для большинства типов двигателей[править | править код]

  • Система охлаждения
  • Система выпуска отработанных газов. Включает выпускной коллектор, каталитический конвертер (на современных машинах), и глушитель.
  • Система смазки — бывает с отдельным маслобаком (авиация) и без него (почти все современные автомобили; масло заливается в маслозаливную горловину на клапанной крышке двигателя).
  • Система запуска двигателя. Для приготовления двигателя к работе необходимо произвести хотя бы один оборот коленчатого вала, для того, чтобы в одном из цилиндров произошли такты впуска и сжатия. Для запуска четырёхтактного двигателя обычно применяется специальный электромотор — стартер, работающий от аккумулятора. Для запуска маломощных двухтактных бензиновых двигателей можно применять мускульную силу человека, например так работает кикстартер в мотоцикле.

Устройство системы питания автомобиля

3. Топливный насос (служит для подачи топлива в двигатель). Топливные насосы служат для подачи бензина в цилиндры бензинового двигателя или дизельного топлива дизеля под определенным давлением и в определенный момент точно дозированных порций топлива, соответствующих нагрузке при данном режиме работы двигателя. Топливные насосы различаются по способу впрыска непосредственного действия и с аккумуляторным впрыском. В инжекторной топливной системе применяются электробензонасосы, которые размещаются в модуле топливного бака, вместе с датчиком указания уровня топлива, фильтром и завихрителем.

3.1 Топливный насос дизеля — в системах топливоподачи дизелей применяют поршневые насосы, которые служат для подачи топлива через фильтры к топливному насосу высокого давления (ТНВД).

3.2 Топливный насос высокого давления — (18—20 МПа) подает топливо через форсунки в камеру сгорания в строго определенные моменты и в определенном количестве в зависимости от режима работы двигателя. На автомобильных двигателях применяют ТНВД золотникового типа с постоянным ходом плунжера и регулировкой окончания подачи топлива.

3.3 ТНВД КАМАЗ — зарекомендовал себя, как насос высокого давления отличного качества. Продажа ТНВД КАМАЗ осуществляется профессионалами и представлена в широком ассортименте.

3.4 Топливный насос с электроприводом — служит для подачи топлива, поддерживает оптимальное давление в системе и обеспечивает правильный впрыск топлива при разных режимах работы.

4. Топливный фильтр (служит для очистки топлива).

4.1Фильтр тонкой очистки топлива ямз

5. Воздушный фильтр (очищает воздух, который используется для приготовления горючей смеси).

5.1Воздухоочиститель

6. Карбюратор (используется для приготовления горючей смеси).

6.1 Простейший карбюратор

6.2 Вспомогательные устройства карбюратора

6.3 Управление карбюратором

6.4 Устройство карбюратора

6.5 Поплавковая камера карбюратора

6.6 Системы карбюратора

6.7 Карбюраторный двигатель

7. Инжектор

Бензин в масле двигателя: причины и решение проблемы

Как известно, специалисты и опытные автолюбители рекомендуют проверять уровень масла не реже одного раза в неделю. Сразу отметим, что для этого имеются достаточно весомые основания. Также регулярные проверки позволяют не только своевременно обнаружить снижение уровня смазки в моторе, но и оценить то, в каком виде и состоянии находится смазочный материал.

Другими словами, даже если уровень масла не имеет значительных отклонений от нормы, однако при этом заметно изменение цвета, консистенции или запаха смазочного материала, тогда такие признаки четко указывают на необходимость проведения диагностики ДВС.

В этой статье мы рассмотрим ситуацию, когда во время проверки было выявлено, что масло в двигателе пахнет бензином, явно заметен бензин в масле двигателя, причины такого явления и способы решения указанной проблемы.

Читайте в этой статье

Как попадает бензин в масло двигателя и какие могут быть последствия

Итак, сама тема статьи позволяет ответить на вопрос, может ли бензин попасть в масло двигателя. Действительно, топливо способно оказаться в масле, причем даже в двигателях с полностью исправной цилиндро-поршневой группой.

Идем далее. Указанная проблема является достаточно серьезной и может  привести к сбоям в работе, значительному сокращению ресурса мотора, а также к полному выходу из строя силовой установки. Давайте рассмотрим, почему так происходит.

Начнем с того, что бензин в масле значительно ухудшает защитные свойства смазочного материала, разжижает смазку. Если не вдаваться в подробности, чем больше бензина попадет в картер, тем серьезнее могут быть последствия.

  1. При незначительном количестве топлива в смазке мотор может работать более шумно, при этом несколько увеличится износ нагруженных узлов. Для решения задачи будет достаточно устранить проблему протекания бензина в картер и заменить моторное масло.
  2. В других случаях езда на сильно разбавленном топливом масле может стать причиной, по которой двигателю становится необходим дорогостоящий капитальный ремонт.

В списке основных признаков, которые в той или иной степени могут указывать на появление рассматриваемой проблемы, отмечены следующие:

При подозрении на попадание незначительного количества бензина в смазку также можно дополнительно оценить свойства масла при помощи метода «масляного пятна». Для этого достаточно капнуть одну каплю масла со щупа на лист чистой бумаги. Затем нужно просушить лист пару часов. Ровные гладкие края растекшейся капли укажут на то, что материал не потерял своих свойств.

Черный контур в центре пятна свидетельствует о наличии работоспособных присадок в смазке. Еще отметим, что данный способ также пригодится для общей проверки качества, состояния масла, выявления наличия в нем воды и других примесей.

Если были замечены какие-либо из указанных выше признаков (шум во время работы, стуки, перерасход, разжижение смазки, запах топлива, капля при поверке на листе отличается от нормальной), тогда следует приготовиться к тому, что в масле может быть бензин.

Как уже было сказано, последствия дальнейшей езды на такой смеси могут быть разными. Главное, бензин является достаточно агрессивным продуктом по отношению к смазочным материалам, так как содержит в себе большое количество химических добавок.

В масле для ДВС также содержится целый пакет присадок, при этом указанные добавки не рассчитаны на прямой контакт с топливом. Другими словами, происходит необратимое изменение физических и химических свойств моторного масла. По этой причине повышение уровня масла за счет бензина является серьезной угрозой для двигателя.

Еще добавим, что в масляную систему также может попадать антифриз, в результате чего образуется эмульсия. В этом случае смазочный материал также теряет свои свойства. Если протечки интенсивные, тогда в момент запуска мотора может возникнуть гидроудар.

Что касается бензина в смазке, определенную опасность представляет то, что достаточно часто горючее разбавляет смазку постепенно, то есть попадает в небольших количествах. Это значит, что водитель долгое время не замечает проблемы, продолжая эксплуатировать агрегат в привычном режиме. При этом износ мотора сильно возрастает. Теперь давайте перейдем к тому, как бензин попадает в масло.

Откуда бензин попадает в масло: поиск и устранение неисправности

Чтобы понять, почему бензин в масле двигателя, необходимо обратиться к конструктивным особенностям различных  ДВС.

  1. Прежде всего, на любых моторах (инжектор, карбюратор) топливо попадает в картер из камеры сгорания через поршневые кольца. При этом важно понимать, что если налить бензин в цилиндры нового мотора, через некоторое время он окажется  в масле. Причина проста — горючее смывает масляную пленку и проходит через неплотности в местах расположения поршневых колец.
  2. Для моторов с карбюратором частой причиной попадания бензина в масло является повреждение диафрагмы бензонасоса. Еще одной причиной разбавления масла топливом являются неполадки с игольчатым клапаном карбюратора в поплавковой камере, перелив топлива в карбюратор и т.п.

С учетом вышесказанного становится понятно, что основной причиной попадания бензина в смазку являются проблемы с системой питания или зажигания, а также с самим ДВС. Получается, неполадки могут возникать по причине того, что:

  • происходит значительное переобогащение рабочей смеси;
  • возникли неисправности топливных форсунок, карбюратора, механического бензонасоса;
  • система зажигания неисправна или работает некорректно;
  • двигатель неисправен или изношен, нет нужной компрессии в цилиндрах, топливо не воспламеняется;

Другими словами, горючее может подаваться в избытке, но богатая смесь не воспламеняется. Также бензин не сгорает, так как нет искры на свече зажигания или  заряд не горит по причине низкой компрессии в ДВС. В любом случае, несгоревшее топливо попадает в картер.

Если карбюратор «переливает» бензин в поплавковую камеру или «льют» инжекторные форсунки, тогда горючее также будет стекать в цилиндры и далее попадать в масло. Для того чтобы исключить попадание топлива в масло тем или иным путем на инжекторе, нужно проверять герметичность инжекторных форсунок и производить их очистку.

Также рекомендуется проводить компьютерную диагностику мотора, оценивать качество смесеобразования, отдельно «прозванивать» датчики ЭСУД, которые могут влиять на образование смеси. На карбюраторных ДВС контролируется состояние диафрагм бензонасоса, регулярно настраивается и диагностируется карбюратор.

Перед холодным пуском (особенно зимой) нужно периодически следить, чтобы под карбюратором не появлялся и не накапливался стекающий бензин.  Если такое явление было замечено, тогда следует проверить карбюратор.

Параллельно нужно обратить внимание и на специальную дренажную трубку. Если трубка забивается, излишки топлива при проблемах с игольчатым клапаном начинают попадать в картер ДВС. Теперь давайте взглянем на наиболее распространенные причины более подробно.

С учетом того, что система топливоподачи на разных двигателях может сильно отличаться, отличаются и пути попадания бензина в систему смазки. На моторах с инжектором бензин  подается из топливного бака под давлением, которое создает электрический бензонасос. На данном этапе масло с горючим смешаться никак не может.

  • При этом на карбюраторных моторах установлен механический бензонасос. Диафрагма такого насоса нагнетает бензин в карбюратор, установленный на двигателе. Шток механического насоса на некоторых авто имеет привод от эксцентрика, а также смазывается моторным маслом по той же схеме, что и распределительный вал.

Если диафрагма насоса повреждается, бензин начинает попадать в канал штока, проникая в систему смазки. Когда мембрана повреждена не сильно, тогда накопление бензина в масле будет происходить медленно, уровень смазки не повысится. На проблему кажет изменение запаха масла, а также некоторое разжижение.

В том случае, когда мембрана имеет большие разрывы, бензин перестает подаваться в карбюратор, ДВС запускается с трудом,  появляются рывки и провалы при движении, агрегат работает неустойчиво и т.д. Для устранения неисправности нужно произвести замену мембраны бензонасоса, а также моторного масла.

  • На инжекторе большинство проблем связаны с форсунками, так как сбои в работе зажигания опытный водитель фиксирует сразу. Более сложной является ситуация, при которой одна или несколько форсунок не могут закрываться герметично. Это значит, что после остановки мотора горючее, которое находится в топливной рампе под остаточным давлением, протекает в коллектор, затем попадает в цилиндры, после чего стекает в картер.

Поршневые кольца в какой-то мере препятствуют опаданию бензина в масло, но если они изношены или залегли, тогда горючее относительно свободно попадает в поддон с маслом. Для решения проблемы нужно снять топливную рейку, после чего проверяется герметичность каждой инжекторной форсунки.

Для этого в инжектор под давлением подается промывочная жидкость или керосин, а также инициируется открытие и закрытие форсунки от источника питания. Можно воспользоваться и специальным стендом для проверки и чистки форсунок. Если форсунки текут, тогда их нужно отремонтировать или заменить.

  • Что касается системы зажигания, если в одном из цилиндров или в нескольких смесь не воспламеняется, тогда часть горючего вылетает в выпускную систему, а оставшиеся части попросту оседают на стенках цилиндров, затем стекают в картер ДВС.

Неисправности системы зажигания диагностируются в штатном порядке. Сначала проверяются свечи зажигания, далее высоковольтные бронепровода, катушка, трамблер и другие элементы, которые установлены на том или ином автомобиле.

  • Износ ЦПГ является общей проблемой карбюраторных и инжекторных ДВС. Как правило, речь идет об износе компрессионных и маслосъемных колец. В подобной ситуации  топливо активно стекает в картер. При этом важно учитывать, что проблемы с кольцами также приводят к снижению компрессии.

Получается, смесь хуже сжимается и сгорает неполноценно, двигатель теряет мощность. Водитель сильнее жмет на газ, подавая в камеру сгорания больше топлива, однако сжигания в полном объеме не происходит. Лишнее горючее приводит к загрязнению мотора и образованию нагара, а также частично попадает в картер.

Что в итоге

Как видно, если бензин попадает в масло, тогда  двигатель до устранения поломки не следует эксплуатировать. Особенно опасно это явление тогда, когда водитель не знал о проблеме, то есть в картере накопилось большое количество бензина, давление в системе смазки упало, на приборной панели загорелась лампочка аварийного давления масла.

В такой ситуации нужно немедленно устранить основную проблему путем ремонта системы зажигания, карбюратора или инжекторного впрыска. Также обязательной процедурой будет и замена масла, с которой лучше не затягивать.

Напоследок добавим, что в некоторых случаях причиной неэффективного сгорания смеси в цилиндрах может отказаться само топливо. Дело в том, что бензин часто бывает очень низкого качества.

Горючее, которое смешано со сторонними добавками, хуже горит. Несгоревшие остатки также могут попадать в картер мотора. В некоторых случаях  бывает достаточно заменить масло и начать заправляться на другой АЗС.

Также в некоторых источниках  в целях профилактики рекомендуется периодически на небольшой промежуток времени крутить мотор до высоких оборотов, совершая поездки по трассе. Такая езда приводит к более высокому нагреву масла, что помогает снизить содержание скопившегося конденсата и попавшего в смазку топлива.

Читайте также

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *