3.5. Аксиально-поршневые насосы и гидромоторы
Аксиально-поршневые гидромашины нашли широкое применение в гидроприводах, что объясняется рядом их преимуществ: меньшие радиальные размеры, масса, габарит и момент инерции вращающихся масс; возможность работы при большом числе оборотов; удобство монтажа и ремонта.
Аксиально-поршневой насос состоит из блока цилиндров 8 (рис.3.8) с поршнями (плунжерами) 4, шатунов 7, упорного диска 5, распределительного устройства 2 и ведущего вала 6.
Рис.3.8. Принципиальные схемы аксиально-поршневых насосов: 1 и 3 — окна; 2 — распределительное устройство; 4 — поршни; 5 — упорный диск; 6 — ведущий вал; 7 — шатуны; 8 — блок цилиндров а — с иловым карданом; б — с несиловым карданом; в — с точечным касанием поршней; г — бескарданного типа
Во время работы насоса при вращении вала приходит во вращение и блок цилиндров. При наклонном расположении упорного диска (см. рис.3.8, а, в) или блока цилиндров (см. рис.3.8, б, г) поршни, кроме вращательного, совершают и возвратно-поступательные аксиальные движения (вдоль оси вращения блока цилиндров). Когда поршни выдвигаются из цилиндров, происходит всасывание, а когда вдвигаются — нагнетание. Через окна 1 и 3 в распределительном устройстве 2 цилиндры попеременно соединяются то с всасывающей, то с напорной гидролиниями. Для исключения соединения всасывающей линии с напорной блок цилиндров плотно прижат к распределительному устройству, а между окнами этого устройства есть уплотнительные перемычки, ширина которых
Рабочими камерами аксиально-поршневых насосов являются цилиндры, аксиально расположенные относительно оси ротора, а вытеснителями — поршни. По виду передачи движения вытеснителям аксиально-поршневые насосы подразделяются на насосы с наклонным блоком (см. рис.3.8, б, г) и с наклонным диском (см. рис.3.8, а, в). Известные конструкции аксиально-поршневых насосов выполнены по четырем различным принципиальным схемам.
Насосы с силовым карданом(см. рис.3.8, а) приводной вал соединен с наклонным диском силовым карданом, выполненным в виде универсального шарнира с двумя степенями свободы. Поршни соединяются с диском шатунами. При такой схеме крутящий момент от приводящего двигателя передается блоку цилиндров через кардан и наклонный диск. Начальное прижатие блока цилиндров распределительному устройству обеспечивается пружиной, а во время работы насоса давлением жидкости. Передача крутящего момента блоку цилиндров необходима для преодоления сил трения между торцом блока цилиндров и распределительным устройством.
В насосах с двойным несиловым карданом
Насосы с точечным касанием поршней наклонного диска(см. рис.3.8, в) имеют наиболее простую конструкцию, поскольку здесь нет шатунов и карданных валов. Однако для того, чтобы машина работала в режиме насоса, необходимо принудительно выдвижение поршней из цилиндров для прижатия их к опорной поверхности наклонного диска (например, пружинами, помещенными в цилиндрах). По такой схеме чаще всего изготовляют гидромоторы типа Г15-2 (рис.3.9). Эти машины выпускаются небольшой мощности, т.к. в местах контакта поршней с диском создается высокое напряжение, которое ограничивает давление жидкости.
Рис.3.9. Аксиально-поршневой гидромотор типа Г15-2: 1 — вал; 2 — манжета; 3 — крышка; 4, 9 — корпус; 5, 16 — подшипник; 6 — радиально упорный подшипник; 7 — барабан; 8 — поводок; 10 — ротор; 11 — пружины; 12 — дренажное отверстие; 13 — распределительное устройство; 14 — полукольцевые пазы; 15 — отверстие напорное; 17 — поршни; 18 — шпонка; 19 — толкатель
Аксиально-поршневые машины бескарданного типа (см. рис.3.8, г) блок цилиндров соединяется с ведущим валом через шайбу и шатуны поршней. По сравнению с гидромашинами с карданной связью машины бескарданного типа проще в изготовлении, надежнее в эксплуатации, имеют меньший габарит блока цилиндров. По данной схеме отечественной промышленностью выпускается большинство аксиально-поршневых машин серии 200 и 300 (рис.3.10).
Рис.3.9. Аксиально-поршневой гидромотор типа Г15-2: 1 — вал; 2 — манжета; 3 — крышка; 4, 9 — корпус; 5, 16 — подшипник; 6 — радиально упорный подшипник; 7 — барабан; 8 — поводок; 10 — ротор; 11 — пружины; 12 — дренажное отверстие; 13 — распределительное устройство; 14 — полукольцевые пазы; 15 — отверстие напорное; 17 — поршни; 18 — шпонка; 19 — толкатель
Структура условного обозначения аксиально-поршневых машин серий 200 и 300 приведена на рис.3.11.
Подача (расход) аксиально-поршневой гидромашины зависит от хода поршня, который определяется углом γ наклона диска или блока цилиндров ( γ < 25 ). Если конструкция гидромашины в процессе ее эксплуатации допускает изменение угла γ, то такие машины регулируемые. При изменении угла наклона шайбы или блока цилиндров с + γ до — γ достигается реверсирование направления потока жидкости или вращения ротора гидромашины.
Рис.3.11. Структура условного обозначения аксиально-поршневых гидромашин серий 200 и 300
Подачу для машин с бесшатунным приводом определяют по формуле:
а для машин с шатунным приводом
где d — диаметр цилиндра; D и D — диаметр окружности, на которой расположены центры окружностей цилиндров или закреплены шатуны на диске;
Крутящий момент аксиально-поршневого гидромотора определяют по формуле:
5. Аксиально-поршневые насосы и гидромоторы
Аксиально-поршневым насосом называют поршневой насос, у которого рабочие камеры образованы рабочими поверхностями цилиндров и поршней, а оси поршней параллельны (аксиальны) оси блока цилиндров или составляют с ней угол не более 45°. Аксиально-поршневые ГМ в зависимости от расположения ротора подразделяют на машины с наклонным диском, у которых оси ведущего звена и вращения ротора совпадают, и машины с наклонным блоком, у которых оси ведущего звена и вращения ротора расположены под углом.
Насосы с наклонным диском имеют наиболее простые схемы (рис. 4.17).
Рис. 17. Основные конструктивные схемы аксиально-поршневых гидромашин с наклонным диском
Поршни 3 связаны с наклонным диском 4 точечным касанием (рис. 4.17, а) или шарниром 7 (рис. 4.17, б). Блок цилиндров
В плоскости чертежа насоса поршни переносятся вращением блока параллельно оси снизу вверх. При этом объемы камер увеличиваются, жидкость под действием перепада давлений поступает в рабочую камеру. Так происходит процесс всасывания.
Рабочие камеры, находящиеся справа от вертикальной оси распределительного диска, соединяются с нагнетающим окном. В плоскости чертежа поршни переносятся вращением блока параллельно оси сверху вниз. При этом поршни движутся в направлении к распределительному диску, вытесняют жидкость из рабочих камер через распределительный диск на выход насоса.
Рабочий объем аксиально-поршневого насоса с наклонным диском (23)
где Sn—площадь поршня;
h—максимальный ход поршня; h =D tg β;
z —число поршней;
dn —диаметр поршня;
\D —диаметр окружности блока, на котором расположены оси цилиндров;
β — угол наклона диска.
Из выражения (4.34) видно, что рабочий объем насоса зависит от угла наклона диска. Изменяя угол наклона диска, можно изменять рабочий объем насоса. Чем больше угол наклона , тем больше рабочий объем насоса. Предельно допустимый угол наклона определяется деформацией поршня под действием боковых сил и не превышает обычно 20—25°.
Насосы с наклонным блоком. На рис. 18 показан аксиально-поршневой насос с наклонным блоком.
Рис. 4.18. Схема аксиально-поршневого насоса с наклонным блоком
Поршни 3 расположены в блоке цилиндров 2 и шарнирно соединены шатунами 7 с фланцем 4 вала 5. Для отвода и подвода рабочей жидкости к рабочим камерам в торцовом распределительном диске 1 выполнены два дугообразных окна В и Н. Карданный механизм 6 осуществляет кинематическую связь вала 5 с блоком цилиндров 2 и преодолевает момент трения и инерции блока цилиндров.
Рис. 19. Схемы карданных механизмов: а — одинарного; б в» двойного
Из теории карданных механизмов известно, что одинарный кардан (рис. 19, а) —излом вала в одном месте —создает значительную неравномерность вращения ведомого вала блока цилиндров. Неравномерность вращения блока цилиндров вызывает дополнительные нагрузки на поршни из-за опережения или отставания блока цилиндров от фланца вала и на самом кардане — из-за появления инерционных сил от ускорений блока цилиндров. Это и ограничивает частоту вращения вала таких гидромашин до 500 об/мин. Наиболее совершенным является двойной кардан (рис. 19, б). При его применении неравномерность вращения ведомого вала ос3 практически не наблюдается.
Принцип работы насоса с наклонным блоком (см. рис. 18) заключается в следующем. При вращении вала насоса поршни совершают сложное движение — они вращаются вместе с блоком цилиндров и движутся возвратно-поступательно в цилиндрах блока, при котором происходят процессы всасывания и нагнетания. При вращении блока цилиндров, например по часовой стрелке, рабочие камеры, находящиеся слева от вертикальной оси распределительного диска, соединяются со всасывающим окном В. Поршни движутся в этих камерах в направлении распределительного диска. При этом объемы рабочих камер увеличиваются, рабочая жидкость под действием перепада давлений в рабочих камерах заполняет их.
Рабочие камеры, находящиеся справа от вертикальной оси распределительного диска, соединяются с нагнетательным окном. Поршни в этих камерах движутся в направлении распределительного диска и вытесняют жидкость из рабочих камер на выход насоса.
Осевое усилие давления жидкости на поршни через шатуны передается на фланец вала, где преобразуется в крутящий момент. Этот момент составляет основную часть подводимого от приводящего двигателя момента. Другая, значительно меньшая, часть момента передается двойным карданом на преодоление сил трения поршней, блока цилиндров и распределительного диска и инерции при ускорении и замедлении вращения блока цилиндров. Поэтому двойной кардан в этой схеме насоса называют несиловым. На поршни насоса поперечные изгибающие силы не действуют.
Рабочий объем аксиально-поршневого насоса с наклонным блоком
(24)
где h —максимальный ход поршня, h ~ D sinβ;
—угол наклона блока цилиндров.
Некоторые расчеты основных параметров. Кинематической основой аксиально-поршневых гидромашин является кривошипно-шатунный механизм, поэтому основные зависимости расчета кинематических и силовых параметров одинаковы для всех видов аксиально-поршневых гидромашин.
При повороте вала-фланца аксиально-поршневого насоса с наклонным блоком на угол α поршень перемещается на расстояние
x п = D/2 (1 — cos α) sin. (25)
Относительная скорость перемещения поршня в цилиндре
Vn = *D/2 *sin *sin, (26)
где — угловая скорость.
Ускорение поршня в относительном движении
jп = 2 D/2— sin sin, . (27)
Диаметр разноски осей цилиндров в блоке выбирают исходя из соотношения
D =(0,4 … 0,5)dпz.
Угол наклона оси блока к оси вала <30°.
Наружный диаметр блока DHap =D + (1,6 … 2,0) dn.
Для обеспечения длительной работы узла торцовый распределительный диск — блок цилиндров с малыми утечками и исключения непосредственного контакта трущихся поверхностей предъявляют повышенные требования к геометрии и шероховатости трущихся поверхностей блока цилиндров и распределительного диска. Необходимо, чтобы среднее контактное давление в стыке блок цилиндров — распределительный диск было минимальным и обеспечивало бы герметичность соединения.
Между блоком цилиндров и распределительным диском существует зазор, который зависит от множества факторов. Давление жидкости в этом зазоре по уплотнительным пояскам меняется от максимального значения в напорной полости рн до нуля в сливных каналах. Наиболее простой метод определения размеров уплотнительных поясков и торцового распределительного диска — секторный. При этом методе расчета гидростатических сил рассматривается сектор на распределительном диске и блоке цилиндров с углом охвата 2π/z и центральным размещением в этом секторе цилиндра.
5. Аксиально-поршневые насосы и гидромоторы
Аксиально-поршневым насосом называют поршневой насос, у которого рабочие камеры образованы рабочими поверхностями цилиндров и поршней, а оси поршней параллельны (аксиальны) оси блока цилиндров или составляют с ней угол не более 45°. Аксиально-поршневые ГМ в зависимости от расположения ротора подразделяют на машины с наклонным диском, у которых оси ведущего звена и вращения ротора совпадают, и машины с наклонным блоком, у которых оси ведущего звена и вращения ротора расположены под углом.
Насосы с наклонным диском имеют наиболее простые схемы (рис. 4.17).
Рис. 17. Основные конструктивные схемы аксиально-поршневых гидромашин с наклонным диском
Поршни 3 связаны с наклонным диском 4 точечным касанием (рис. 4.17, а) или шарниром 7 (рис. 4.17, б). Блок цилиндров 2 с поршнями 3 приводится во вращение от вала 5. Для подвода и отвода рабочей жидкости к рабочим камерам в торцовом распределительном диске 1 выполнены два дугообразных окна В и Н. Для обеспечения движения поршней во время процесса всасывания применяются принудительное ведение поршней через шатун 7, а для поршней с точечным касанием — цилиндрические пружины 6 или давление подпитки в полости низкого давления. Принцип работы насоса заключается в следующем. При вращении вала насоса крутящий момент передается блоку цилиндров. При этом из-за наличия угла наклона диска поршни совершают сложное движение, они вращаются вместе с блоком цилиндров И одновременно совершают возвратно-поступательное движение в цилиндрах блока, при котором происходят процессы всасывания и нагнетания. При направлении движения, например по часовой стрелке, рабочие камеры, находящиеся слева от вертикальной оси распределительного диска, соединяются со всасывающим окном В. Поступательное движение поршней в этих камерах происходит в направлении от распределительного диска.
В плоскости чертежа насоса поршни переносятся вращением блока параллельно оси снизу вверх. При этом объемы камер увеличиваются, жидкость под действием перепада давлений поступает в рабочую камеру. Так происходит процесс всасывания.
Рабочие камеры, находящиеся справа от вертикальной оси распределительного диска, соединяются с нагнетающим окном. В плоскости чертежа поршни переносятся вращением блока параллельно оси сверху вниз. При этом поршни движутся в направлении к распределительному диску, вытесняют жидкость из рабочих камер через распределительный диск на выход насоса.
Рабочий объем аксиально-поршневого насоса с наклонным диском (23)
где Sn—площадь поршня;
h—максимальный ход поршня; h =D tg β;
z —число поршней;
dn —диаметр поршня;
\D —диаметр окружности блока, на котором расположены оси цилиндров;
β — угол наклона диска.
Из выражения (4.34) видно, что рабочий объем насоса зависит от угла наклона диска. Изменяя угол наклона диска, можно изменять рабочий объем насоса. Чем больше угол наклона , тем больше рабочий объем насоса. Предельно допустимый угол наклона определяется деформацией поршня под действием боковых сил и не превышает обычно 20—25°.
Насосы с наклонным блоком. На рис. 18 показан аксиально-поршневой насос с наклонным блоком.
Рис. 4.18. Схема аксиально-поршневого насоса с наклонным блоком
Поршни 3 расположены в блоке цилиндров 2 и шарнирно соединены шатунами 7 с фланцем 4 вала 5. Для отвода и подвода рабочей жидкости к рабочим камерам в торцовом распределительном диске 1 выполнены два дугообразных окна В и Н. Карданный механизм 6 осуществляет кинематическую связь вала 5 с блоком цилиндров 2 и преодолевает момент трения и инерции блока цилиндров.
Рис. 19. Схемы карданных механизмов: а — одинарного; б в» двойного
Из теории карданных механизмов известно, что одинарный кардан (рис. 19, а) —излом вала в одном месте —создает значительную неравномерность вращения ведомого вала блока цилиндров. Неравномерность вращения блока цилиндров вызывает дополнительные нагрузки на поршни из-за опережения или отставания блока цилиндров от фланца вала и на самом кардане — из-за появления инерционных сил от ускорений блока цилиндров. Это и ограничивает частоту вращения вала таких гидромашин до 500 об/мин. Наиболее совершенным является двойной кардан (рис. 19, б). При его применении неравномерность вращения ведомого вала ос3 практически не наблюдается.
Принцип работы насоса с наклонным блоком (см. рис. 18) заключается в следующем. При вращении вала насоса поршни совершают сложное движение — они вращаются вместе с блоком цилиндров и движутся возвратно-поступательно в цилиндрах блока, при котором происходят процессы всасывания и нагнетания. При вращении блока цилиндров, например по часовой стрелке, рабочие камеры, находящиеся слева от вертикальной оси распределительного диска, соединяются со всасывающим окном В. Поршни движутся в этих камерах в направлении распределительного диска. При этом объемы рабочих камер увеличиваются, рабочая жидкость под действием перепада давлений в рабочих камерах заполняет их.
Рабочие камеры, находящиеся справа от вертикальной оси распределительного диска, соединяются с нагнетательным окном. Поршни в этих камерах движутся в направлении распределительного диска и вытесняют жидкость из рабочих камер на выход насоса.
Осевое усилие давления жидкости на поршни через шатуны передается на фланец вала, где преобразуется в крутящий момент. Этот момент составляет основную часть подводимого от приводящего двигателя момента. Другая, значительно меньшая, часть момента передается двойным карданом на преодоление сил трения поршней, блока цилиндров и распределительного диска и инерции при ускорении и замедлении вращения блока цилиндров. Поэтому двойной кардан в этой схеме насоса называют несиловым. На поршни насоса поперечные изгибающие силы не действуют.
Рабочий объем аксиально-поршневого насоса с наклонным блоком
(24)
где h —максимальный ход поршня, h ~ D sinβ;
—угол наклона блока цилиндров.
Некоторые расчеты основных параметров. Кинематической основой аксиально-поршневых гидромашин является кривошипно-шатунный механизм, поэтому основные зависимости расчета кинематических и силовых параметров одинаковы для всех видов аксиально-поршневых гидромашин.
При повороте вала-фланца аксиально-поршневого насоса с наклонным блоком на угол α поршень перемещается на расстояние
x п = D/2 (1 — cos α) sin. (25)
Относительная скорость перемещения поршня в цилиндре
Vn = *D/2 *sin *sin, (26)
где — угловая скорость.
Ускорение поршня в относительном движении
jп = 2 D/2— sin sin, . (27)
Диаметр разноски осей цилиндров в блоке выбирают исходя из соотношения
D =(0,4 … 0,5)dпz.
Угол наклона оси блока к оси вала <30°.
Наружный диаметр блока DHap =D + (1,6 … 2,0) dn.
Для обеспечения длительной работы узла торцовый распределительный диск — блок цилиндров с малыми утечками и исключения непосредственного контакта трущихся поверхностей предъявляют повышенные требования к геометрии и шероховатости трущихся поверхностей блока цилиндров и распределительного диска. Необходимо, чтобы среднее контактное давление в стыке блок цилиндров — распределительный диск было минимальным и обеспечивало бы герметичность соединения.
Между блоком цилиндров и распределительным диском существует зазор, который зависит от множества факторов. Давление жидкости в этом зазоре по уплотнительным пояскам меняется от максимального значения в напорной полости рн до нуля в сливных каналах. Наиболее простой метод определения размеров уплотнительных поясков и торцового распределительного диска — секторный. При этом методе расчета гидростатических сил рассматривается сектор на распределительном диске и блоке цилиндров с углом охвата 2π/z и центральным размещением в этом секторе цилиндра.
Аксиально-поршневые насосы и гидромоторы — Лекции по гидро-пневносистемам
Аксиально-поршневые гидромашины нашли широкое применение в гидроприводах, что объясняется рядом их преимуществ: меньшие радиальные размеры, масса, габарит и момент инерции вращающихся масс; возможность работы при большом числе оборотов; удобство монтажа и ремонта.
Аксиально-поршневой насос состоит из блока цилиндров 8 (рис.3.8) с поршнями (плунжерами) 4, шатунов 7, упорного диска 5, распределительного устройства 2 и ведущего вала 6.
Рис.3.8. Принципиальные схемы аксиально-поршневых насосов:
1 и 3 — окна; 2 — распределительное устройство; 4 — поршни;
5 — упорный диск; 6 — ведущий вал; 7 — шатуны; 8 — блок цилиндров
а — с иловым карданом; б — с несиловым карданом;
в — с точечным касанием поршней; г — бескарданного типа
Во время работы насоса при вращении вала приходит во вращение и блок цилиндров. При наклонном расположении упорного диска (см. рис.3.8, а, в) или блока цилиндров (см. рис.3.8, б, г) поршни, кроме вращательного, совершают и возвратно-поступательные аксиальные движения (вдоль оси вращения блока цилиндров). Когда поршни выдвигаются из цилиндров, происходит всасывание, а когда вдвигаются — нагнетание. Через окна 1 и 3 в распределительном устройстве 2 цилиндры попеременно соединяются то с всасывающей, то с напорной гидролиниями. Для исключения соединения всасывающей линии с напорной блок цилиндров плотно прижат к распределительному устройству, а между окнами этого устройства есть уплотнительные перемычки, ширина которых b больше диаметра dк отверстия соединительных каналов в блоке цилиндров. Для уменьшения гидравлического удара при переходе цилиндрами уплотнительных перемычек в последних сделаны дроссельные канавки в виде небольших усиков, за счет которых давление жидкости в цилиндрах повышается равномерно.
Рабочими камерами аксиально-поршневых насосов являются цилиндры, аксиально расположенные относительно оси ротора, а вытеснителями — поршни. По виду передачи движения вытеснителям аксиально-поршневые насосы подразделяются на насосы с наклонным блоком (см. рис.3.8, б, г) и с наклонным диском (см. рис.3.8, а, в). Известные конструкции аксиально-поршневых насосов выполнены по четырем различным принципиальным схемам.
Насосы с силовым карданом (см. рис.3.8, а) приводной вал соединен с наклонным диском силовым карданом, выполненным в виде универсального шарнира с двумя степенями свободы. Поршни соединяются с диском шатунами. При такой схеме крутящий момент от приводящего двигателя передается блоку цилиндров через кардан и наклонный диск. Начальное прижатие блока цилиндров распределительному устройству обеспечивается пружиной, а во время работы насоса давлением жидкости. Передача крутящего момента блоку цилиндров необходима для преодоления сил трения между торцом блока цилиндров и распределительным устройством.
В насосах с двойным несиловым карданом (см. рис.3.8, б) углы между осью промежуточного вала и осями ведущего и ведомого валов принимают одинаковыми и равными 1 = 2 = /2. При такой схеме вращение ведущего и ведомого валов будет практически синхронным, а кардан полностью разгруженным, так как крутящий момент от приводящего двигателя передается блоку цилиндров через диск 5, изготавливаемый заодно с валом 6.
Насосы с точечным касанием поршней наклонного диска (см. рис.3.8, в) имеют наиболее простую конструкцию, поскольку здесь нет шатунов и карданных валов. Однако для того, чтобы машина работала в режиме насоса, необходимо принудительно выдвижение поршней из цилиндров для прижатия их к опорной поверхности наклонного диска (например, пружинами, помещенными в цилиндрах). По такой схеме чаще всего изготовляют гидромоторы типа Г15-2 (рис.3.9). Эти машины выпускаются небольшой мощности, т.к. в местах контакта поршней с диском создается высокое напряжение, которое ограничивает давление жидкости.
Рис.3.9. Аксиально-поршневой гидромотор типа Г15-2:
1 — вал; 2 — манжета; 3 — крышка; 4, 9 — корпус; 5, 16 — подшипник;
6 — радиально упорный подшипник; 7 — барабан; 8 — поводок; 10 — ротор;
11 — пружины; 12 — дренажное отверстие; 13 — распределительное устройство;
14 — полукольцевые пазы; 15 — отверстие напорное; 17 — поршни; 18 — шпонка; 19 — толкатель
Аксиально-поршневые машины бескарданного типа (см. рис.3.8, г) блок цилиндров соединяется с ведущим валом через шайбу и шатуны поршней. По сравнению с гидромашинами с карданной связью машины бескарданного типа проще в изготовлении, надежнее в эксплуатации, имеют меньший габарит блока цилиндров. По данной схеме отечественной промышленностью выпускается большинство аксиально-поршневых машин серии 200 и 300 (рис.3.10).
Рис.3.9. Аксиально-поршневой гидромотор типа Г15-2:
1 — вал; 2 — манжета; 3 — крышка; 4, 9 — корпус; 5, 16 — подшипник;
6 — радиально упорный подшипник; 7 — барабан; 8 — поводок; 10 — ротор;
11 — пружины; 12 — дренажное отверстие; 13 — распределительное устройство;
14 — полукольцевые пазы; 15 — отверстие напорное; 17 — поршни; 18 — шпонка; 19 — толкатель
Структура условного обозначения аксиально-поршневых машин серий 200 и 300 приведена на рис.3.11.
Подача (расход) аксиально-поршневой гидромашины зависит от хода поршня, который определяется углом γ наклона диска или блока цилиндров ( γ < 25 ). Если конструкция гидромашины в процессе ее эксплуатации допускает изменение угла γ, то такие машины регулируемые. При изменении угла наклона шайбы или блока цилиндров с + γ до — γ достигается реверсирование направления потока жидкости или вращения ротора гидромашины.
Рис.3.11. Структура условного обозначения
аксиально-поршневых гидромашин серий 200 и 300
Подачу для машин с бесшатунным приводом определяют по формуле:
а для машин с шатунным приводом
где d — диаметр цилиндра; D и D — диаметр окружности, на которой расположены центры окружностей цилиндров или закреплены шатуны на диске; D tg γ и D’ sin γ — ход поршня при повороте блока цилиндров на 180 ; z — число поршней (z = 7, 9, 11).
Крутящий момент аксиально-поршневого гидромотора определяют по формуле:
Гидромоторы и насосы аксиально-поршневые типа 310
Гидромоторы типа 310
Назначение насосов и гидромоторов
Насосы и гидромоторы аксиально-поршневые нерегулируемые типа 310 используются в объемных гидроприводах машин.
Насос предназначен для преобразования механической энергии вращения приводного вала в гидравлическую энергию потока рабочей жидкости.
Гидромотор преобразует гидравлическую энергию потока рабочей жидкости в механическую энергию вращения выходного вала.
Гидромашины изготавливаются со шлицевыми и шпоночными валами, левого и правого вращения, с различными вариантами исполнения задней крышки.
Технические характеристики
Наименование параметра |
Значение для насоса типа |
||||
310…12 210…12 |
310…28 |
310…56 |
310…112 |
310…160 |
|
Рабочий объем, см³ |
11,6 |
28 |
56 |
112 |
160 |
Частота вращения, об/мин |
|||||
Минимальная |
400 |
|
|
|
|
Номинальная |
2400 |
1800 |
1500 |
1200 |
|
Максимальная |
2850-5500 |
2500-4000 |
2150-3750 |
1700-3000 |
1300-2650 |
Подача, л/мин |
26 |
48 |
80 |
128 |
182 |
Давление на входе, МПа |
0,08 |
||||
Давление на выходе, МПа |
|||||
Номинальное |
20 |
||||
Максимальное |
35 |
||||
Мощность, кВт |
10 |
18 |
29 |
46 |
66 |
Масса, кг |
4 |
9 |
17 |
31 |
45 |
Наименование параметра |
Значение для гидромотора |
||||
310…12 210…12 |
310…28 |
310…56 |
310…112 |
310…160 |
|
Рабочий объем, см³ |
11,6 |
28, |
56 |
112 |
160 |
Частота вращения, об/мин |
|||||
Минимальная |
50 |
||||
Номинальная |
2400 |
2000 |
1800 |
1200 |
|
Максимальная |
5500 |
4000 |
3750 |
3000 |
2650 |
Давление на входе, МПа |
|||||
Номинальное |
20 |
||||
Максимальное |
32 |
35 |
|||
Давление на выходе, МПа |
32 |
20 |
|||
Номинальный перепад давления, МПа |
20 |
||||
Масса, кг |
4 |
9 |
17 |
31 |
45 |
Устройство изделия
Гидромашина состоит из качающего узла, установленного в корпусе 7, зафиксированного стопорным кольцом 4 и крышкой 17 с резиновым кольцом 16.
Качающий узел состоит из вала 1, опирающегося на подшипники 6 и 8, семи поршней 11 с шатунами 10 и одного шипа 9 установленных в блок цилиндров 13, который по сферической поверхности контактирует с распределителем 14. Со стороны вала 1 гидромашина закрывается крышкой 2, уплотненной резиновым кольцом 5 с манжетой 3.
Принцип работы насоса
При работе вал насоса приводится во вращение от двигателя. Поршни, установленные в блоке цилиндров, вращаются вокруг оси блока и одновременно совершают возвратно-поступательное движение, при этом за одну половину оборота поршень всасывает рабочую жидкость, а за другую – нагнетает ее в гидросистему.
Давление на выходе из насоса определяется нагрузкой на рабочий орган и ограничивается предохранительным клапаном гидросистемы.
Подача определяется частотой вращения вала насоса и рабочим объемом насоса.
Принцип работы гидромотора
Рабочая жидкость, нагнетаемая из гидросистемы, через отверстие в крышке 17 и через паз распределителя 14 поступает в блок цилиндров 13 и приводит в движение поршни 11. Поршни передают усилие на сферический шарнир 10. Так как оси вала 1 и блока цилиндров 13 находятся под углом, сила в шарнире 10 раскладывается на осевую и тангенциальную составляющие.
Осевая нагрузка воспринимается радиально-упорными подшипниками 6 и 8, а тангенциальная создает крутящий момент на валу гидромотора.
Величина момента и частота вращения вала гидромотора определяются рабочим объемом гидромотора, давлением и количеством подводимой рабочей жидкости.
Рисунок 1. Гидромашина нерегулируемая типа 310
Рисунок 2. Гидромашины типа 310.3.56; 112; 160
Рисунок 3. Гидромашины типа 310.12; 210.12; 310.2.28