Какие бывают карбюраторы: Карбюратор | Кулибинск Клуб

Содержание

Введение в карбюраторы К-151 | www.uazik.net

Канд. техн. наук А. Дмитриевский

 

По нашей просьбе Анатолий Валентинович подготовил статью по всем карбюраторам, устанавливающимся на двигатели ЗМЗ и УМЗ коммерческих автомобилей. Однако объём статьи оказался чрезмерно велик. И потому мы её разбили на части. Первая посвящена наиболее распространенным карбюраторам.

 

На двигателях УМЗ и ЗМЗ с рабочим объёмом от 2,5 до 2,9 л применяются двухкамерные карбюраторы К-151 различных модификаций, выпускаемые ОАО «Топливные системы» («ПЕКАР») в С.-Петербурге. Эти карбюраторы имеют последовательное открытие дроссельных заслонок, что обеспечивает поддержание высокого разрежения и скорости движения воздуха у распылителя главной дозирующей системы (ГДС), необходимого для высококачественного распыления топлива при низких частотах вращения коленчатого вала, и низкое аэродинамическое сопротивление на впуске при высоких.

Рассмотрим более подробно конструктивные особенности этих карбюраторов, их достоинства и недостатки, а также способы улучшения экономических и экологических показателей и ездовых свойств автомобиля.

 

Поплавковая камера

Достоинством К-151 является расположение запорной иглы в корпусе карбюратора. Это упрощает регулировку уровня топлива и проверку герметичности иглы. Достаточно снять крышку карбюратора, подкачать топливо ручным приводом насоса и, подгибая верхний усик поплавка, установить заданный уровень.

Положение уровня топлива определяет количество подаваемого топлива и, как следствие, основные эксплуатационные качества автомобиля. Его рекомендуемая величина дается в инструкции по обслуживанию карбюратора. При низком уровне топлива происходит обеднение смеси, вызывающее появление рывков, «провалов», как правило, проявляющихся во время разгона и движения с повышенными скоростями. У К-151 это может происходить при рекомендованном уровне топлива (расстояние до плоскости разъёма 21–23 мм). В этом случае следует повысить уровень, уменьшив это расстояние до 19 мм, отогнув язычок поплавка вниз. После регулировки следует убедиться, что плоскость язычка в точке касания иглы приблизительно перпендикулярна оси иглы, иначе возможно её заедание из-за перекоса.

Чрезмерное увеличение уровня топлива приводит к переобогащению рабочей смеси, вызывающему ухудшение пусковых качеств, забрасыванию свечей, дымлению, увеличению расхода топлива. Перелив топлива может происходить из-за нарушения герметичности запорного механизма. Для его проверки можно снять крышку фильтра или переходник и, подкачивая рычагом топливного насоса, посмотреть – не происходит ли утечка топлива (можно при работающем на холостом ходу двигателе убедиться в отсутствии каплепадения во второй камере карбюратора из распылителя ГДС – прим. Ред.).

В карбюраторах К-151 применяются запорные иглы с уплотнительными шайбами, что снижает требования к точности изготовления самой иглы и её корпуса (а также позволяет обойтись без специального демпфирующего устройства в клапане – прим. Ред.). Но из-за возможной деформации уплотнительной шайбы (плохое качество её материала, применение нестандартных топлив) бывают случаи зависания иглы, из-за чего нарушается работа двигателя.

 

Главная дозирующая система

Наиболее экономичным является состав смеси, в который на каждый килограмм топлива приходится от 16 до 18 кг воздуха. Он обеспечивается за счёт подбора дозирующих элементов: топливного и воздушного жиклеров, эмульсионной трубки. Воздушный жиклер ГДС соединен с внутренней полостью эмульсионной трубки, имеющей несколько рядов отверстий. При повышении расхода воздуха разрежение в малом диффузоре у распылителя увеличивается, а уровень топлива в эмульсионной трубке снижается. В действие вступает всё большее число отверстий, обеспечивая заданный состав смеси на всех режимах частичных нагрузок, независимо от частоты вращения и положения дроссельной заслонки.

 

Системы обогащения смеси

 

Эконостат служит для повышения мощности двигателя обогащением смеси до соотношения 1:13…1:14. Распылитель эконостата расположен значительно выше уровня топлива в поплавковой камере, в воздушном канале крышки карбюратора, где скорость воздуха значительно ниже, чем в диффузоре. Поэтому топливо начинает поступать через эконостат только при работе двигателя на средних и высоких оборотах и нагрузках близких к полным.

Засорение жиклера эконостата может быть одной из причин снижения максимальной скорости автомобиля.

 

Ускорительный насос служит для компенсации обеднения смеси при резком открытии дроссельной заслонки впрыскиванием дополнительного топлива в воздушный канал карбюратора. В К-151 ускорительный насос мембранного типа. С одной стороны у мембраны имеется пружина, обеспечивающая всасывание топлива, с другой – демпфирующая пружина. Период впрыскивания определяется характеристикой демпфирующей пружины, проходным сечением распылителя, жиклером дренажной системы. Закон впрыскивания определяется профилем приводного кулачка и соотношением длин рычагов. Для предотвращения впрыска топлива при малых перемещениях мембраны, например, при движении по неровной дороге, рабочая полость мембраны сообщается с поплавковой камерой перепускным каналом. Регулирование подачи топлива осуществляется иглой в жиклере перепускного канала или изменением проходного сечения форсунки.

Одной из причин ухудшения динамики автомобиля во время разгона является нарушение работы ускорительного насоса. Его предварительную проверку можно выполнить без снятия карбюратора с двигателя. При резком открытии дроссельной заслонки из распылителя должна выходить ровная струя. Она не должна попадать на стенки канала или малого диффузора.

Причинами нарушения работы насоса может быть попадание соринок в седло всасывающего или нагнетательного клапанов, но чаще всего – в распылитель (еще две распространенные причины – нарушение герметичности мембраны или заедание рычага – прим. Ред.).

 

Системы холостого хода

К-151 имеют автономную систему холостого хода, представляющую собой миниатюрный карбюратор. Дроссельная заслонка в это время закрыта почти полностью, зазор между ней и стенками минимальный, при нем не должно создаваться разрежение в трубке вакуумного регулятора опережения зажигания. Автономная система обеспечивает хорошее распыление топлива и равномерное распределение смеси по цилиндрам (по составу), что позволяет обеднять топливовоздушную смесь до соотношения 1:15.

В результате удается снизить концентрацию СО в отработавших газах до 0,3–0,6% (обычно регулируют с некоторым запасом – 0,7–1,1%), а СН до 180–230 ppm. Регулирование проводится в основном винтом качества смеси.

На режимах принудительного холостого хода (ПХХ), включающих торможение двигателем и замедление вращения коленчатого вала, мембранный механизм смещает клапан экономайзера принудительного холостого хода (ЭПХХ) до упора, перекрывая выходное отверстие и прекращая подачу топлива. Применение автономной системы с ЭПХХ снижает выброс СО и СН на 30–40 % и при испытании по городскому циклу уменьшает расход топлива на 4,5%, а также увеличивает эффективность торможения двигателем примерно на 25% (приведены «официальные» или «хрестоматийные» величины эффективности ЭПХХ – прим. Ред.). ЭПХХ также выполняет функцию «антидизель», т.е. при низкооктановом бензине предотвращается работа с самовоспламенением после выключения зажигания.

В К-151 топливо из канала главной дозирующей системы поднимается к эмульсионной трубке с топливным и воздушным жиклерами холостого хода.

Пройдя через боковые отверстия в трубке и эмульсионный жиклер, оно в виде топливовоздушной эмульсии смешивается с дополнительным воздухом, поступающим через второй воздушный жиклер. Для обеспечения стабильности состава смеси при регулировании винтом количества в нижней части корпуса карбюратора система холостого хода имеет два канала. По первому из них эмульсия сквозь переходную втулку поступает в полость перед переходными отверстиями, а затем через сечение, регулируемое нижним винтом качества, в основной диффузор с винтом количества. По второму каналу в карбюраторах первых выпусков эмульсия проходила через сечение, регулируемое дополнительным (верхним) винтом качества. В карбюраторах последних выпусков этот винт заменен дозирующим отверстием в канале. Далее эмульсия поступает в дополнительный диффузор в корпусе дроссельных заслонок.

Система управления клапаном ЭПХХ К-151 (для «402-ых» моторов – прим. Ред.) состоит из электронного блока, включающего электропневмоклапан при снижении числа оборотов коленчатого вала ниже заданного и отключающего его при их увеличении свыше 1 500 мин-1, и микровыключателя. В работе любых карбюраторов наибольшее число отказов происходит в системе холостого хода. Это не удивительно – ведь её топливный жиклер имеет очень маленькое сечение. Поэтому, если «пропал» холостой ход, то он – первый кандидат на продувку. Правда, прежде чем разбирать карбюратор, есть смысл провести простейшую диагностику.

Нужно снять наконечники проводов с микровыключателя и замкнуть их. Если двигатель заработал – значит вышел из строя электронный блок. Временно до его замены можно ездить, заизолировав замкнутые наконечники проводов. Если двигатель и после замыкания наконечников не работает, снимем шланг, идущий от задроссельного пространства, и подсоединим его напрямую к мембранному механизму ЭПХХ. Двигатель заработал на холостом ходу – значит необходимо заменить электропневмоклапан. Если двигатель опять не работает, то необходимо снять крышку мембранного механизма и проверить, свободно ли ходит клапан и не разорвана ли мембрана. При разорванной мембране можно отрезать кусочек шланга, разрезать его вдоль, подсунуть его под мембрану и надеть на шток клапана. Если двигатель работает неустойчиво или глохнет в начальный период открытия дроссельной заслонки, то регулируют или заменяют микровыключатель. Он должен замыкать контакты в самом начале поворота рычага привода дроссельной заслонки.

Проверка электронного блока может производиться подсоединением к нему вместо провода идущего к электропневмоклапану лампочки мощностью не более 3 Вт. Другой провод от лампочки подсоединяют к массе. Провод от микровыключателя необходимо отсоединить. При повышении числа оборотов свыше 1 200–1 500 лампочка должна гаснуть, а при их снижении до 900–1 000 снова загораться. В этом случае блок исправен.

 

Переходная система

При небольших углах открытия дроссельной заслонки уменьшается подача топливовоздушной эмульсии через систему холостого хода, а главная дозирующая система еще не вступила в действие. Смесь переобедняется, начинаются перебои воспламенения, появляется «провал». Для компенсации состава смеси используется переходная система, через которую поступает дополнительное топливо. Обычно переходная система представляет собой одно или несколько отверстий, а иногда и щель, соединяющих эмульсионный канал системы холостого хода со смесительной камерой в зоне верхней кромки дроссельной заслонки.

Причиной нарушения работы переходной системы может быть обеднение смеси из-за засорения топливного жиклера системы холостого хода, снижения уровня топлива в поплавковой камере. Причиной «провала» может быть и частичное засорение топливного жиклера холостого хода. Реже неустойчивая работа двигателя происходит из-за переобогащения смеси, например, при засорении воздушных жиклеров холостого хода и главной дозирующей системы.

Нарушение работы переходной системы вызывает неправильное положения отверстий. Если они просверлены со значительным смещением вверх, «провал» можно устранить, подпиливая снизу кромку дроссельной заслонки напротив них, если ниже – целесообразно подпилить кромку дроссельной заслонки сверху. Правда, прежде стоит должным образом выставить положение дроссельных заслонок и обойтись регулировками холостого хода. И браться за напильник нужно, убедившись в необходимости этой работы.

 

Регулировки карбюратора на минимум выброса СО и СН

По действующему стандарту проверка токсичности в эксплуатационных условиях производится на холостом ходу полностью прогретого двигателя при минимальной (nхх мин) и повышенной (nпов) частотах вращения коленчатого вала. От правильной регулировки двигателя на этих режимах зависит не только загазованность воздуха, но и надежность работы системы зажигания, ездовые качества автомобиля, эксплуатационный расход топлива.

Карбюратор следует регулировать после любого вмешательства в двигатель (ремонт и промывка карбюратора, замена воздушного фильтра, изменение режима подогрева воздуха и др.). Перед регулировкой необходимо проверить систему зажигания (контакты прерывателя, зазоры свечей) и уровень топлива в поплавковой камере.

Проверку следует начинать с режима повышенной частоты вращения, выбираемой по инструкции завода изготовителя. Если таковой нет, то проверка ведется при 3 000 мин-1. После установки режима необходимо выдержать до начала замера примерно 30 секунд. Концентрация СО и СН задается заводом-изготовителем. Если данных нет, то для двигателей автомобилей массой до 3,5 т без нейтрализатора концентрация СО не должна превышать 2%, а СН – 600 ppm. Для неизношенного двигателя нормальная регулировка соответствует 0,5–1% СО и 50–100 ppm СН. При невозможности отрегулировать СО необходимо проверить уровень топлива в поплавковой камере, продуть или прочистить жиклеры системы холостого хода и ГДС.

При повышенной концентрации СН (и нормальной концентрации СО) следует проверить систему зажигания. Причиной повышенного выброса СН зачастую бывает переобеднение смеси или повышенный угар масла.

После регулировки двигателя при nпов переходим на режим nхх мин. Для регулирования частоты вращения используется винт количества смеси. Соотношение элементов дозирующих систем К-151 подобрано таким образом, чтобы при вращении винта количества смеси её состав почти не изменяется. Винтом качества пользуются для регулирования состава смеси.

Если нет данных завода-изготовителя концентрация СО для двигателей без нейтрализатора не должна превышать 3,5%, а концентрация СН – 1 200 ppm. Перед регулировкой на СО необходимо винтом количества установить nхх мин. Затем винтом качества регулируем СО.

У двигателей с карбюраторами К-151 минимальный выброс СН соответствует концентрации СО 0,3–0,6%. Но для создания некоторого запаса с учётом возможных изменений состава смеси в процессе эксплуатации целесообразно винтом качества устанавливать концентрацию СО 0,7–1,0%. Концентрация СН при исправном двигателе находится в пределах 180–250 ppm.

В К-151 два воздушных жиклера холостого хода, причем второй жиклер малого диаметра засоряется особенно часто, что вызывает переобогащение смеси и соответственно увеличение концентрации СО. В них имеется также два эмульсионных канала холостого хода. В карбюраторах первых выпусков в каждом из этих каналов устанавливались винты качества смеси. У последних выпусков вместо второго винта качества делается калиброванное отверстие в нижней части корпуса. Часто это отверстие имеет слишком большую пропускную способность, поэтому, когда мы перекрываем винтом качества один канал, избыточное количество топлива, поступающего по второму каналу, вызывает повышенный выброс СО. В этих случаях необходимо уменьшить диаметр калиброванного отверстия, а иногда заглушить его полностью.

После регулировки холостого хода рекомендуется несколько раз нажать на педаль газа и проверить частоту вращения при отпущенной педали. Если она изменилась, то винтом количества уточнить регулировку карбюратора.

А если нет газоанализатора? С достаточной степенью точности отрегулировать карбюратор можно с помощью тахометра с ценой деления 25 или 50 мин-1. На прогретом двигателе винтом количества устанавливаем nхх мин. Затем винтом качества выбираем регулировку, соответствующую максимальному числу оборотов. Винтом количества устанавливаем число оборотов на 14–20% выше nхх мин, т. е. при nхх мин=600 мин-1 устанавливаем примерно 680 мин-1, а при nхх мин=800 мин-1 nрег=950 мин-1. Затем винтом качества уменьшаем число оборотов до nхх мин.

В дорожных условиях карбюратор можно отрегулировать и без тахометра. Винтом качества, вращая его по часовой стрелке, обедняем смесь до начала неустойчивой работы двигателя, затем, очень медленно вращая винт качества в обратном направлении, доходим до начала устойчивой работы двигателя. Иногда приходится несколько увеличить частоту вращения коленчатого вала винтом количества.

 

 

 

Карбюраторы К-151

Канд. техн. наук А. Дмитриевский

На двигателях УМЗ и ЗМЗ с рабочим объёмом от 2,5 до 2,9 л применяются двухкамерные карбюраторы К-151 различных модификаций, выпускаемые ОАО «Топливные системы» («ПЕКАР») в С.-Петербурге. Эти карбюраторы имеют последовательное открытие дроссельных заслонок, что обеспечивает поддержание высокого разрежения и скорости движения воздуха у распылителя главной дозирующей системы (ГДС), необходимого для высококачественного распыления топлива при низких частотах вращения коленчатого вала, и низкое аэродинамическое сопротивление на впуске при высоких.

Рассмотрим более подробно конструктивные особенности этих карбюраторов, их достоинства и недостатки, а также способы улучшения экономических и экологических показателей и ездовых свойств автомобиля.

Поплавковая камера

Достоинством К-151 является расположение запорной иглы в корпусе карбюратора. Это упрощает регулировку уровня топлива и проверку герметичности иглы. Достаточно снять крышку карбюратора, подкачать топливо ручным приводом насоса и, подгибая верхний усик поплавка, установить заданный уровень.

Положение уровня топлива определяет количество подаваемого топлива и, как следствие, основные эксплуатационные качества автомобиля. Его рекомендуемая величина дается в инструкции по обслуживанию карбюратора. При низком уровне топлива происходит обеднение смеси, вызывающее появление рывков, «провалов», как правило, проявляющихся во время разгона и движения с повышенными скоростями. У К-151 это может происходить при рекомендованном уровне топлива (расстояние до плоскости разъёма 21–23 мм). В этом случае следует повысить уровень, уменьшив это расстояние до 19 мм, отогнув язычок поплавка вниз. После регулировки следует убедиться, что плоскость язычка в точке касания иглы приблизительно перпендикулярна оси иглы, иначе возможно её заедание из-за перекоса.

Чрезмерное увеличение уровня топлива приводит к переобогащению рабочей смеси, вызывающему ухудшение пусковых качеств, забрасыванию свечей, дымлению, увеличению расхода топлива. Перелив топлива может происходить из-за нарушения герметичности запорного механизма. Для его проверки можно снять крышку фильтра или переходник и, подкачивая рычагом топливного насоса, посмотреть – не происходит ли утечка топлива (можно при работающем на холостом ходу двигателе убедиться в отсутствии каплепадения во второй камере карбюратора из распылителя ГДС – прим. Ред.).

В карбюраторах К-151 применяются запорные иглы с уплотнительными шайбами, что снижает требования к точности изготовления самой иглы и её корпуса (а также позволяет обойтись без специального демпфирующего устройства в клапане – прим. Ред.). Но из-за возможной деформации уплотнительной шайбы (плохое качество её материала, применение нестандартных топлив) бывают случаи зависания иглы, из-за чего нарушается работа двигателя.

Главная дозирующая система

Наиболее экономичным является состав смеси, в который на каждый килограмм топлива приходится от 16 до 18 кг воздуха. Он обеспечивается за счёт подбора дозирующих элементов: топливного и воздушного жиклеров, эмульсионной трубки. Воздушный жиклер ГДС соединен с внутренней полостью эмульсионной трубки, имеющей несколько рядов отверстий. При повышении расхода воздуха разрежение в малом диффузоре у распылителя увеличивается, а уровень топлива в эмульсионной трубке снижается. В действие вступает всё большее число отверстий, обеспечивая заданный состав смеси на всех режимах частичных нагрузок, независимо от частоты вращения и положения дроссельной заслонки.

Системы обогащения смеси

Эконостат служит для повышения мощности двигателя обогащением смеси до соотношения 1:13…1:14. Распылитель эконостата расположен значительно выше уровня топлива в поплавковой камере, в воздушном канале крышки карбюратора, где скорость воздуха значительно ниже, чем в диффузоре. Поэтому топливо начинает поступать через эконостат только при работе двигателя на средних и высоких оборотах и нагрузках близких к полным. Засорение жиклера эконостата может быть одной из причин снижения максимальной скорости автомобиля.

Ускорительный насос служит для компенсации обеднения смеси при резком открытии дроссельной заслонки впрыскиванием дополнительного топлива в воздушный канал карбюратора. В К-151 ускорительный насос мембранного типа. С одной стороны у мембраны имеется пружина, обеспечивающая всасывание топлива, с другой – демпфирующая пружина. Период впрыскивания определяется характеристикой демпфирующей пружины, проходным сечением распылителя, жиклером дренажной системы. Закон впрыскивания определяется профилем приводного кулачка и соотношением длин рычагов. Для предотвращения впрыска топлива при малых перемещениях мембраны, например, при движении по неровной дороге, рабочая полость мембраны сообщается с поплавковой камерой перепускным каналом. Регулирование подачи топлива осуществляется иглой в жиклере перепускного канала или изменением проходного сечения форсунки.

Одной из причин ухудшения динамики автомобиля во время разгона является нарушение работы ускорительного насоса. Его предварительную проверку можно выполнить без снятия карбюратора с двигателя. При резком открытии дроссельной заслонки из распылителя должна выходить ровная струя. Она не должна попадать на стенки канала или малого диффузора.

Причинами нарушения работы насоса может быть попадание соринок в седло всасывающего или нагнетательного клапанов, но чаще всего – в распылитель (еще две распространенные причины – нарушение герметичности мембраны или заедание рычага – прим. Ред. ).

Системы холостого хода

К-151 имеют автономную систему холостого хода, представляющую собой миниатюрный карбюратор. Дроссельная заслонка в это время закрыта почти полностью, зазор между ней и стенками минимальный, при нем не должно создаваться разрежение в трубке вакуумного регулятора опережения зажигания. Автономная система обеспечивает хорошее распыление топлива и равномерное распределение смеси по цилиндрам (по составу), что позволяет обеднять топливовоздушную смесь до соотношения 1:15. В результате удается снизить концентрацию СО в отработавших газах до 0,3–0,6% (обычно регулируют с некоторым запасом – 0,7–1,1%), а СН до 180–230 ppm. Регулирование проводится в основном винтом качества смеси.

На режимах принудительного холостого хода (ПХХ), включающих торможение двигателем и замедление вращения коленчатого вала, мембранный механизм смещает клапан экономайзера принудительного холостого хода (ЭПХХ) до упора, перекрывая выходное отверстие и прекращая подачу топлива. Применение автономной системы с ЭПХХ снижает выброс СО и СН на 30–40 % и при испытании по городскому циклу уменьшает расход топлива на 4,5%, а также увеличивает эффективность торможения двигателем примерно на 25% (приведены «официальные» или «хрестоматийные» величины эффективности ЭПХХ – прим. Ред.). ЭПХХ также выполняет функцию «антидизель», т.е. при низкооктановом бензине предотвращается работа с самовоспламенением после выключения зажигания.

В К-151 топливо из канала главной дозирующей системы поднимается к эмульсионной трубке с топливным и воздушным жиклерами холостого хода. Пройдя через боковые отверстия в трубке и эмульсионный жиклер, оно в виде топливовоздушной эмульсии смешивается с дополнительным воздухом, поступающим через второй воздушный жиклер. Для обеспечения стабильности состава смеси при регулировании винтом количества в нижней части корпуса карбюратора система холостого хода имеет два канала. По первому из них эмульсия сквозь переходную втулку поступает в полость перед переходными отверстиями, а затем через сечение, регулируемое нижним винтом качества, в основной диффузор с винтом количества. По второму каналу в карбюраторах первых выпусков эмульсия проходила через сечение, регулируемое дополнительным (верхним) винтом качества. В арбюраторах последних выпусков этот винт заменен дозирующим отверстием в канале. Далее эмульсия поступает в дополнительный диффузор в корпусе дроссельных заслонок.

Система управления клапаном ЭПХХ К-151 (для «402-ых» моторов – прим. Ред.) состоит из электронного блока, включающего электропневмоклапан при снижении числа оборотов коленчатого вала ниже заданного и отключающего его при их увеличении свыше 1 500 мин–1, и микровыключателя. В работе любых карбюраторов наибольшее число отказов происходит в системе холостого хода. Это не удивительно – ведь её топливный жиклер имеет очень маленькое сечение. Поэтому, если «пропал» холостой ход, то он – первый кандидат на продувку. Правда, прежде чем разбирать карбюратор, есть смысл провести простейшую диагностику.

Нужно снять наконечники проводов с микровыключателя и замкнуть их. Если двигатель заработал – значит вышел из строя электронный блок. Временно до его замены можно ездить, заизолировав замкнутые наконечники проводов. Если двигатель и после замыкания наконечников не работает, снимем шланг, идущий от задроссельного пространства, и подсоединим его напрямую к мембранному механизму ЭПХХ. Двигатель заработал на холостом ходу – значит необходимо заменить электропневмоклапан. Если двигатель опять не работает, то необходимо снять крышку мембранного механизма и проверить, свободно ли ходит клапан и не разорвана ли мембрана. При разорванной мембране можно отрезать кусочек шланга, разрезать его вдоль, подсунуть его под мембрану и надеть на шток клапана. Если двигатель работает неустойчиво или глохнет в начальный период открытия дроссельной заслонки, то регулируют или заменяют микровыключатель. Он должен замыкать контакты в самом начале поворота рычага привода дроссельной заслонки.

Проверка электронного блока может производиться подсоединением к нему вместо провода идущего к электропневмоклапану лампочки мощностью не более 3 Вт. Другой провод от лампочки подсоединяют к массе. Провод от микровыключателя необходимо отсоединить. При повышении числа оборотов свыше 1 200–1 500 лампочка должна гаснуть, а при их снижении до 900–1 000 снова загораться. В этом случае блок исправен.

Переходная система

При небольших углах открытия дроссельной заслонки уменьшается подача топливовоздушной эмульсии через систему холостого хода, а главная дозирующая система еще не вступила в действие. Смесь переобедняется, начинаются перебои воспламенения, появляется «провал». Для компенсации состава смеси используется переходная система, через которую поступает дополнительное топливо. Обычно переходная система представляет собой одно или несколько отверстий, а иногда и щель, соединяющих эмульсионный канал системы холостого хода со смесительной камерой в зоне верхней кромки дроссельной заслонки.

Причиной нарушения работы переходной системы может быть обеднение смеси из-за засорения топливного жиклера системы холостого хода, снижения уровня топлива в поплавковой камере. Причиной «провала» может быть и частичное засорение топливного жиклера холостого хода. Реже неустойчивая работа двигателя происходит из-за переобогащения смеси, например, при засорении воздушных жиклеров холостого хода и главной дозирующей системы.

Нарушение работы переходной системы вызывает неправильное положения отверстий. Если они просверлены со значительным смещением вверх, «провал» можно устранить, подпиливая снизу кромку дроссельной заслонки напротив них, если ниже – целесообразно подпилить кромку дроссельной заслонки сверху. Правда, прежде стоит должным образом выставить положение дроссельных заслонок и обойтись регулировками холостого хода. И браться за напильник нужно, убедившись в необходимости этой работы.

Регулировки карбюратора на минимум CO и CH

По действующему стандарту проверка токсичности в эксплуатационных условиях производится на холостом ходу полностью прогретого двигателя при минимальной (nхх мин) и повышенной (nпов) частотах вращения коленчатого вала. От правильной регулировки двигателя на этих режимах зависит не только загазованность воздуха, но и надежность работы системы зажигания, ездовые качества автомобиля, эксплуатационный расход топлива.

Карбюратор следует регулировать после любого вмешательства в двигатель (ремонт и промывка карбюратора, замена воздушного фильтра, изменение режима подогрева воздуха и др.). Перед регулировкой необходимо проверить систему зажигания (контакты прерывателя, зазоры свечей) и уровень топлива в поплавковой камере.

Проверку следует начинать с режима повышенной частоты вращения, выбираемой по инструкции завода изготовителя. Если таковой нет , то проверка ведется при 3 000 мин–1. После установки режима необходимо выдержать до начала замера примерно 30 секунд. Концентрация СО и СН задается заводом-изготовителем. Если данных нет , то для двигателей автомобилей массой до 3,5 т без нейтрализатора концентрация СО не должна превышать 2%, а СН – 600 ppm. Для неизношенного двигателя нормальная регулировка соответствует 0,5–1% СО и 50–100 ppm СН. При невозможности отрегулировать СО необходимо проверить уровень топлива в поплавковой камере, продуть или прочистить жиклеры системы холостого хода и ГДС.

При повышенной концентрации СН (и нормальной концентрации СО) следует проверить систему зажигания. Причиной повышенного выброса СН зачастую бывает переобеднение смеси или повышенный угар масла.

Параметры карбюраторов К-151
Модель К-151 К-151В К-151Г К-151И К-151Д
Диаметр диффузоров, мм:
  • – большого
  • – малого

23/26
10,5/10,5

23/26
10,5/10,5

23/26
10,5/10,5

23/26
10,5/10,5
Диаметр смесительной камеры, мм 32/36 32/36 32/36
главная дозирующая система:
  • – топливный
  • – воздушный

225/300
330/330

225/330
300/230

225/380
330/330

230/340
330/330
системы холостого хода и переходной системы 2-ой камеры
  • – топливный
  • – воздушный I
  • – воздушный II
  • – эмульсионный

95/150
85/280
330/270
1,1*

95/150
85/280
330/270
1,1*

95/150
85/280
330/270
1,1*

95/150
85/200
370/270
2,0*

топливный эконостата 280 280 280  
Диаметр распылителя ускорительного насоса, мм 0,4 0,4 0,4 0,35
Производительность ускорительного насоса, см3/10 циклов 7,5–12,5 5,0–9,0 10,0–14,0  
Пусковые зазоры, мм:
  • – воздушной заслонки
  • – дроссельной заслонки

1,4–1,7
1,1–1,3

1,4–1,7
1,1–1,3

1,4–1,7
1,1–1,3
Уровень поплавковой камеры, мм 20,0–23,0 20,0–23,0 20,0–23,0 20,0–23,0

После регулировки двигателя при nпов переходим на режим nхх мин. Для регулирования частоты вращения используется винт количества смеси. Соотношение элементов дозирующих систем К-151 подобрано таким образом, чтобы при вращении винта количества смеси её состав почти не изменяется. Винтом качества пользуются для регулирования состава смеси.

Если нет данных завода-изготовителя концентрация СО для двигателей без нейтрализатора не должна превышать 3,5%, а концентрация СН – 1 200 ppm. Перед регулировкой на СО необходимо винтом количества установить nхх мин. Затем винтом качества регулируем СО.

У двигателей с карбюраторами К-151 минимальный выброс СН соответствует концентрации СО 0,3–0,6%. Но для создания некоторого запаса с учётом возможных изменений состава смеси в процессе эксплуатации целесообразно винтом качества устанавливать концентрацию СО 0,7–1,0%. Концентрация СН при исправном двигателе находится в пределах 180–250 ppm.

В К-151 два воздушных жиклера холостого хода, причем второй жиклер малого диаметра засоряется особенно часто, что вызывает переобогащение смеси и соответственно увеличение концентрации СО. В них имеется также два эмульсионных канала холостого хода. В карбюраторах первых выпусков в каждом из этих каналов устанавливались винты качества смеси. У последних выпусков вместо второго винта качества делается калиброванное отверстие в нижней части корпуса. Часто это отверстие имеет слишком большую пропускную способность, поэтому, когда мы перекрываем винтом качества один канал, избыточное количество топлива, поступающего по второму каналу, вызывает повышенный выброс СО. В этих случаях необходимо уменьшить диаметр калиброванного отверстия, а иногда заглушить его полностью.

После регулировки холостого хода рекомендуется несколько раз нажать на педаль газа и проверить частоту вращения при отпущенной педали. Если она изменилась, то винтом количества уточнить регулировку карбюратора.

А если нет газоанализатора? С достаточной степенью точности отрегулировать карбюратор можно с помощью тахометра с ценой деления 25 или 50 мин–1. На прогретом двигателе винтом количества устанавливаем nхх мин. Затем винтом качества выбираем регулировку, соответствующую максимальному числу оборотов. Винтом количества устанавливаем число оборотов на 14–20% выше nхх мин, т.е. при nхх мин=600 мин–1 устанавливаем примерно 680 мин–1, а при nхх мин= 800 мин–1 nрег=950 мин–1. Затем винтом качества уменьшаем число оборотов до nхх мин.

В дорожных условиях карбюратор можно отрегулировать и без тахометра. Винтом качества, вращая его по часовой стрелке, обедняем смесь до начала неустойчивой работы двигателя, затем, очень медленно вращая винт качества в обратном направлении, доходим до начала устойчивой работы двигателя. Иногда приходится несколько увеличить частоту вращения коленчатого вала винтом количества.

3D CAD Models & 2D Drawings

Карбюра́тор — узел системы питания ДВС, предназначенный для приготовления горючей смеси наилучшего состава путём смешивания (карбюрации, фр. carburation) жидкого топлива с воздухом и регулирования количества её подачи в цилиндры двигателя. Имеет широчайшее применение на разных двигателях, обеспечивающих работу самых разнообразных устройств. На массовых автомобилях с 80-х годов ХХ века карбюраторные системы подачи топлива вытесняются инжекторными.

Основы устройства и виды карбюраторов

Карбюраторы подразделяются на барботажные, в данный момент не использующиеся, мембранно-игольчатые и поплавковые, составляющие подавляющее большинство всех карбюраторов.

Барботажный карбюратор представляет собой бензобак, в котором на некотором расстоянии от поверхности топлива имеется глухая доска и два широких патрубка — подающий воздух из атмосферы и отбирающий смесь в двигатель. Воздух проходил под доской над поверхностью топлива и, насыщаясь его парами, образовывал горючую смесь. При всей примитивности этот карбюратор — единственный, обеспечивавший смесь с воздухом именно паровой фракции топлива. Дроссельная заслонка стояла на двигателе отдельно. Барботажный карбюратор делал двигатель очень требовательным к фракционному составу топлива, так как испаряемость его должна была занимать весьма узкий температурный диапазон, вся конструкция была взрывоопасной, громоздкой, тяжёлой в регулировании. Топливо-воздушная смесь в длинном тракте частично конденсировалась, этот процесс зависел чаще от погоды.

Мембранно-игольчатый карбюратор представляет собой отдельный законченный узел и, как следует из названия, состоит из нескольких камер, разделённых мембранами, жёстко связанными между собою штоком, который заканчивается иглой, запирающей седло клапана подачи топлива. Камеры соединяются каналами с разными участками смесительной камеры и с топливным каналом. Вариант — связь между мембранами и клапаном неравноплечими рычагами. Характеристики таких карбюраторов определялись тарированными пружинами, на которые опирались мембраны и/или рычаги. Система рассчитана так, чтобы соотношение вакуума, давления топлива и скорости смеси обеспечивали должное соотношение топлива и воздуха. Достоинство такого карбюратора — наряду с простотой — способность работать буквально в любом положении по отношению к силе тяжести. Недостатки — относительная сложность регулировки, некоторая нестабильность характеристики (из-за пружины), чувствительность к ускорениям, перпендикулярным мембранам, неширокий диапазон количества смеси на выходе, медленные переходы между установившимися режимами. Такие карбюраторы используются на двигателях, по условиям работы не имеющих определённого пространственного положения (двигатели бензорезов, газонокосилок, поршневых самолётов, например, карбюраторы АК-82БП стояли на ЛА-5), или просто на дешёвых конструкциях. Именно такой карбюратор стои́т как вспомогательный на газобалонном автомобиле ЗИЛ-138.

Наконец, поплавковый карбюратор, разнообразный в своих многочисленных модификациях, составляет подавляющее большинство современных карбюраторов и состоит из поплавковой камеры, обеспечивающей стабильный приток топлива, смесительной камеры, фактически представляющей трубку Вентури и многочисленных дозирующих систем, состоящих из топливных и воздушных каналов, дозирующих элементов — жиклёров, клапанов и актюаторов. Поплавковые карбюраторы при прочих равных условиях обеспечивают самые стабильные параметры смеси на выходе и обладают самыми высокими эксплуатационными качествами. Поэтому они и получили столь широкое распространение.

Принцип работы поплавкового карбюратора с постоянным сечением диффузора

Схема простейшего карбюратора с падающим потоком

Простейший карбюратор состоит из двух функциональных элементов: поплавковой камеры (10) и смесительной камеры (8).

Топливо по трубке (1) поступает в поплавковую камеру (10), в которой плавает поплавок (3), на который опирается запорная игла (2) поплавкового клапана. При расходовании топлива его уровень в поплавковой камере понижается, поплавок опускается, игла открывает подачу топлива, при достижении заданного уровня клапан закрывается. Таким образом, поплавковый клапан поддерживает постоянный уровень топлива. Благодаря балансировочному отверстию (4) в поплавковой камере поддерживается атмосферное давление. В практически выпускаемых карбюраторах, работающих с воздушными фильтрами, вместо этого отверстия используется балансировочный канал поплавковой камеры, ведущий не в атмосферу, а в полость воздушного фильтра или в верхнюю часть смесительной камеры. В этом случае дросселирующее влияние фильтра сказывается равномерно на всей газодинамике карбюратора, который становится балансированным.

Из поплавковой камеры топливо поступает через жиклёр (9) в распылитель (7). Количество топлива, подающегося из распылителя (7), по закону Бернулли зависит при прочих равных условиях от проходного сечения жиклёра и степени вакуума в диффузоре, а также от сечения диффузора. Соотношение сечений диффузора и главного топливного жиклёра является одним из основополагающих параметров карбюратора.

При впуске давление в цилиндрах двигателя понижается. Наружный воздух засасывается в цилиндр, проходя через смесительную камеру (8) карбюратора, в которой находится диффузор (трубка Вентури) (6), и впускной трубопровод, распределяющий готовую смесь по цилиндрам. Распылитель помещается в самой узкой части диффузора, где, по закону Бернулли, скорость потока достигает максимума, а давление уменьшается до минимума.

Под влиянием разности давлений происходит истечение топлива из распылителя. Топливо, вытекающее из распылителя, дробится в струе воздуха, распыляется, частично испаряясь и, перемешиваясь с воздухом, образует горючую смесь. В реальных карбюраторах используется построение топливоподающей системы, при котором в распылитель подаётся не гомогенное жидкое топливо, а эмульсия из топлива и воздуха. Такие карбюраторы называют эмульсионными. Как правило, вместо одиночного диффузора используется двойной. Дополнительный диффузор имеет небольшие размеры и расположен в главном диффузоре концентрически. Через него проходит только часть общего потока воздуха. Вследствие высокой скорости в центральной части при небольшом сопротивлении основному потоку воздуха достигается более качественное распыление. Количество смеси, поступающей в цилиндры, следовательно, и мощность двигателя, регулируются дроссельной заслонкой (5), у многих карбюраторов, особенно горизонтальных, вместо поворотной заслонки используется шибер — золотник.

Недостатком карбюратора с постоянным сечением диффузора является противоречие между необходимостью, с одной стороны, увеличивать проходное сечение диффузора для снижения газодинамических потерь на входе в двигатель и, с другой стороны, необходимостью уменьшать проходное сечение диффузора для обеспечения качества распыления топлива с его последующим испарением. Этот парадокс технически обойден в карбюраторах с постоянным разрежением (Stromberg, SU, Mikuni) и с переменным сечением диффузора. Отчасти эту проблему решает введение дополнительной смесительной камеры с последовательным открытием дросселей, тогда суммарное сечение диффузоров оказывается ступенчато изменяемым. В послевоенные годы в СССР широко использовались карбюраторы с двухступенчатым регулированием воздуха с параллельным дополнительным диффузором в одной смесительной камере — семейство К-22.

Поплавковая камера

Уровень топлива в поплавковой камере — одна из важнейших констант карбюратора. От него зависит устойчивая работа системы холостого хода и переходных систем всех камер, то есть, работа двигателя на малых оборотах непосредственно. А так как регулировка системы холостого хода фактически закладывает правильную компенсацию состава ГДС, то косвенно от стабильности уровня зависит работа на всех режимах.

Позиция уровня топлива в камере закладывается конструктором так, чтобы при любых отклонениях карбюратора от вертикали не происходило самопроизвольного истечения топлива из распылителей в смесительную камеру.

Особенность компоновки современных карбюраторов в том, что на расположенных поперечно двигателях возникает необходимость компенсировать приливно-отливные явления. С целью такой компенсации в простейших случаях создаются дополнительные экономайзеры (ДААЗ-1111). В более дорогих карбюраторах используются спараллеленные поплавковые камеры, расположенные по бокам карбюратора и соединенные либо поперечным каналом (ДААЗ-2108), либо отдельной сообщающей полостью, из которой запитаны жиклеры. Поплавковых клапанов в этом случае может быть два («Пирбург-2ВЕ»), расположенных в крайних точках по бокам.

Поплавок/поплавки могут быть полыми (ДААЗ), как правило, они выполняются паянными из штампованных латунных половинок, либо изготовленными из пористой пластмассы (К-88).

Для компенсации воздействия вибраций двигателя на уровень топлива поплавковые клапаны демпфируются либо введением демпферной пружины со штоком или шариком, либо наличием упругого упорного или запорного элемента (ПЕКАР).

В ряде карбюраторов поплавковый клапан расположен в дне камеры. В этих случаях компоновка позволяет, сняв крышку карбюратора, непосредственно отслеживать уровень топлива. С этой же целью во многих моделях карбюраторов использовались смотровые окна, расположенные в боковой или передней стенке поплавковой камеры и позволяющие видеть уровень непосредственно в процессе работы двигателя.

Балансированный карбюратор может иметь систему стояночной разбалансировки поплавковой камеры, которая представлена механическим или электрическим клапаном, сообщающим её полость во время стоянки с атмосферой. В этом случае существенно облегчается пуск горячего двигателя, так как переобогащенный парами топлива воздух не накапливается в карбюраторе. С целью улавливания этих паров и из экологических соображений в поздних конструкциях вводится ещё газопоглотитель — ёмкость с вкладышем из активированного угля. При отключении от поплавковой камеры после пуска двигателя его полость соединяется с системой вентиляции картера и поглощенные пары бензина сжигаются двигателем в составе рабочего заряда.

Основные дозирующие системы

Двигатель в процессе эксплуатации работает в разных режимах, требующих смеси разного состава, часто с резким изменением содержания фракции паров топлива. Для приготовления смеси состава, оптимального при любом режиме работы двигателя, карбюратор с постоянным сечением распылителя имеет разнообразные дозирующие устройства. Они вступают в работу или выключаются из работы в разное время или работают одновременно, обеспечивая наиболее выгодный (в отношении получения наибольшей мощности и экономичности) состав смеси на всех режимах двигателя.

  • Главная дозирующая система (ГДС) современного карбюратора, как правило, имеет пневматическую компенсацию состава смеси. Такая система имеет один главный топливный жиклер и один воздушный жиклер, выходящие в эмульсионный колодец, расположенный вертикально или наклонно (карбюраторы Zennith и их модификации). Воздух поступает из ГВЖ в эмульсионную трубку, имеющую вертикальные ряды отверстий. Образующаяся между стенками колодца и трубкой топливовоздушная первичная эмульсия поступает по каналу к распылителю, расположенному в смесительной камере. ГТЖ расположен снизу, поэтому уровень топлива при расходовании эмульсии в распылителе стремится подняться за счет притока из поплавковой камеры. Однако его поступление ограничено ГТЖ. С другой стороны, чем ниже уровень топлива в эмульсионном колодце, тем больше воздуха поступает в эмульсию из отверстий в трубке, тем больше его в смеси и тем больше степень компенсации. Возможен вариант, когда и топливо, и воздух подаются внутрь эмульсионной трубки.

Ранее существовали ГДС со спараллелеными жиклерами и последовательными диффузорами (К-22), в которых компенсация обеспечивалась, главным образом, системой холостого хода и за счет упругости пластин, открывающих поток воздуха в отдельном большом диффузоре, бензин при этом подавался из параллельного компенсационного жиклера. В относительно простеньких карбюраторах малолитражек использовалась ГДС с компенсационным колодцем и ограничительным компенсационным жиклером. Ввиду неглубокой компенсации и относительно небольшого количества подаваемого топлива, то есть негибкости в эксплуатации, карбюраторы с такими системами перестали выпускаться к середине 60-х годов ХХ века.

ГДС современного карбюратора обеспечивает гибкость состава смеси от 1:14 до 1:17 весовых частей бензина : воздуха. На основных режимах ГДС обеспечивает смесь экономичного или обедненного состава — 1:16—1:16,5.

Совершенно особую конструкцию имеет ГДС горизонтального карбюратора с игольным регулированием. В этой системе одновременно механически изменяется количество воздуха, проходящего через диффузор — за счет подъёма шибера, и количество подаваемого в него же топлива — за счет иглы переменного профиля, проходящей через жиклер и механически изменяющей его проходное сечение. Характеристическая кривая такого карбюратора обеспечивается механически жестко заданным соотношением сечения диффузора и сечения жиклера, которые зависят только от высоты подъёма шибера. В карбюраторах постоянного разрежения этот уровень в каждый момент времени обеспечивается автоматически за счет действия демпфирующей системы золотника и разрежения в зоне дроссельной заслонки, определяемого нагрузкой двигателя и углом поворота дросселя.

  • Система холостого хода (СХХ) с переходной системой и система вентиляции картера— помимо обеспечения работы на режимах с невысоким вакуумом, которого недостаточно для включения в работу ГДС, на всех остальных режимах обеспечивает компенсацию состава смеси в ГДС.

Так как при работе на холостом ходу над дросселем не имеется разрежения, необходимого для включения в работу главной дозирующей системы, для обеспечения режимов с неглубоким вакуумом и малыми углами открытия дросселя требуется отдельная система, способная обеспечивать смесеобразование при малых расходах воздуха в смесительной камере. Она может быть параллельной (используется очень редко), последовательной, иметь разные типы распыливания — дроссельное, задроссельное, может быть автономной (АСХХ).

Последовательная СХХ представляет собою воздушный, топливный и эмульсионный каналы с дозирующими элементами — жиклерами холостого хода или актюаторами. Топливный жиклер холостого хода запитывается из нижней части эмульсионного колодца ГДС, таким образом он оказывается включен в топливный канал ГДС последовательно. Воздушный жиклер ХХ соединен с пространством верхней части смесительной камеры, что обеспечивает изменение количества воздуха, поступающего в СХХ при разных режимах работы двигателя. Ввиду указанных выше особенностей, СХХ является очень важным звеном компенсации смеси для ГДС. Очень часто воздух подается в СХХ по двум или по трем каналам, что обеспечивает двух- или трехступенчатое эмульгирование, способствующее дополнительной гомогенизации смеси и улучшению равномерности состава смеси по цилиндрам. СХХ открывается в смесительную камеру в задроссельном пространстве, где на холостых оборотах имеется вакуум достаточной для её работы степени. В канал СХХ открываются переходные отверстия, расположенные в зоне кромки приоткрытой дроссельной заслонки. К-88 и ДААЗ-2108 вообще имеют одно вертикальное щелевидное отверстие, часть его, расположенная ниже кромки дросселя, обеспечивает холостой ход, при открывании дросселя эта часть естественно увеличивается, обеспечивая переходный режим.

Дроссельная заслонка на холостом ходу почти закрыта, разрежение в карбюраторе имеется только сразу за ней. За счёт этого разрежения в отверстие холостого хода из главной дозирующей системы через топливный жиклер холостого хода подается топливо, смешанное с воздухом, поступающим из воздушного жиклера холостого хода и дополнительных воздушных каналов. При этом образуется обогащенная смесь, необходимая для поддержания холостых оборотов двигателя, с соотношением «бензин — воздух» в пределах от 1:12 до 1:14,5.

На переходном режиме, то есть при небольших углах открытия дроссельной заслонки, эмульсия из каналов СХХ поступает в зону кромки дроссельной заслонки через одно или несколько переходных отверстий, смешиваясь с проходящим воздухом и обедняясь до 1:15—1:16,5.

Как уже указывалось, некоторые карбюраторы (К-88, К-90, ДААЗ-2108) имеют в зоне кромки дросселя одно вертикальное щелевидное отверстие. Такое построение обеспечивает эффективную компенсацию и плавное изменение состава смеси на переходном режиме. Задавая форму щели, можно добиться практически идеальной переходной характеристики.

На остальных режимах работы двигателя система холостого хода компенсирует состав смеси, образуемой главной дозирующей системой и поэтому является чрезвычайно важной для правильной работы карбюратора. Известны случаи, когда после неквалифицированной регулировки СХХ при сохранении оборотов холостого хода карбюратор практически терял работоспособность.

Для обеспечения равномерности состава смеси по цилиндрам и стабильности параметров и смесеобразования, и момента зажигания СХХ часто выполняется автономной, с дополнительными смесительными устройствами, фактически представляющими собой карбюратор в карбюраторе, работоспособный при малых расходах воздуха (например, АСХХ «Каскад»). Такая система имеет основной канал, входное отверстие которого расположено в зоне опускающейся кромки дроссельной заслонки, а устье выходит в зону под дросселем. За счет такого расположения движение воздуха и смеси в канале прекращается при открытии дросселя моментально. В этот канал выводится на холостом ходу вся эмульсия, образовавшаяся в СХХ, однако для качественного равпыливания смешивание её с воздухом осуществляется в специальных распылителях, обеспечивающих при небольших расходах воздуха и эмульсии очень высокие скорости движения — на уровне скорости звука. За счет этого АСХХ обеспечивает качество распыливания, недостижимое для других систем холостого хода. В более качественных карбюраторах используются АСХХ с тройным, а иногда и четырёхкратным эмульгированием.

Распылители АСХХ строятся по различным схемам. Простейшая из них — СХХ карбюратора ДААЗ-2140. В нём поток воздуха проходит через небольшую горизонтальную щель, в которую сверху открывается ещё одна щель — из эмульсионного канала. Соотношение сечений обеспечивает скорости газов на уровне скорости звука. АСХХ «Каскад» имеет кольцевидный распылитель с радиально расположенными отверстиями, из которых в поток воздуха поступает эмульсия — такая система фактически копирует в миниатюре смесительную камеру. В центре распылителя имеется винт специального профиля, обеспечивающий регулировку количества смеси. В СХХ с сопловидными распылителями в центр канала, по которому движется эмульсия, подаётся из винта с каналом воздух, то есть такая система — как бы «Каскад» наоборот.

Для перекрытия подачи топлива на принудительном холостом ходу в СХХ включается экономайзер принудительного холостого хода (ЭПХХ), представляющий собою клапан, отключающий подачу топлива, и систему управления этим клапаном, либо электронную, либо электронно-пневматическую (Тюфяков). При переходе двигателя в режим ПХХ происходит подача управляющего сигнала на исполнительный клапан. На более современных двигателях, имеющих микропроцессорную систему управления, этот сигнал формируется этой системой (АЗЛК-21412). Клапан может быть расположен либо непосредственно в выходном отверстии АСХХ, и полностью перекрывать подачу смеси, либо иметь иглу, отсекающую подачу топлива через жиклер. Во втором случае возрастает инерционность системы, при выходе из режима ПХХ имеется короткий неустановившийся период, когда СХХ уже работает, а топливо по длинному каналу от жиклера ещё не поступило. Но такая система проще в построении и дешевле, менее подвержена неблагоприятным воздействиям в эксплуатации. Именно такая система ПХХ используется на ДААЗ-2108. Системы с клапаном в устье используются на ДААЗ-2107, −05 и 2140. Они обеспечивают практически мгновенную смену режимов, но сложнее, дороже и требовательнее в эксплуатации настолько, что многие владельцы автомобилей с такими системами их просто отключали.

Своеобразно построен ЭПХХ на К-90. Там каналы холостого хода обеих камер заканчиваются довольно большими полостями, в которых расположены тарелки электромагнитных клапанов, при подаче напряжения на которые происходит отключение подачи смеси, то есть, при выходе ЭПХХ из строя карбюратор продолжает работать в обычном режиме.

СХХ карбюраторов, установленных на двигателях, приводящих компрессоры кондиционеров, мощные генераторы и/или нагруженных АКПП, часто оснащаются управляемым упором дроссельной заслонки, который стабилизирует обороты холостого хода при включении сервисных устройств, приподнимая дроссель при подключении нагрузки от дополнительных агрегатов.

Переходная система вторичной камеры карбюратора с последовательным открытием дросселей, в основном, аналогична СХХ, но имеет важные отличия. Так как ГДС вторичной камеры сама по себе настраивается на получение относительно обогащенной мощностной смеси, ей не требуется столь глубокая степень компенсации, как в первичной камере. Поэтому переходная система, как правило, выполняется по схеме параллельной запитки топливом и её топливный жиклер сообщается непосредственно с поплавковой камерой, а не с эмульсионным колодцем ГДС. Таким образом, включение в работу и переходной системы, и ГДС вторичной камеры происходит параллельно, чем обеспечивается необходимая степень обогащения смеси.

Любой современный двигатель обеспечивает утилизацию горючих и чрезвычайно токсичных картерных газов. Система отсоса картерных газов, она же система вентиляции картера, состоит из двух ветвей — большой и малой. Большая ветвь представляет собою трубу, в которой имеется пламегаситель и маслоотделитель. Газы, прошедшие через них, поступают в воздушный фильтр инерционно-масляного типа до масляной ванны либо в картонный воздушный фильтр в непосредственной близости от горловины первичной камеры, смешиваются там с воздухом и подаются в цилиндры. На холостом ходу и переходном режиме разрежение над камерой достаточно невелико, поэтому параллельно большой ветви используется малая. Это трубка, соединяющая большую ветвь с задроссельным пространством; во многих карбюраторах она снабжается золотником, отсекающим сообщение задроссельного пространства с большой ветвью при открытии дросселя и предотвращающим, таким образом, подсасывание под дроссель воздуха параллельно смесительной камере.

  • Экономайзеры и эконостаты — дополнительные параллельные системы подачи топлива в смесительную камеру, обогащающие смесь при высоких уровнях вакуума, то есть при нагрузках, близких к максимальным, когда экономическая смесь не может обеспечить потребностей двигателя. Экономайзеры имеют принудительное управление, пневматическое или механическое. Эконостаты, по сути дела, просто трубки определённого сечения, иногда с эмульсионными каналами (ДААЗ), выведенные в пространство смесительной камеры выше диффузора, то есть в зону, где вакуум появляется при максимальных нагрузках, в отличие от ГДС. В некоторых старых конструкциях карбюраторов без эмульгирования топлива экономайзер имел жиклёр, параллельный главному топливному жиклёру ГДС, открываемый принудительно. В эмульсионных карбюраторах такая схема не используется ввиду нарушения характеристики пневмокомпенсации ГДС.

В относительно дешевых карбюраторах, в которых ГДС сама по себе обеспечивает относительно богатый состав смеси на большинстве режимов, экономайзеры и эконостаты не используются.

  • Система рециркуляции отработанных газов. Обеспечивает замещение части воздуха выхлопными газами на режимах торможения двигателем. Способствует снижению уровня окислов азота (NО) и оксида углерода (CO) в выхлопе. Применяется на небольшом количестве типов двигателей.
  • Насос-ускоритель. Необходим для подачи дополнительной порции топлива при резком открытии дросселя. Необходимость подачи дополнительного количества топлива определяется отнюдь не его «инерционностью» в каналах карбюратора при резком разгоне, как это обычно указывается в популярных изданиях, а нарушением в этот момент условий смесеобразования во впускной системе, в результате чего до цилиндров в первые моменты после начала резкого разгона доходит только часть поданного карбюратором топлива. Ускорительный насос компенсирует этот эффект и обеспечивает требуемый состав горючей смеси в цилиндрах в первый же момент после начала разгона. Бывают поршневые и диафрагменные, устанавливаемые на все карбюраторы с начала 70-х годов ХХ века. Поршневые ускорители имеют менее стабильные параметры и не позволяют изменять интенсивность впрыска в зависимости от угла поворота дросселя.

Карбюраторы, способные обеспечить поступление смеси оптимального состава на всех режимах, то есть карбюраторы с игольным регулированием состава и карбюраторы постоянного разрежения ускорителя не имеют — за ненадобностью.

  • Пусковое устройство. Представляет собой заслонку над смесительной камерой с системой управления ею. При её прикрытии существенно возрастает степень вакуума во всей смесительной камере, что приводит к резкому обогащению смеси, необходимому для холодного пуска. (Того же эффекта можно достичь, забывая вовремя менять картонный элемент в воздушном фильтре). Чтобы поток воздуха не перекрывался полностью, заслонка либо опирается на пружину и располагается эксцентрично, либо снабжается клапаном, обеспечивающим минимальное поступление воздуха. Для пуска и прогрева двигателя необходимо прикрыть воздушную заслонку и приоткрыть дроссельную. Воздушная заслонка может иметь механический, автоматический или полуавтоматический привод. В первом случае её закрывает водитель при помощи рукоятки, называемой манеткой.

Полуавтоматический привод воздушной заслонки распространён наиболее широко как простой и эффективный. Заслонка закрывается водителем вручную, а приоткрывается автоматически диафрагмой, работающей от возникающего при первых тактах впуска разрежения во впускном коллекторе. Это предотвращает переобогащение смеси и возможную остановку двигателя сразу после пуска. Такое пусковое устройство имеют все карбюраторы ДААЗа и К-151.

Автоматический привод широко применяется за границей, а в практике отечественного автопрома распространения не получил ввиду существенной сложности, относительно низкой надёжности и недолговечности при характерных для климата большей части территории СССР/России больших перепадах температур. В этом случае воздушную заслонку закрывает биметаллический или церезиновый термоэлемент, обогреваемый жидкостью из системы охлаждения или электрическим нагревателем. По мере прогрева двигателя термоэлемент нагревается, открывая воздушную заслонку. На отечественных автомобилях такое пусковое устройство имели только карбюраторы отдельных моделей ВАЗ (в основном, экспортных). В иных системах использовался пневматический (вакуумный), либо электромеханический привод с датчиком температуры.

Регулировки

Регулировка карбюратора обеспечивается на стадии проектирования и отработки экспериментальных образцов и обеспечивается, в основном, следующими конструктивными особенностями:

  • тип главной дозирующей системы (ГДС), способ её компенсации, способ запитывания СХХ и переходной системы/систем;
  • число, диаметр и расположение переходных отверстий;
  • сечения малого диффузора, главного топливного жиклёра ГДС, главного воздушного жиклёра ГДС, форма эмульсионной трубки/трубок;
  • соотношение геометрических параметров смесительных камер и характеристика открытия вторичной камеры;
  • объём впрыска насоса-ускорителя, направление его струи;
  • разрежение открытия пневматических экономайзеров или угол открытия механического экономайзера;
  • конкретное место расположения сопла эконостата;
  • уровень топлива в поплавковой камере — основополагающий параметр для правильной работы на холостом ходу и, что важнее, на переходном режиме. На работу в других режимах влияет намного меньше, чем принято считать. Задаётся конструктором так, чтобы при максимальном наклоне карбюратора в эксплуатации (езда в гору) топливо не вытекало из распылителей самостоятельно.

Доступные регулировки карбюратора в эксплуатации направлены на индивидуальную подгонку конкретного экземпляра карбюратора к конкретному двигателю и обеспечение его сезонной регулировки, а также на восстановление исходных технических параметров — уровня топлива, позиций заслонок, оборотов холостого хода. Последняя регулировка чрезвычайно важна, так как система холостого хода обеспечивает глубокую степень компенсации ГДС первичной камеры и, стало быть, задает её характеристику (а не только и не столько уровень холостых оборотов. Можно, слегка покрутив винты и изменив их позиции, прийти к тем же оборотам холостого хода и сделать карбюратор практически неработоспособным).

Органы регулировки СХХ первичной камеры:

  • Винт токсичности — в эмульсионных карбюраторах и эмульсионных СХХ с двойной подачей воздуха обеспечивает качество первичной эмульсии СХХ, чаще за счёт изменения количества первичного воздуха. Обеспечивает стабильность переходного режима и компенсацию ГДС. В карбюраторах ДААЗ (2101—2107) должен быть в норме отвёрнут от упора на ½ — ¼ оборота, на заводе зачеканивается заглушкой. На карбюраторах семейства «Солекс» роль винта токсичности играет упорный винт дроссельной заслонки вторичной камеры. После сборки карбюратора без стенда для регулировки расхода воздуха через закрытую заслонку должен быть отвернут на 2/3 — 3/4 оборота от начала подъёма заслонки.
  • Винт качества — обеспечивает качество вторичной эмульсии, непосредственно поступающей в цилиндры на режимах холостого хода и переходном, как правило за счёт изменения количества эмульсии. Наряду с винтом токсичности задаёт степень компенсации ГДС.
  • Винт количества — задаёт число оборотов холостого хода, выставляется при отрегулированном составе смеси, на параметры карбюратора в целом влияет несущественно. В АСХХ изменяет количество подаваемой смеси за счёт изменения сечение эмульсионного канала. При совмещенной СХХ, как в простейшем карбюраторе, изменяет позицию дроссельной заслонки первичной, иногда вторичной (системы со щелевым распылением) камеры, приоткрывая её.

Классификация

По наличию регулирования сечения распылителя

По способу регулирования сечения распылителя и, соответственно, разрежения у распылителя выделяют карбюраторы:

  • С постоянным разрежением — SU, Stromberg в Европе и Keihin, Mikuni в Японии — при наличии, фактически, единственной дозирующей системы обеспечивают не только все потребности двигателей на всех режимах, но способны выдавать смесь с содержанием паровой фракции топлива не менее 90-97 % — параметр, практически недостижимый для других топливных систем, считая и любые впрысковые. Обеспечивается максимально высоким уровнем вакуума у распылителя при любом расходе воздуха.
  • С постоянным сечением распылителя. К этому типу относятся ВСЕ серийно выпускаемые в СССР и России автомобильные карбюраторы. Для обеспечения некоторой гибкости строятся карбюраторы с последовательным открытием смесительных камер или дополнительного диффузора (К-22).
  • Промежуточное положение занимают горизонтальные карбюраторы с золотниковым дросселированием, часто применяемые на мотоциклах. В них количество подаваемой смеси регулируется вертикальным шибером/золотником, изменяющим проходное сечение диффузора. Одновременно специальная профилированная игла изменяет проходное сечение главного топливного жиклёра, что так же, как у карбюратора с постоянным разрежением, существенно упрощает конструкцию узла.

По направлению потока рабочей смеси

По направлению потока рабочей смеси карбюраторы делятся на горизонтальные и вертикальные. Вертикальный карбюратор, в котором поток смеси движется снизу вверх, называется карбюратором с восходящим потоком, сверху вниз — с нисходящим, или падающим потоком. При горизонтальном направлении потока — с горизонтальным потоком.

Наибольшее распространение в исторической перспективе получили карбюраторы с нисходящим и с горизонтальным потоком. Их основные преимущества состоят в лучшем наполнении цилиндров горючей смесью с существенно меньшими газодинамическими потерями по сравнению с карбюраторами с восходящим потоком, а также в доступности и удобстве обслуживания, так как расположен такой карбюратор на двигателе сверху или сбоку.

По количеству камер

По количеству смесительных камер различают однокамерные и многокамерные карбюраторы, последние могут иметь камеры с параллельным открытием — такие карбюраторы называются ещё спаренными или спараллеленными, например, ранние модификации К-126 и К-135, и с последовательным открытием камер, которые тоже могут быть спараллеленными, например, К-126П; четырёхкамерные К-85, Solex 4A1 имеют две спараллеленные секции по две последовательно открываемые камеры; 4А1, вдобавок, имеет вторичные камеры с диффузорами постоянного разрежения. Существовали также особые трёхкамерные карбюраторы, например, типа К-156 на «Волге» ГАЗ-3102 с форкамерно-факельным зажиганием. Третья камера, параллельная основной первичной, служила для приготовления обогащённой смеси, подающейся в форкамеру. Сдвоенные карбюраторы часто ставят на двигатели с цилиндрами, далеко отстоящими друг от друга. Тогда каждая половина карбюратора снабжает «свои» цилиндры — К-84 и К-88, К-126 и К-135.

На одном двигателе могут устанавливаться два и более карбюратора. В этом случае либо используется специальный впускной коллектор, рассчитанный на установку нескольких карбюраторов (при этом, в зависимости от конкретной конструкции, каждый из них может обслуживать как несколько цилиндров, так и все сразу), либо карбюраторы устанавливаются непосредственно на впускные окна головки блока и, соответственно, обслуживающие по одному цилиндру каждый. Так, на оппозитных и многорядных двигателях, в которых возможно расслаивание смеси в больших коллекторах с длинными каналами, вызывающими большие газодинамические потери, часто используются как минимум два карбюратора (оппозитные моторы Альфа-Ромео, мотоциклетные BMW, М-72, Днепр-МТ10). На спортивных автомобилях, а также на двигателях самолётов с большим числом цилиндров часто серийно устанавливались синхронизированные друг с другом карбюраторы по одному на каждый цилиндр. В последнем случае следует указать на огромную пропускную способность, скажем, 24-х карбюраторов, разбросанных буквально по всему двигателю. Достичь таких параметров с одним карбюратором с «ветвистым» коллектором с каналами сложной формы в принципе невозможно. Часто так же — с целью обеспечить минимальное сопротивление всасыванию — комплектуются спортивные двигатели.

По типу вентиляции поплавковой камеры

Различают карбюраторы балансированные и небалансированные. В последнем случае воздух поступает в поплавковую камеру не из полости воздушного фильтра, а непосредственно из атмосферы, что упрощает и удешевляет конструкцию, в то же время делая её чувствительной к состоянию воздушного фильтра — по мере его загрязнения смесь становится всё более богатой.

Распространение

В настоящее время на автомобилях инжекторные системы подачи топлива в большинстве случаев заменили карбюраторы. Это связано с преимуществом инжектора с точки зрения простоты в эксплуатации и снижения вредных выбросов в атмосферу — только система впрыска топлива с микрокомпьютерным управлением может в течение длительного времени (сотни тысяч километров пробега) сохранять выхлоп автомобиля в рамках современных экологических требований и обеспечивать более точное, по сравнению с карбюратором, дозирование топлива на всех режимах двигателя.

Между тем, карбюраторы всё ещё широко используются на мототехнике, экологические требования к которой обычно намного менее жёсткие, чем к автотранспорту. Так, даже многие современные спортивные мотоциклы продолжают оснащаться карбюраторами, причём ввиду смягчения лицензионных требований всё чаще — постоянного разрежения, так как они не уступают системам впрыска по многим экологическим параметрам, будучи на порядок проще и дешевле.

Кроме того, карбюраторы широко применяются на стационарных и генераторных двигателях, а также в бензоинструменте (газонокосилки, бензопилы и так далее).

Преимущества и недостатки

Главными достоинствами карбюратора являются высокая гомогенность смеси на выходе, а низкая стоимость, технологическая доступность при изготовлении, относительная простота в обслуживании и ремонте применительно к карбюраторам для массовых несложных двигателей. В отличии от инжекторных систем, требующих электрического питания, карбюратор работает исключительно за счет энергии потока всасываемого двигателем воздуха, что позволяет использовать карбюратор на двигателях, не оснащенных электрооборудованием (лодочные моторы, газонокосилки, бензопилы). Но в случае сложного двигателя или сложных режимов его работы (а все современные автомобильные бензиновые двигатели относятся именно к этой категории) карбюратор становится очень сложным узлом, элементы которого должны быть изготовлены с очень высокой точностью, а его настройка требует довольно высокого уровня подготовки технического персонала и сложных пневмогидравлических стендов. Например, на последних поколениях карбюраторов, применяемых на мощных автомобилях Audi и BMW было до 8 смесительных камер, каждая из которых оснащалась четырьмя индивидуальными дозирующими системами (главная, эконостат, холостого хода и переходных режимов) при этом разброс их параметров не должен превышать 5%. В то же время для целой армии относительно несложных двигателей для различных сервисных устройств карбюратор ещё долго останется незаменимым.

Относительным недостатком карбюратора, ставшим основной причиной его вытеснения как основы автомобильных систем питания, является невозможность обеспечить смесь индивидуального состава для каждой вспышки — инжекторные системы с распределенным впрыском действуют именно таким образом, обеспечивая наибольшую экологичность работы двигателя.

См. также

Регулировка и настройка карбюратора авто своими руками [проблемы в работе]

Расскажем о правильной регулировке карбюратора машины своими руками. Как правильно настроить и какие возникают проблемы при эксплуатации на практике.

Основная функция — смешивать топливо с воздухом и потом доставлять данную смесь в двигатель автомобиля, где смесь сгорает и давит на клапаны блока двигателя. Подробнее в статье «теория работы карбюратора».

Какие бывают проблемы

Протечка бензина

Если заметили, что бензин выходит от туда, откуда не должен выходить, то причина обычно кроется в неполадках с поплавковой камерой, поплавком или в излишне сильном давлении. Прежде всего, нужно проверить давление топлива, которое должно быть в пределах 4-7 PSI. Если давление в норме, то тогда проблема может быть в том, что поплавок тонет или есть проблемы с поплавковой камерой. В этом случае придется заменить поплавковую камеру.

Грязные свечи зажигания

Если на свечах зажигания появляется нагар с запахом, это означает, одно: излишняя подача топлива. Обычно излишняя подача топлива вызвана двумя причинами: неправильный уровень топлива и/или прогоревший клапан. Проблема с уровнем топлива может объясняться не отрегулированным поплавком, излишним давлением топлива или проблемами с поплавковой камерой. Если уровень топлива в норме, то тогда нужно проверить клапаны.

Нестабильная работа двигателя на холостом ходу

Допустим, установили работу двигателя на холостом ходу на 800 оборотов. Затем проехали на автомобиле и обороты на холостом ходу увеличились до 1500. Если дать газа на холостом ходу, то обороты вернутся на прежний уровень — 800. Обычно проблема не в самом карбюраторе, а в проводе между карбюратором и педалью акселератора.

Для точной диагностики проблемы нужно отсоединить провод от карбюратора и вручную подвигать дроссель на работающем двигателе. Если обороты упали до нужных пределов, то проблема в проводе, если нет, то проблема в карбюраторе. Для начала необходимо осмотреть карбюратор на предмет коррозии и загрязнения. При обнаружении загрязнений, нужно тщательно почистить карбюратор.

Как настроить своими руками

Прежде, чем начинать настройку карбюратора, необходимо разогреть двигатель. На холодном моторе настраивать его бесполезно. Помимо этого нужно снять с дроссельной заслонки тягу педали газа, отсоединить трубку вентиляции картера и проверить, что отсутствует вакуум в трубке регулятора опережения. Далее находите винты, регулирующие состав смеси, их еще называют винтами качества, и начинаете по одному закручивать по часовой стрелке, пока двигатель не начнет работать неустойчиво и жестко. Как только двигатель залихорадило, прекратите закручивать винт, так как это приведет к остановке двигателя. Вместо этого отверните винт на один оборот назад, пока двигатель не начнет работать плавно.

Это нужно проделать со всеми винтами качества, пока двигатель не будет звучать плавно, без хлопков. Также, не помешает сделать чистку карбюратора. Если что-то было непонятно, предлагаю ознакомиться с видео роликом, где показан самый простой способ самостоятельной настройки карбюратора.

Видео — самая простая настройка

Процесс приготовления горючей смеси и принцип работы карбюратора



из «Автомобильные краны »

Процесс приготовления горючей смеси называется карбюрацией-, прибор, в котором этот процесс осуществляется,— карбюратором. [c.68]
Простейший карбюратор (рис. 26) состоит из поплавковой камеры 2 с поплавком 1, запорной иглы 4, жиклера 6 с распылителем 13, диффузора 7, дроссельной 8 и воздушной 12 заслонок и смесительной камеры 9. [c.68]
Поплавковая камера 2, поплавок 1 и запорная игла 4 служат для поддержания постоянного уровня топлива в распылителе. Через отверстие 5 поплавковая камера сообщается с атмосферой. Жиклер 6, представляющий собой калиброванное отверстие в пробке или трубке, предназначен для дозирования топлива или воздуха. Диффузор —это участок патрубка карбюратора с постепенно увеличивающимся сечением. В центре диффузора установлен распылитель. Участок трубы карбюратора от узкой части диффузора (горловины) до оси дроссельной заслонки 8 называется смесительной камерой 9. [c.68]
Топливо из бака по топливопроводу 3 поступает в поплавковую камеру 2 и заполняет ее. Когда уровень топлива в поплавковой камере достигнет требуемого предела, поплавок 1 прижмет запорную иглу 4 к ее седлу и поступление топлива в поплавковую камеру прекратится. При понижении уровня поплавок опускается и игла вновь открывает доступ топлива в поплавковую камеру. [c.68]
В результате распыливания поверхность соприкосновения частиц топлива с воздухом увеличивается и топливо интенсивно испаряется. Для обеспечения более полного испарения топлива впускной трубопровод обычно подогревают отработавшими газами. [c.70]
Загрязнение воздухоочистителя 11 вызывает повышение разности давлений в поплавковой камере и диффузоре (увеличение разрежения в диффузоре и вследствие этого повышение расхода топлива через жиклер 6). Для устранения этого недостатка у многих карбюраторов поплавковая камера сообщается не с атмосферой, а с входным патрубком 10 карбюратора. Такая поплавковая камера называется балансированной или уравновепгенной, а карбюратор — балансированным. [c.70]
По направлению потока воздуха и рабочей смеси карбюраторы бывают с восходящим, падающим или горизонтальным потоками. На автомобильных двигателях наибольшее распространение получили карбюраторы с падающим потоком. Применение их улучшает смесеобразование и наполнение цилиндров горючей смесью. [c.70]
Для приготовления смеси требуемого состава на разных режимах работы двигателя в конструкцию простейшего карбюратора включены следующие дополнительные устройства система холостого хода, главное дозирующее устройство, пусковое устройство, экономайзер и ускорительный насос. [c.70]
Система холостого хода обеспечивает бесперебойную работу двигателя на холостом ходу. Во время работы двигателя на холостом ходу и с малыми нагрузками дроссельная заслонка почти полностью закрыта, поэтому разрежение и скорость воздушного потока в диффузоре настолько малы, что истечение топлива из распылителя главного жиклера недостаточно для образования смеси нужного состава. В то же время за дроссельной заслонкой создается большое разрежение. В этих условиях приготовление горючей смеси обеспечивается системой холостого хода. [c.70]
Главное дозирующее устройство поддерживает на широком диапазоне средних нагрузок постоянство наиболее экономичного обедненного состава смеси. В карбюраторах изучаемых двигателей применены два типа главных дозирующих устройств с изменением разрежения у топливного жиклера с дополнительным жиклером и с регулированием разрежения в диффузорах. [c.70]
Пусковое устройство предназначено для облегчения запуска двигателя и представляет собой воздушную заслонку, установленную во входном патрубке карбюратора. [c.70]
Для дополнительного обогащения смеси при резком открытии дроссельной заслонки предназначен ускорительный насос. Наибольшее распространение получил ускорительный насос с механическим приводом, в некоторых моделях карбюраторов он объединен с экономайзером. [c.72]
Для регулирования числа оборотов коленчатого вала двигателя применяют ограничитель максимального числа оборотов, так как работа двигателя с числом оборотов коленчатого вала свыше максимально допустимых приводит к перерасходу горючего и усиленному износу трущихся деталей. [c.72]
На двигателе ЗИЛ-130 карбюратор К-88 двухкамерный, балансированный с падающим потоком смеси. Он имеет две смесительные камеры, благодаря чему обеспечиваются лучшие, чем при однокамерных карбюраторах, условия смесеобразования и более равномерное распределение горючей смеси по цилиндрам двигателя. Каждая смесительная камера карбюратора снабжена самостоятельной главной дозирующей системой и системой холостого хода. Обе смесительные камеры работают параллельно на всех режимах. [c.72]
Входной патрубок с воздушной заслонкой, поплавковая камера, ускорительный насос, экономайзер с механическим приводом, экономайзер с пневматическим приводом и ограничитель числа оборотов коленчатого вала двигателя являются общими для обеих смесительных камер. [c.72]
Разъемный корпус карбюратора состоит из трех частей. Верхняя часть 1 (рис. 27) является крышкой поплавковой камеры и общим воздушным патрубком смесительных камер. Средняя часть 19 образует корпус поплавковой и обеих смесительных камер в ней находятся все жиклеры карбюратора, ведущие к ним топливные каналы, оба экономайзера и ускорительный насос. Нижняя часть 33 представляет собой корпус смесительных камер, в нем расположены выходные патрубки смесительных камер с дросселями, каналы и распыливающие отверстия системы холостого хода, а также воздушные каналы для присоединения экономайзера с пневматическим приводом, механизма ограничителя числа оборотов и регулятора опережения зажигания. [c.72]
Топливо в поплавковую камеру карбюратора поступает через сетчатый фильтр 3. Уровень топлива поддерживается игольчатым клапаном 2 и латунным поплавком 42, поддерживаемым пружиной 43. Поплавковая камера сообщена с воздушным патрубком балансировочным каналом 44. [c.72]
Пусковым устройством карбюратора служит воздушная заслонка 12 с пружинным клапаном 13, предохраняющим от пере-обогащения сгУеси при пуске двигателя. [c.73]
К системе холостого хода, отдельной для каждой смесиуель-ной камеры, относятся жиклер 5 холостого хода, имеющий сверху воздушное, а снизу топливные калиброванные отверстия, канал 31 и распыливающие отверстия 29 и 30, расположенные одно выше, а второе ниже края дросселя. Величина проходного сечения нижнего отверстия может изменяться поворотом регулировочного винта 28. Отверстие 29 имеет форму прямоугольной щели постоянного сечения. Топливо в систему холостого хода поступает от главного жиклера 34. [c.73]
В состав главной дозирующей системы входят главный топливный жиклер 34, жиклер 6 полной мощности, воздушный жиклер 7 и распылитель 9, представляющий собой кольцевую щель во внутреннем диффузоре. [c.73]

Вернуться к основной статье

Статья Секреты карбюратора. Мотоциклетный карбюратор Альфа (a)… на БАЗАМОТО

Альфа (a) и мощность

 

Большинство мотоциклистов знают, что для сгорания бензина в цилиндре двигателя нужно какое-то количество воздуха. И что смесь этого воздуха с бензином образуется в карбюраторе и бывает «нормальной», «богатой», «бедной». В то же время техника наших дней весьма надежна, и между мотоциклистом и карбюратором почти не бывает конфликтов. Многие ездят безмятежно, совершенно забыв о присутствии на мотоцикле такой «хитрой» вещи. А вот некоторым не везет. Капризы карбюратора заставляют их углубиться в теорию. Они-то уж усвоили, что для сгорания 1 кг бензина теоретически необходимо около 15 кг воздуха и что в действительности горючая смесь, поступающая в цилиндры двигателя, может, как назло, далеко не соответствовать этому идеальному случаю. То воздуха слишком мало, то вдруг много! На сколько? Попробуем и мы ответить на этот и ряд других вопросов, которые должны интересовать каждого, в особенности молодого мотоциклиста.

Прежде всего познакомимся с коэффициентом избытка воздуха а («альфа»). Это отношение количества воздуха, действительно поступившего в цилиндр, к теоретически необходимому для полного сгорания топлива. Смесь, у которой этот коэффициент равен единице, называют нормальной. Если же он меньше, то смесь богатая, а если больше — бедная. Но вот беда: оказывается, не всякая смесь бензина с воздухом воспламеняется от искры! Есть пределы. Им соответствуют наименьшее и наибольшее значения «альфы», при которых смесь еще способна воспламеняться. Для бензина при начальной температуре 0 градусов по Цельсию эти значения коэффициента избытка воздуха соответственно равны 0,53 и 1,23. Состав смеси, на которой работает двигатель при эксплуатации, лежит где-то в этих пределах, оказывая сильное влияние на его мощность, экономичность, температурный режим.

Люди молодые, как известно, любят быструю езду и стремятся поэтому в первую очередь «извлечь» наибольшую мощность из двигателя. Достигается она на обогащенных смесях, при коэффициенте избытка воздуха 0,8—0,9. Добившись желаемого — скорости, такой мотоциклист получает в придачу кучу, на первый взгляд, незримых, но на самом деле весьма и весьма ощутимых неприятностей. Неполноту сгорания смеси, плохую экономичность, ускоренное отложение нагара на деталях двигателя и в выпускной системе, а также ядовитое серо-голубое облако за спиной, насыщенное угарным газом, соединениями серы, окисью азота и т. п.

Между тем если отрегулировать карбюратор для получения обедненной смеси ( a = 1,1 —1,15), то сгорание станет более полным, экономичность наилучшей, к тому же уменьшатся дозы яда, выбрасываемого в атмосферу. Правда, несколько снизится мощность двигателя, но ведь дорожный мотоцикл большую часть времени используется с неполными нагрузками, а они требуют от мотора лишь части мощности, которую он способен развивать. Поэтому стоит отдать предпочтение обедненной смеси при повышенных значениях «альфы». Ясно, что для получения одной и той же мощности при коэффициенте избытка воздуха 1,15 придется дать больший «газ», чем при a =0,8. Но практически водители чувствуют эту разницу только при необходимости быстро увеличить скорость (обеднение смеси, снижая мощность, влияет и на динамику разгона).

Итак, если исходить из того, что для дорожного мотоцикла все же решающее значение имеет экономичность, сохранность двигателя, то при неполных нагрузках целесообразно обеднять смесь. Но об этом более подробно мы поговорим позже. А сейчас кратко об устройстве карбюратора.

НА ЛЮБОЙ «ВКУС»

Как же справляется карбюратор с приготовлением смесей разного соотношения?

Рассмотрим его схему, представленную на рис. 1. Главные части мотоциклетного карбюратора — поплавковая 7 и смесительная 1 камеры. Поплавковая камера (с поплавком 6, закрепленной на нем иглой 4 и седлом 3 иглы в крышке) служит для поддержания постоянного уровня топлива в магистралях карбюратора, без чего невозможна его правильная работа. В смесительной камере бензин смешивается с воздухом, распыляется и частично испаряется, прежде чем попасть в цилиндр.

 

 

Рис. 1. Схема мотоциклетного карбюратора:
1 — смесительная камера;
2 — дроссельным золотник;
3 — седло иглы;
4 — запорная игла поплавка;
5 — утопитель поплавка; в поплавок;
7 — поплавковая камера;
8 — соединительный канал;
9 — трубка распылителя;
10 — канал пневматического торможения топлива;
11 — сопло распылителя;
12 — дозирующая игла;
13 и 14 — каналы-распылители системы холостого хода;
15 — регулировочный винт качества смеси;
16 — воздушный канал холостого хода;
17 — жиклер холостого хода;
18 — главный топливный жиклер.

 

Под действием разрежения, создаваемого двигателем, воздух с большой скоростью проходит через карбюратор способствуя распылению топлива, выбрасываемого из сопла 11. На поверхности бензина в поплавковой камере давление равно атмосферному, а над распылителем оно понижено (тем больше, чем выше скорость потока воздуха — в точном соответствии с законами физики). Под действием этой разности давлений бензин поднимается до верхней кромки сопла 11 и впрыскивается в поток воздуха. Скорость воздушного потока в смесительной камере играет большую роль, поэтому геометрические ее размеры подбираются в соответствии с назначением двигателя. Как правило, карбюраторы дорожных мотоциклов обеспечивают парообразную смесь.

Наполнение цилиндров двигателя горючей смесью (и, следовательно, его мощность) регулируется перемещением дроссельного золотника 2. Если регулировка правильна, максимальная мощность должна получаться при полностью поднятом золотнике, холостой ход — при опущенном. В последнем случае под золотником остается лишь небольшая щелочка для прохода воздуха, поэтому скорость его в смесительной камере уменьшается настолько, что уже не может обеспечить хорошее распыление топлива и смешивание его с воздухом. Чтобы в таких условиях двигатель работал устойчиво, смесь приходится обогащать (величина «альфы» обычно 0,55—0,65). Этим компенсируют плохое распыление топлива (часть его неизбежно оседает в виде жидкой пленки на стенках впускного канала двигателя).

Наиболее темпераментные водители всегда чаще сталкиваются с разного рода большими и малыми неприятностями, в том числе с «провалом» мощности. Обычно это случается при резком подъеме дроссельного золотника. Почему? Топливо более инертно по сравнению с воздухом, проходящим через карбюратор. Не удивительно, что при быстром подъеме золотника оно не успевает в достаточном количестве поступить в распылитель, из-за чего смесь обедняется, и мощность двигателя падает. Следовательно, для получения хорошей приемистости карбюратор должен обеспечить приемлемый (более богатый) состав смеси в момент разгона.

Конечно, карбюратор мотоцикла много проще современного автомобильного с его хитроумными системами и приспособлениями. Однако он обеспечивает необходимое изменение состава смеси в зависимости от режима. Полностью ли? Давайте разберемся.

Вот мотоциклист дает полный «газ». При этом в главном воздушном канале карбюратора, над распылителем 11 создается значительное разрежение. Максимальную мощность обеспечит смесь, обогащенная до я =0,8—0,9. Это достигнуто подбором главного топливного жиклера 18.

Теперь посмотрим, что будет, если, скажем, мотоспортсмен на крутом спуске попытается развить еще большую скорость и оставит дроссельный золотник полностью поднятым. С увеличением скорости возрастут обороты двигателя, а при этом, как следует из соответствующих формул (щадя читателя, мы их здесь не приводим), топливо начинает

поступать быстрее воздуха. Иными словами, смесь переобогащается, ограничивая мощность двигателя. Во избежание этого в карбюраторе предусмотрено пневматическое торможение топлива. По каналу 10 в распылитель подается воздух, который, уменьшая разрежение над топливным жиклером 18, препятствует переобогащению смеси. Теперь уже рост разрежения над соплом 11 распылителя немедленно компенсируется увеличением притока воздуха по каналу 10. Ясно, что чем больше его сечение, тем больший приток воздуха он обеспечивает и сильнее обедняет смесь.

Сечение компенсационного канала не регулируется, а главная дозирующая система имеет только один регулировочный элемент — сменный главный жиклер 18. Когда это необходимо, устанавливают жиклер с большей или меньшей пропускной способностью.

Посмотрим, что происходит в карбюраторе, если мотоциклист никуда не торопится и едет с умеренной скоростью, на «среднем газе». Как нам уже известно, смесь при этом обедненная, а коэффициент избытка воздуха находится в пределах 1,1—1,15. Каким образом? Ведь с опусканием дроссельного золотника (почти до положения четверти полного хода) скорость воздуха над соплом распылителя растет и увеличивает разрежение. Смесь будет обогащаться.

Конструкторы учли это и ввели коническую дозирующую иглу, закрепив ее на дроссельном золотнике. При его перемещении игла изменяет проходное сечение трубки распылителя 11. Это механическая система торможения. Она тоже влияет на состав смеси, но (к сожалению) не обеспечивает наивыгоднейшего изменения подачи топлива. Чем ниже игла войдет в трубку распылителя (опускаясь вместе с дроссельным золотником), тем меньшая кольцевая щель останется между ней и стенками трубки, а значит, меньше топлива поступит к соплу распылителя.

Величина, на которую изменяется пропускная способность жиклера 18 при опускании дроссельного золотника, зависит от профиля дозирующей иглы. Он может быть чисто коническим или более сложным, состоящим из нескольких конусов, соединенных плавными переходами. Выбирают его таким образом, чтобы обеспечивалась работа на обедненных смесях при частичных нагрузках, а переход к полной нагрузке получался быстрым и плавным.

На передней части дроссельного золотника обычно делают скос. Иногда вместо него можно увидеть отверстие в передней стенке, обращенной к всасывающему патрубку. В карбюраторах же типа К-36 роль скоса играет обращенная навстречу потоку воздуха более короткая стенка П-образной заслонки. При опускании дроссельного золотника в пределах от 1/4 полного открытия до полного закрытия этот скос заметно отклоняет поток воздуха вниз. В результате разрежение над соплом 11 распылителя уменьшается, и смесь обедняется. При полностью закрытом дроссельном золотнике разрежения над соплом нет, и главная дозирующая система не действует.

 

Рис. 2. Схема работы системы холостого хода. Обозначения те же, что на рис. 1.

 

Чтобы двигатель и в таких условиях мог работать нормально, в конструкцию карбюратора ввели систему холостого хода (рис. 2). Она состоит из жиклера 17, воздушного канала 16 с регулировочным винтом 15 «качества» смеси, каналов-распылителей 13 и 14 и регулировочного винта «количества» смеси, расположенного обычно наклонно сбоку. Каналы 10 и 16 берут начало от всасывающей горловины (карбюраторы К-36, К-37 К-38, чехословацкие «Йиков» и др.). Когда дроссельный золотник полностью закрыт, разрежение за ним (над устьем канала 14, рис. 2) достигает максимума, а над каналом 13 оно почти отсутcвует. В это время через каналы 16 и 13 в систему холостого хода подается воздух, а через жиклер 17 — бензин. Образовавшаяся здесь бензино-воздушная эмульсия отсасывается через канал 14 в смесительную камеру. Там она смешивается с дополнительным количеством воздуха, поступающим через щель над дроссельным золотником. Величину этой щели устанавливают винтом «количества», представляющим собой регулируемый нижний упор дроссельного золотника. Винтом «качества» в большей части карбюраторов (К-28Б, К-28Г, К-37, К-38, «Йиков» и др.) регулируется подача воздуха в систему холостого хода. При ввертывании винта уменьшается подача воздуха в систему холостого хода, и смесь становится богаче. В карбюраторах же типа К-36 винт «качества» устанавливает количество бензино-воздуш ной эмульсии, поступающей в смесительную камеру, поэтому ввертывание его приводит к обеднению смеси.

Посмотрим теперь, что происходит в карбюраторе с переходом от холостого хода к нагрузке. При подъеме дроссельного золотника разрежение за ним становится меньше и проход эмульсии через канал 14 холостого хода сокращается. Зато над устьем канала 13 (расположенного ближе к распылителю главной дозирующей системы) разрежение увеличивается, и он вступает в действие при условиях, более близких к рабочим (нагрузочным).

Именно этот канал помогает главной дозирующей системе, когда дроссельный золотник опускается ниже 1/4 хода и центральный распылитель начинает выключаться вследствие уменьшения разрежения над ним. Таким образом обеспечивается плавный переход от режима холостого хода к нагрузочному режиму и обратно.

Некоторые карбюраторы маломощных двигателей имеют всего один канал холостого хода, а в более совершенных для обеспечения плавности переходного процесса число этих каналов бывает значительно больше: три, четыре или даже сплошная продольная щель.

1 — трос управления дроссельной заслонкой: 2 — трос управления топливным корректором; 3 — дроссельная заслонка: 4 — упорный винт заслонки; 5 — винт регулировки холостого хода; 6 — воздушный жиклер холостого хода; 7 — топливный жиклер холостого хода; 8—игла дроссельной заслонки; 9 — главный топливный жиклер: 10 — топливный жиклер корректора; 11 — запорная игла поплавка; 12 — игла топливного кор ректора: 13 — утолитель поплавка.

Художник А. Новоселов

 

Э. Коноп,
инженер

 

ПРОДОЛЖЕНИЕ

 

Пусковые устройства

Мы познакомились с составами смесей, нужных для работы двигателя, с устройством и работой некоторых систем мотоциклетного карбюратора. Продолжение разговора о конструкции этого важного прибора и рекомендации по его регулировке.

При пуске холодного двигателя смесь требуется сильно обогатить. Вспомните, когда в начале весны вы выкатываете с»ои машины, двигатель и карбюратор бывают белесыми от инея. Бензмн в них испаряется совсем не так, как летом на солнцепеке. Да и то, что испарилось, вновь конденсируется, едва соприкоснувшись с холодными стенками цилиндра. В таких условиях можно рассчитывать лишь на испарение самых легких фракций бензина, и, чтобы получить работоспособную смесь, фактически довольно бедную, приходится искусственно ее обогащать, то есть создавать избыток топлива в карбюраторе. Для этого он снабжен различными дополнительными устройствами — утолителем поплавка, воздушным или топливным корректором и другими. Как они работают?


При нажатии на (утопитель (рис. 1) поплавок опустится, игла 4 откроет доступ в поплавковую камеру дополнительному количеству бензина. Когда камера переполнится, бензин бгудет фонтанировать из сопла распылителя 11 под действием разности его уровней в баке и на срезе сопла. Это наиболее эффективная мера для обогащения смеси при пуске холодного двигателя. Если же двигатель хорошо прогрет, утолителем пользоваться не следует (особенно на тех мотоциклах, где нет декомпрессора). Иногда водитель пускается в путь, забыв открыть бензо-кран. Двигатель довольно быстро использует бензин, имеющийся в карбюраторе, и останавливается. В этом случае для его пуска достаточно открыть бензо-кран и выждать несколько секунд, пока заполнится поплавковая камера. На утопитель давить бессмысленно и вредно: ведь поплавок вначале и сам спокойно лежит на дне пустой камеры. По мере ее заполнения он занимает свое рабочее место, прекращая доступ бензина в тот самый момент, когда его уровень достигнет нормы. Если же нажимать на утопитель, уровень топлива в поплавковой камере легко может превысить норму. Поскольку в горячем двигателе бензин хорошо испаряется, смесь может оказаться настолько переобогащенной, что двигатель удастся пустить лишь с большим трудом. Особые хлопоты при этом ждут владельцев мотоциклов ИЖ Юпитер, Ява и других, не имеющих декомпрессора для быстрой продувки цилиндра.

Другое пусковое устройство — воздушный корректор. Это небольшая заслонка, которая может опускаться передо диффузором независимо от дроссельного золотника. При этом возрастает разрежение в смесительной камере и смесь обогащается. Такой корректор (он применяется, например, в карбюраторе К-28Б) увеличивает гидравлическое сопротивление в диффузоре, поэтому при работе двигателя с нагрузкой пользоваться им нельзя. В некоторых специальных карбюраторах установлен корректор, которым регулируют подачу воздухг по дополнительному каналу в смесительную камеру. Это устройство позволяет подобрать наилучший состав смеси при работе двигателя с нагрузкой, но к пусковым его, конечно, отнести нельзя.

Топливный корректор — это дополни тельный топливный канал с жиклером » конической иглой, управляемой отдель ным рычажком на руле. Корректор не влияет на сопротивление в диффузоре карбюратора, и им можно пользоватьо при работе с частичной и полной нагрузкой двигателя. Такая конструкция применяется в карбюраторе К-36.

Автомобильные карбюраторы обычно имеют устройства, обеспечивающие, если это необходимо, при общей экономичной регулировке карбюратора дополнительное обогащение смеси (например, при полной нагрузке двигателя, при резком разгоне и т. д.). Карбюраторы дорожных мотоциклов таких или подобных устройств (экономайзеров и ускорительных насосов), как правило, не имеют. Некоторые мотолюбители часто забывают, что простой мотоциклетный карбюратор не может обеспечить одновременно высокую экономичность и максимальную мощность. Прежде чем тронуться в путь, предстоит решить, какая из этих характеристик важнее, и соответственно отрегулировать карбюратор.

Поскольку мотоциклетный карбюратор ускорительного насоса не имеет, при резком открытии дроссельного золотника возможен кратковременный «провал» мощности из-за обеднения смеси. Есть способ его предупредить? Есть, но посмотрим, насколько он приемлем. Сделаем богаче смесь на том режиме, после которого происходит «провал» мощности. Довольно часто приходится, например, из-за этого значительно обогащать смесь на холостом ходу (прибегать к винту «качества»). Избыток бензина в момент, предшествующий открытию золотника, предотвратит чрезмерное обеднение смеси и связанный с этим «провал» мощности. Но это далеко не такая безобидная мера, как может показаться, особенно в городских условиях. Несмотря на то что регулировка винтом качества сказывается примерно до 1/в части полного хода дроссельного золотника, заметно увеличатся расход бензина и отложение нагара в выпускной системе и на деталях двигателя. Атмосфера у тысяч светофоров станет еще неприятнее. В погоне же за хорошей приемистостью при других положениях дроссельного золотника придется поднять дозирующую иглу центрального распылителя. Теперь уже получится обогащенная смесь на всех режимах работы двигателя, что очень сильно повысит расход бензина.

Некоторые карбюраторы имеют еще одно регулировочное звено: иглу поплавковой камеры в них можно тоже устанавливать в нескольких положениях. Чем выше она над поплавком, тем ниже уровень бензина в поплавковой камере и беднее смесь. Установка запорной иглы поплавковой камеры влияет на состав смеси при всех положениях дроссельного золотника. Одновременно следует помнить: если два поплавка одинаковых размеров имеют разный вес, то с более легким поплавком смесь будет беднее (легкий поплавок всплывет выше и перекроет доступ бензина в камеру при более низком уровне).

Одна из неприятных «болезней» карбюратора — негерметичность запорной иглы поплавковой камеры. Болезнь «старческая», появляющаяся обычно после довольно длительного срока службы, когда заметен износ конуса иглы и его седла в крышке поплавковой камеры. Иногда герметичность нарушается и в новом карбюраторе, например из-за попавшей между седлом и иглой соринки. В любом из этих случаев смесь может порой совершенно неожиданно и сильно переобогатиться, мощность двигателя

упадет, возникнут перебои. Иногда из-за этого после остановки горячий двигатель пускается с большим трудом, особенно, если на время остановки не был закрыт бензокран. Поэтому состояние запорной иглы и крышки поплавковой камеры должно быть безукоризненным.

Определенный, строго поддерживаемый уровень бензина в поплавковой камере — первое условие нормальной работы карбюратора. В связи с этим отметим следующее. Техника вождения мотоцикла-одиночки такова, что уровень бензина в трубке смесителя почти никогда не колеблется. Проезжая по косогору, водитель удерживает мотоцикл в вертикальной плоскости, а на вираж ах равнодействующая сил веса и центробежных сил пересекает, как известно, след колес, — таким образом, поверхность бензина в поплавковой камере остается всегда перпендикулярной к ее оси, а уровень бензина в смесителе постоянен. Иное дело — мотоцикл с боковым прицепом. Если поплавковая камера находится слева от смесительной, то при левом крене на косогоре (рис. 4) смесь станет беднее, так как бензин отходит от трубки смесителя; при правом крене — богаче. При плоских поворотах: налево — смесь богаче, направо — смесь беднее.

Рис. 4. Влияние крена на работу карбюратора.

 

Как регулировать карбюратор

Сначала нужно напомнить, что на правильную работу двигателя влияет не только карбюратор, но и ряд других систем. Прежде чем браться за него, стоит убедиться в исправности свечи и соответствии ее данному типу двигателя (по инструкции), проверить опережение зажигания, осмотреть воздухоочиститель, очистить от нагара выпускные окна цилиндра, поршень, головку цилиндра, глушитель… Прочитав это, ни один мотоциклист не придет в восторг, но тому, кто бережет собственные нервы, нужно хоть изредка проверять состояние машины.

Правда, есть люди, рассуждающие по-другому. Не надо делать ничего, пока мотор не начнет «барахлить». Тогда, в порядке развлечения, можно им заняться… Сразу же лезем в карбюратор. Подкрутим ему винты… Порядок! Теперь проверим зажигание. Неправильное? Устанавливаем. Но что это с карбюратором? Изменились обороты? Подрегулируем. Что-то не получается. Вспомнил! Когда в прошлом году заглянул в воздухоочиститель, там было грязно — посмотрим-ка на всякий случай еще раз! Да… придется очистить… Но что это снова с карбюратором? Смесь стала бедной? Ладно, сейчас еще раз подрегулируем!.. (И так далее, пока не надоест.)

Каждый двигатель нуждается, как говорят, в индивидуальном подходе. От глушителя, труб, выпускных окон, воздухоочистителя требуется одно — чистота. Их ведь нельзя регулировать. Опережение зажигания тоже устанавливается достаточно правильно на неработающем двигателе при помощи элементарных приспособлений. Желательно, разумеется, чтобы и механическое состояние двигателя было хорошим. Регулировка же карбюратора — самая тонкая операция. Возможна она только на прогретом до рабочей температуры двигателе. И в зависимости от сочетания всех свойств двигателя (его компрессии, степени наполнения цилиндров, опережения зажигания, мощности, искры в свече и т. д.) нужна та или иная регулировка, те или иные обороты холостого хода, величина жиклера, положение иглы и так далее. Грош цена регулировке холостого хода на непрогретом двигателе: при езде смесь начнет обогащаться из-за лучшего испарения бензина в горячем двигателе, и регулировку придется делать повторно.

Предположим, что у нас все в порядке, двигатель достаточно горяч и даже трос управления дроссельным золотником имеет свободный ход. Начинаем с того, что, пустив двигатель, устанавливаем винтом «количества» такие минимальные обороты, на которых он работает устойчиво. Затем, на работающем двигателе, поворачивая винт «качества», стараемся увеличить, насколько удастся, обороты. Обычно это происходит при обеднении смеси (так как с переходом от переобогащенной смеси к нормальной будет увеличиваться мощность двигателя). Отметим, что в карбюраторе К-36 для этого винт «качества» ввертывают, в отличие от других карбюраторов.

Если этим способом удается сильно поднять обороты, то их снижают до минимально устойчивых винтом «количества». Иногда после этого приходится вновь вернуться к винту «качества», так как даже небольшое перемещение дроссельного золотника около его нижнего положения существенно сказывается на составе смеси. Таким образом последовательно приходим к тому, что двигатель работает с небольшими оборотами на возможно менее богатой смеси.

Иногда, как мы знаем, происходит «провал» мощности при разгоне мотора с холостых оборотов. В этом случае придется смесь на холостых оборотах сделать немного богаче, но лишь настолько, чтобы ликвидировать «провал».

После регулировки холостого хода можно приступить к регулировке на средних нагрузках. Она сводится к перестановке дозирующей иглы относительно дроссельного золотника вверх или вниз. Поднятие иглы обогащает смесь в пределах примерно до 3/4 полного открытия дроссельного золотника. При этом становится лучше приемистость, но ухудшается экономичность.

Что же выбрать, например, перед дальним путешествием? Практика показала, что подъем иглы всего на одно деление на мотоцикле Ява 350 может увеличить расход бензина при скорости 75— 80 км/час на 1—1,5 л/100 км. Стоит ли такой ценой добиваться хорошей приемистости, если предстоит дальняя дорога, где час за часом нужно поддерживать ровный, спокойный темп езды?

Здесь есть одна «тонкость» — от подъема иглы больше проигрывает тот, кто едет не очень быстро. Любитель же больших скоростей почти ничего не теряет. Почему? Мы уже говорили о том, что средние скорости (и мощности) позволяют эксплуатировать машину на обедненных смесях, максимальные — требуют обогащения. Подъем иглы практически не влияет на состав смеси при полностью открытом дроссельном золотнике, сильнее же всего он влияет на него при частично открытом золотнике. Если, подняв иглу, продолжать ехать в умеренном темпе, выигрыш будет сомнительным. Резко увеличится расход бензина, приемистость — в меньшей степени. Да и нужна ли она в дальней дороге?

Конечно, на больших скоростях расход бензина всегда больше, тем более что пропускная способность главной дозирующей системы определяется ее жиклером, а на меньших скоростях она уменьшается — при помощи дозирующей иглы. Нужно помнить: на высоких скоростях повышенный расход бензина неизбежен, средние же скорости позволяют свести его к разумному минимуму. Поэтому подъем дозирующей иглы имеет смысл для того, кто уже заранее планирует ехать с высокими скоростями — на его путевых расходах это не отразится. Они ведь и так максимальные.

О главном жиклере

Нужный состав смеси при полностью открытом дроссельном золотнике определяется правильным подбором главного жиклера. Работники карбюраторного завода, конечно, выполнили эту работу достаточно точно. Все жиклеры обычно имеют маркировку, обозначающую их пропускную способность (более подробно об этом можно прочитать в № 9 «За рулем» за 1970 год).

Главный жиклер изготовлен по первому классу точности, поэтому, прежде чем брать в руки дрель и рассверливать его (если вдруг возникло такое желание), убедитесь в том, что у вас есть хоть один «нормальный» жиклер в запасе! Кажущееся небольшим увеличение диаметра часто приводит к непоправимому обогащению смеси, падению мощности и перерасходу бензина. На пропускной способности жиклера отражается также состояние его входного и выходного отверстий и их фасок, чистота обработки канала, поэтому обращаться с жиклером нужно очень осторожно, категорически запрещается чистить его твердыми металлическими предметами. В процессе эксплуатации главный жиклер практически не изнашивается, но в калиброванном отверстии могут откладываться смолы, выделяющиеся из бензина и масла, здесь же могут задерживаться соринки. Отложения смол хорошо смываются ацетоном, растворителями «647», «649», спиртом. Если мотоциклист не знает о том, что бензобак нужно основательно промывать хотя бы раз в три-четыре года, у него бывают неприятные приключения. Как правило, двигатель «любит» отказывать во время рискованных обгонов, когда на него вся надежда, на крутом подъеме по горной тропе, над обрывом или, что не менее волнующе, где-нибудь на перекрестке двух широких улиц в часы «пик». Часто это случается и ночью.

В процессе эксплуатации дорожного мотоцикла обычно не бывает нужды заменять главный жиклер. Но в отдельных случаях, например при подготовке форсированного двигателя, при установке карбюратора другого типа или воздухоочистителя, необходима иная производительность главного жиклера. В этих случаях надо подобрать его опытным путем.
Основным показателем правильности выбора является максимальная скорость мотоцикла. Кроме того, двигатель не должен давать перебоев и «захлебываться» при резком и полном открытии дроссельного золотника. Подбирая главный жиклер, всегда идут от богатой смеси к бедной (в противном случае легко можно повредить мотор). Слишком бедная смесь резко повышает температуру двигателя, что часто заканчивается заклиниванием поршня, приводит к прогоранию его днища или стенки у выпускного окна, где поршень больше всего соприкасается с горячими газами. Наилучший жиклер тот, при котором достигнута наибольшая скорость. Иногда для обеспечения лучшей смазки двухтактного двигателя останавливаются на жиклере, который дает даже немного большее (на 5—10 процентов) обогащение. Одновременно с проверкой скорости оценивают качество смеси по состоянию свечи зажигания непосредственно после работы двигателя на максимальной нагрузке и высоких оборотах. При правильном ее составе концы электродов свечи бархатистые, от темно-серого до светло-черного цвета, изолятор центрального электрода — коричневый. Если электроды и центральный изолятор черные, значит смесь богатая. Светлосерый или белый цвет электродов — свидетельство бедной смеси.

Требуемая пропускная способность жиклера зависит от типа воздухоочистителя и его чистоты. Чем меньше сопротивление, оказываемое им потоку воздуха, тем слабее разрежение над соплом распылителя и беднее смесь, и наоборот. Об этом не следует забывать при любых переделках. Некоторые воздухоочистители, особенно с микрофильтрующим бумажным элементом (как на «Яве»), очень чувствительны к скапливающейся в них пыли. На мотоцикле Ява, например, необходимо периодически заменять фильтр, иначе смесь, постоянно обогащаясь, начинает заметно снижать мощность двигателя.

В горах

Состав смеси, производимой карбюратором, зависит также от барометрического давления. Это хорошо известно каждому, кто ездил в горах,— с подъемом быстро падает мощность двигателя. Почему? Во-первых, из-за уменьшения плотности воздуха снижается весовой заряд свежей смеси в цилиндре; во-вторых, сама эта смесь становится чересчур богатой. По данным, приведенным в литературе, с подъемом на высоту смесь обогащается примерно на 6 процентов на каждую тысячу метров. Двигаясь вверх по горной дороге, нужно время от времени изменять регулировку карбюратора. Большая часть карбюраторов не имеет специальных высотных корректоров, позволяющих в должной мере обеднять смесь,— регулировке поддаются лишь режимы частичных нагрузок (опусканием дозирующей иглы) и холостого хода (винтом качества). Возможность замены главного жиклера мы не рассматриваем, так как почти для всех карбюраторов эта работа слишком трудоемкая. Таким образом, при полном открытии дроссельного золотника на больших высотах смесь будет переобогащенной — об этом нужно помнить, особенно когда из-за нехватки мощности то и дело хочется дать побольше «газа». Совершенно недопустима перегрузка двигателя на малых оборотах, так как попытка увеличить скорость открытием дроссельной заслонки приводит к еще большему падению мощности, перебоям в работе или даже остановке мотора. При пуске горячего двигателя нужно помнить, что смесь очень богатая, и во избежание серьезных неприятностей на это время лучше забыть о существовании утолителя. Не ищите лишних приключений, в горах их и так бывает достаточно.

Начало движения в условиях крутого подъема и недостатка мощности не менее сложный момент. Иногда нужно помочь мотору, подталкивая мотоцикл, и одновременно подобрать положение золотника, при котором мотор удовлетворительно тянет и не «захлебывается». В седло лучше сесть на ходу, не теряя скорости, которая и без того мала.

Не все горные дороги пролегают в поднебесье. Порой и на небольших высотах они требуют от мотоциклистов определенных навыков. Очень часто мотоциклетным «асам», приехавшим из равнинных районов, приходится здесь трудно. Просчет следует за просчетом. Частенько ошибаются в оценке крутизны подъема или спуска на перевальных участках, случается, не улавливают момент, когда подъем заканчивается и начинается спуск. Высокий темп движения и крутые закрытые повороты только усугубляют эти ошибки, причину которых, видимо, следует искать в отсутствии привычного «горизонта» перед глазами водителя. В горах его нет. Например, горный хребет гигантской стеной встающий впереди, иногда вызывает иллюзию более крутого спуска, чем он есть на самом деле. Более того, фактически в этот момент дорога может идти даже на подъем. Отсюда нелепые ошибки в выборе нужной передачи: когда двигатель запротестует и, перегруженный, начнет терять обороты, водитель спохватится и… машинально, по привычке, прибавит «газ»! Обычно сразу за этим начинаются перебои в работе, ибо при чрезмерно низких оборотах увеличение газа ничего не дает. Ведь если двигатель перегружен, но дроссельный золотник открыт частично, то скорость воздуха над распылителем еще может быть достаточна для нормального распыления бензина (воздух проходит через сравнительно узкую щель). Хотя мощность и невелика — это еще не «провал». А вот если вместо того, чтобы переключить передачу, пытаются увеличить тяговое усилие мотоцикла добавлением «газа», мощность быстро падает. То, что при этом происходит в карбюраторе, даже отдаленно не напоминает его нормальную работу. С одной стороны, уменьшившееся разрежение ухудшает условия работы распылителя и всей дозирующей системы, с другой — малая скорость воздуха ухудшает его смешивание с топливом, которое теперь попадает в двигатель в самом разнообразном виде — от паров до крупных капель. Какая фактически при этом в цилиндре смесь — богатая ли, бедная ли,— пусть читатель сам решит. Да и смесь ли это вообще?

Во избежание подобных головоломок рекомендуется своевременно переключать передачи, не допуская перегрузки двигателя. И карбюратор не подведет вас!

Э.Коноп,инженер

1972N03P19-21, 1972N04P14-16

Отвечают специалисты — журнал За рулем

КЛУБ АВТОЛЮБИТЕЛЕЙ

/ОТВЕЧАЮТ СПЕЦИАЛИСТЫ

На АвтоВАЗе:

СЕРГЕЙ ОСИПОВ — ИНЖЕНЕР ОТДЕЛА ТОПЛИВНОЙ АППАРАТУРЫ И ТОКСИЧНОСТИ

Подскажите, из-за чего на холостом ходу бывают нестабильны обороты двигателя с карбюратором ДААЗ 2107–1107010? Чем конструктивно такой карбюратор отличается от 2107-1107010-20?

Причин может быть несколько: «перелив» карбюратора из-за повышенного уровня топлива в поплавковой камере либо негерметичности игольчатого клапана; неправильная регулировка положения дроссельной заслонки первой камеры (заслонка приоткрыта). Отрегулируйте положение заслонки упорным винтом — так, чтобы на холостом ходу она была полностью закрыта. На карбюраторах типа «Озон» в таком режиме и воздух, и топливо подаются только через систему холостого хода. Бывают дефекты у электронного блока управления (БУЭМ).

Теперь об отличиях двух карбюраторов. Это две модификации одной модели. Отличаются они только принципом управления холостым ходом.

Карбюратор 2107–1107010 имеет ЭПХХ (экономайзер принудительного холостого хода). Вместо упорного винта-заглушки в нижней части карбюратора (в канале холостого хода) ввернут клапан, отсекающий топливовоздушную смесь в режиме принудительного холостого хода (торможение двигателем). У карбюратора 2107-1107010-20 нет ЭПХХ, он оборудован топливным жиклером холостого хода с электромагнитным запорным клапаном, отсекающим подачу топлива при выключенном зажигании.

На моем VAZ 2106 с карбюратором «Озон» не удается отрегулировать холостой ход, мотор работает крайне неустойчиво. На СТО мастер обнаружил, что в системе холостого хода вместо кольцевого распылителя с восьмью отверстиями установлено сплошное кольцо…

В 1998 году ДААЗ модернизировал систему холостого хода в карбюраторах типа «Озон» для «классики». Для упрощения производства кольцо с восьмью отверстиями заменено усеченным диффузором. В результате положение винта количества топливовоздушной смеси заметнее сказывается на регулировке холостого хода: вращать винт надо очень аккуратно (поворачивать на небольшой угол), но добиться устойчивой работы двигателя тем не менее можно.

При минусовой температуре мотор VAZ 21063 с карбюратором 2105-1107010-20 во время прогрева глохнет через три-четыре минуты после пуска. А через две минуты заводится и исправно работает. Уровень топлива в норме…

Дело, вероятнее всего, в телескопической тяге пускового устройства, которая заедает и приоткрывает воздушную заслонку меньше требуемой величины. Проверьте работу тяги и, если потребуется, устраните заедание, промыв тягу бензином. Распространенная ошибка — прибегнуть к смазке. Этого делать ни в коем случае нельзя — налипшая на смазку пыль тягу заклинивает.

Могут быть и другие причины, например, неправильно отрегулированные пусковые зазоры воздушной заслонки и дроссельной заслонки первой камеры или нарушение герметичности диафрагмы пускового устройства.

Двигатель VAZ 21043 в режиме холостого хода работал весьма неустойчиво, карбюратор не поддавался регулировке. Картина немного улучшалась лишь при обогащении смеси (СО до 2–4%).

Я просверлил отверстие диаметром 1 мм в дроссельной заслонке первой камеры возле выходного отверстия системы холостого хода. Также углубил на 1,5 мм посадочное место запорной иглы ЭПХХ и отключил его. Кроме того, пришлось отрегулировать положение подстроечного винта (закрытого заглушкой), который на заводе был завернут до упора. После такой доработки карбюратора двигатель работает ровно, содержание СО укладывается в норму с запасом.

Вы пошли по ошибочному пути. Не найдя и не устранив неисправность карбюратора, стали дорабатывать его так, чтобы он мог работать с имеющимся (кстати, легкоустранимым!) дефектом. Все было связано с неправильным положением подстроечного винта. Начинать следовало именно с него. И тогда бы не потребовалось тратить время на «доработку» карбюратора, в результате чего нарушена работа системы холостого хода. Теперь она перестала быть автономной, а значит, не избежать повышенного расхода топлива, особенно в условиях городской езды. Отказ же от системы ЭПХХ ведет к увеличению токсичности отработавших газов в режиме торможения двигателем.

На ОАО «АВТОДИЗЕЛЬ»

(Ярославский моторный завод)

ДМИТРИЙ БОЙКОВ — НАЧАЛЬНИК

БЮРО ГСМ

Какие моторные масла допустимо и рекомендовано применять в двигателях ЯМЗ?

Подобно многим производителям, Ярославский моторный завод имеет свою систему допусков: ЯМЗ-1-97 — для двигателей без наддува; ЯМЗ-2-97 — для двигателей с наддувом низкого давления; ЯМЗ-3-97 — для двигателей с наддувом высокого давления. Самые высокие из этих требований практически полностью вошли в стандарт Ассоциации автомобильных инженеров России ААИ 003–98. Моторное масло для двигателей ЯМЗ можно подобрать также по международной классификации API или руководствуясь таблицей масел, допущенных к применению. В двигателях, соответствующих требованиям Евро II (ЯМЗ-7511, 7601, 236БЕ2, 238БЕ2, 238ДЕ2), допускается применять масла выше группы Д по ГОСТ 17579.1–85 (см. табл.) или масла, соответствующие группам CF-4, CG-4 по классификации API. В последнем случае периодичность замены масла может быть несколько увеличена.

В двигателях с наддувом низкого давления ЯМЗ-236М2, 238М2, 238Д, 238П допускается использовать масла группы Д по ГОСТ 17479.1–85, однако предпочтительнее масла, рекомендованные для двигателей Евро II. В двигателях без наддува допустимы масла группы Г2 по российской классификации: М-8-Г2(и), М-8-Г2(у), М-8-Г2(а), М-10-Г2(к), М-10-Г2(у), М-10-Г2(ки), М-6з/12-Г. Но и в этих двигателях лучше применять масла выше группы Д. При этом периодичность смены можно увеличить в два раза.

Спросите механика: карбюратор и система впрыска топлива

Джеймс Данст, главный механик Bell Performance, сертифицированный ASE, обсудил механические проблемы вашего двигателя в этом гостевом блоге:

Вы когда-нибудь задумывались, почему свечи зажигания теперь служат более ста тысяч миль? Или почему прогоревшие клапаны редко можно увидеть в наши дни? Почему ваш двигатель теперь может работать более двухсот тысяч миль и более?

Ответ на вопросы заключается в разнице между олдскульными карбюраторами и электронным впрыском топлива с компьютерным управлением.

Карбюраторы

Карбюраторы дозируют топливо в двигатель с помощью физического явления, называемого вакуумным эффектом Вентури. Когда вы даете автомобилю больше газа, больше воздуха нагнетается через трубку Вентури (конструкция трубки, которая сужается, увеличивая скорость проходящего через нее воздуха) в карбюраторе. Это втягивает в двигатель дополнительное топливо.

По мере старения автомобиля могут возникать утечки вакуумного воздуха из многих вакуумных линий, используемых в моторном отсеке.Эти утечки вызывают всасывание дополнительного воздуха во впускной коллектор, изменяя топливно-воздушную смесь с правильной смеси топлива и воздуха на более обедненную смесь — слишком много воздуха, недостаточно топлива. Каждый раз, когда вы добавляете дополнительный воздух во впускную систему с тем же количеством топлива, что и раньше, это приводит к очень высокой температуре камеры сгорания — если хотите, к повышению температуры.

Теперь, за несколько лет до того, как промышленность перешла преимущественно на впрыск топлива, у них действительно были так называемые «карбюраторы с обратной связью», которые управлялись компьютером.У них была такая же возможность контролировать соотношение воздух/топливо, но они были не такими эффективными, как впрыск топлива. Но вообще говоря, у карбюраторов традиционно были проблемы, перечисленные выше.

Впрыск топлива

Электронные системы впрыска топлива с компьютерным управлением состоят из компьютера, кислородного датчика, набора топливных форсунок, регулятора давления топлива и электрического топливного насоса. Кислородный датчик (см. один из наших предыдущих блогов) считывает состав воздушно-топливной смеси в выхлопных газах и выдает показания напряжения.Имейте в виду, что богатая воздушно-топливная смесь (слишком много топлива, слишком много воздуха) имеет более низкую температуру сгорания, а обедненная воздушно-топливная смесь (мало топлива, слишком много воздуха) имеет более высокую температуру сгорания. Кислородный датчик имеет возможность генерировать напряжение от 0 до 1000 милливольт. Все, что выше 500 милливольт, — это богатая смесь, а все, что ниже 500 милливольт, — бедная смесь, тогда как 500 милливольт — это «в самый раз». Задача компьютера — поддерживать напряжение около 500 милливольт — показания, которые вы получаете, когда воздушно-топливная смесь равна идеальной смеси 14.Соотношение воздух/топливо 7 к 1. Это называется стехиометрическим соотношением, и это то, что необходимо каталитическому нейтрализатору для выполнения своей работы с максимальной эффективностью.

Что делает компьютер, чтобы поддерживать оптимальные соотношения? Компьютер делает это, увеличивая или сокращая время, в течение которого топливные форсунки остаются открытыми. Если компьютер увидит напряжение ниже 500 милливольт (помните, бедная смесь), он будет держать форсунку открытой дольше, чтобы обогатить воздушно-топливную смесь, чтобы вернуться к показаниям 500 милливольт.Если компьютер увидит значение напряжения выше 500 милливольт (помните, богатая смесь), он сократит время, в течение которого форсунки остаются открытыми, чтобы снова вернуться к 500 милливольтам.

Теперь, когда мы знаем эту информацию, можно объяснить вопросы, которые были представлены в начале этой статьи. Карбюраторы не имеют механической возможности корректировать бедную или богатую топливную смесь. Если в вакуумных линиях образуются утечки воздуха, в камере сгорания будет чрезмерный нагрев (слишком много воздуха нагревает ее).Это чрезмерное тепло может повредить или расплавить электроды свечей зажигания, прожечь клапаны и снять напряжение с поршневых колец, что приведет к избыточному расходу масла и сокращению срока службы двигателя. Если присутствует богатая смесь, возможно, из-за проблем с поплавком карбюратора или заедания воздушной заслонки, вы получите плохой расход топлива, плохие выбросы и нагар на свечах зажигания и поршнях. Это сократит срок службы свечи зажигания и повысит компрессию, в результате чего двигателю потребуется топливо с более высоким октановым числом, чтобы предотвратить проблемы с преждевременным зажиганием.

Современные двигатели служат дольше, потому что они имеют электронную систему впрыска топлива, которая просто корректирует соотношение воздух/топливо, поэтому у вас никогда не будет слишком богатой или обедненной смеси. Это основная причина, по которой свечи зажигания служат дольше, клапаны не прогорают, а поршневые кольца не теряют натяжение, что приводит к сокращению срока службы двигателя. Если проблема слишком серьезна для того, чтобы компьютер мог ее исправить, он включит контрольную лампочку двигателя, расположенную на приборной панели, что является ключом к тому, чтобы доставить автомобиль к механику для устранения проблемы.

Теперь ты знаешь!

Для получения дополнительной информации ознакомьтесь с этой дополнительной предыдущей статьей в блоге Bell, в которой объясняется роль этих деталей в достижении оптимального расхода топлива. Если у вас старый автомобиль, использование Mix-I-Go или Ethanol Defense может содержать основной кислородный датчик и клапан PCV в чистоте и в надлежащем рабочем состоянии. Как объяснил Джеймс Данст, это необходимо для продления срока службы двигателя и поддержания оптимального расхода топлива.

Если вы нашли этот пост о карбюраторе и впрыске топлива полезным, вас могут заинтересовать другие посты:

 

Это сообщение было опубликовано 18 декабря 2012 г. и обновлено 10 февраля 2016 г.

Что лучше? – ПОТОК ГОНКИ

Карбюраторы и топливные форсунки широко используются в автоспорте, причем первые использовались почти во всех автомобилях вплоть до 1980-х годов. Впрыск топлива принят всеми производителями автомобилей, но его все еще можно найти на старых автомобилях и даже на некоторых автомобилях NASCAR.

Впрыск топлива — безусловно, самый эффективный и действенный способ подачи топлива, но это не означает, что карбюраторы не имеют своих преимуществ.Хотя впрыск топлива обеспечивает более точное соотношение воздуха и топлива, они намного дороже, чем карбюраторы, и их сложнее починить.

Но на карту поставлено нечто большее, чем просто стоимость ремонта и экономия топлива. Карбюраторы и системы впрыска топлива имеют свои собственные списки преимуществ и недостатков, поэтому нам нужно рассмотреть каждую из них более подробно, чтобы выяснить, какая из них действительно выходит на первое место.

Краткий обзор карбюратора

Старый путь

Карбюраторы — это механические компоненты, используемые в большинстве старых автомобилей , а также в некоторых современных гоночных автомобилях и небольших мотоциклах .Они были самым популярным методом подачи топлива для двигателей внутреннего сгорания до 1980-х годов, и их часто называют просто углеводами. Они сделаны из металла и соединены с двигателем и топливным баком, который отделен от самого топливного бака.

Механизм карбюратора выглядит довольно сложным, но, по сути, это система клапанов и трубок, в которых используется физическое явление, называемое эффектом Вентури . По сути, внутри карбюратора есть сужение трубки, которое заставляет воздух ускоряться при прохождении через него.При нажатии на педаль газа через карбюратор проходит больше воздуха, что еще больше ускоряет его.

Разница атмосферного давления

По мере увеличения скорости воздуха снижается давление внутри карбюратора , который соединен с топливным баком. Давление в верхней части этого резервуара равно атмосферному, которое выше, чем в карбюраторе. Эта разница давлений заставляет топливо поступать в карбюратор , а затем в двигатель, где оно сгорает при ускорении автомобиля.

Когда педаль газа отпускается , поток воздуха уменьшается , что означает увеличение давления внутри карбюратора, и в свою очередь количество топлива поступающего в двигатель уменьшается . Это очень простое объяснение, но, по сути, карбюратор работает, используя давление воздуха, чтобы подавать больше топлива в двигатель, когда автомобилю требуется больше мощности при ускорении.

Электронный впрыск топлива

Электроника

Существует несколько различных типов впрыска топлива, как механических, так и электронных.Однако ради этой статьи мы будем ссылаться на электронный впрыск топлива (EFI). EFI — это альтернативный метод подачи топлива в двигатель, который работает с использованием системы электронных насосов, подключенных к топливному баку.

Насосы используются для подачи топлива к двигателю через топливопроводы, которые затем впрыскивают топливо в двигатель в различных точках в зависимости от типа используемой системы. Они делают это в электронном виде, используя несколько датчиков , которые используются для определения количества топлива, которое должно быть доставлено в двигатель в любое время.

Преимущества карбюраторов

Дешевое строительство и обслуживание

Карбюраторы имеют одно явное преимущество: низкая цена . Они состоят из относительно небольшого количества компонентов и могут дешево производиться серийно для автомобилей по всему миру. Отсутствие в них электронных компонентов означает, что они полностью зависят от перепадов давления воздуха , что делает их довольно простыми в сборке и обслуживании.

Это дает еще одно ключевое преимущество, заключающееся в том, что их можно не только легко и дешево приобрести, но и легко починить .Вам нужно только иметь некоторые базовые механические знания и несколько инструментов, чтобы иметь возможность починить карбюратор, но даже если вы не чувствуете себя готовым к вызову, вы можете отнести его в местный гараж, и это может стоить вам всего несколько сотен долларов. .

Тюнинг

Они также отделены от двигателя , что значительно упрощает работу, поскольку работа с двигателем и необходимость его разборки для доступа к карбюратору были бы чрезмерно сложными. Они также могут быть настроены , что означает, что они могут подходить для различных условий, высот и даже стилей вождения.

Недостатки карбюраторов

Факторы окружающей среды

За этими ключевыми преимуществами скрывается несколько больших недостатков. Карбюраторы дешевы и просты в ремонте, но тот факт, что они работают чисто механически, означает, что на них влияет несколько различных факторов, в отличие от других систем. Основным из них является давление воздуха , так как количество топлива, подаваемого в двигатель, зависит от разницы давлений в топливном баке.

Большая высота , например, если вы живете в горах, означает, что ваш карбюратор будет подавать в двигатель другое количество топлива, чем если бы вы жили на уровне моря.Хотя это можно настроить, карбюраторы не могут адаптироваться на лету, и поэтому со временем может потребоваться много настроек. Это колебание топливно-воздушной смеси означает, что двигатель не всегда может работать оптимально .

Не очень эффективно

Системы также просто не очень эффективны и являются уже довольно старой технологией. Они также часто предлагают немного задержки газа , что означает задержку отклика газа. Это представляет особый интерес для тех, у кого гоночных автомобилей , так как им нужно, чтобы реакция дроссельной заслонки была максимально быстрой в сложных гоночных ситуациях.

Преимущества впрыска топлива

Контроль воздушно-топливной смеси

Впрыск топлива работает электронно, а не механически. Это означает, что топливно-воздушная смесь , подаваемая в двигатель, не только зависит от разности давлений, но и может очень точно контролироваться различными электронными датчиками . Это обеспечивает гораздо более эффективную систему с контролем соотношения воздуха и топлива на гранулярном уровне.

Соотношение воздух-топливо сильно повлияет на производительность автомобиля и экономию топлива , поэтому возможность контролировать его, часто полностью автоматически, делает систему EFI очень полезной во всех типах транспортных средств, особенно в гонках . Это также может обеспечить более полное сгорание, что, по сути, означает, что топливо может быть сожжено более чистым способом, выделяя на меньше загрязняющих веществ .

Доступны различные опции

Доступно несколько различных типов систем EFI с прямыми, портовыми и непрямыми опциями.У них есть свои преимущества, но поскольку топливо впрыскивается непосредственно в двигатель в первом варианте, предлагается более стабильная подача топлива , что приводит к более эффективным двигателям. Портовое и непрямое топливо также имеют свои преимущества, а электронное распыление топлива также обеспечивает очищающий эффект .

Лучшая топливная экономичность также является большим бонусом, но EFI также может предложить немного большую мощность по сравнению с карбюраторными системами, а также более быструю реакцию дроссельной заслонки .Наконец, системы впрыска топлива обычно очень надежны и практически не требуют обслуживания. Они также редко ломаются , а системы впрыска топлива могут прослужить весь срок службы автомобиля без необходимости замены.

Недостатки впрыска топлива

Дорогой ремонт и замена

Первый основной недостаток впрыска топлива, когда они ломаются, они дорогие . Используемые в них электронные компоненты означают, что их нельзя просто закрепить на обочине дороги, как карбюратор, поскольку часто требуются специальные детали.Это увеличивает время их ремонта, а также цену, замена которой часто стоит тысяч долларов .

Несмотря на то, что система EFI вашего автомобиля будет настроена в соответствии с автомобилем, и на нее не будет влиять столько факторов окружающей среды, как на карбюраторы, все же не так много места для регулировки . Электронный блок управления (ЭБУ) автомобиля может быть настроен по-разному, но часто его сложно настроить без какой-либо дорогостоящей работы.

Итак, что лучше?

EFI — лучший

Электронный впрыск топлива, безусловно, является наиболее распространенным вариантом в современном мире, поскольку ни одна автомобильная компания не предпочитает производить новые автомобили с карбюраторами. Тем не менее, вы по-прежнему часто найдете углеводы на старых автомобилях и на некоторых мотоциклах меньшего размера, поскольку они помогают снизить затраты. Кроме того, в гонках NASCAR Xfinity и Truck по-прежнему можно использовать карбюраторные двигатели .

Но EFI — это просто более эффективный вариант .При более высоких затратах они могут продырявить ваш кошелек, если их нужно будет отремонтировать, но они рассчитаны на долгий срок службы. Более высокие затраты на ремонт компенсируются лучшей экономией топлива и более быстрой реакцией дроссельной заслонки . А благодаря более равномерному и полному сгоранию топлива в двигателе они также являются более чистым вариантом для окружающей среды .

Заключительные мысли

Как у карбюраторов, так и у систем впрыска топлива есть свои преимущества и недостатки.В то время как карбюраторы дешевле и проще в ремонте , системы впрыска топлива более эффективны и обеспечивают более стабильное сгорание . Хотя они более дорогие, их высокая надежность и экономия топлива делают их наиболее распространенными системами подачи топлива, используемыми сегодня.

Как ухаживать за карбюратором автомобиля

Автор: wp_orange, 16 декабря 2018 г.

Вы уже очень давно водите свою машину.Оно было с вами на протяжении многих жизненных опытов, и вы не готовы отказаться от него. Или у вас может быть классический автомобиль, который вы долгое время ремонтировали с отцом или друзьями, и теперь он на ходу. Эти старые и надежные автомобили, скорее всего, потребуют большего обслуживания, чем новые автомобили. Одна из частей, которую вы всегда должны иметь в виду при регулярном техническом обслуживании и плановых проверках, — это карбюратор . Эта часть вашего автомобиля играет ключевую роль в обеспечении плавной и безопасной езды.

Что такое карбюратор?

Чтобы ваш автомобиль работал, ему требуется определенная смесь воздуха и топлива. Эта смесь заставит вашу машину двигаться и будет держать ее в движении, как только она начнет двигаться. В конечном счете, комбинация воздуха и топлива — это то, что приводит в движение ваш автомобиль после того, как они сгорели вместе в металлических цилиндрах двигателя .

Фактическая смесь воздуха и топлива зависит от нескольких факторов, например, от того, насколько быстро вы едете, как долго машина работает, и некоторых других факторов.Устройство, которое используется для создания этой мощности, называется карбюратором. Он отвечает за создание идеальной смеси воздуха и топлива , чтобы ваш автомобиль двигался. Не все автомобили имеют карбюраторы, поскольку они были сняты с производства с тех пор, как была изобретена топливная форсунка . Карбюратор теперь в основном встречается только в старых автомобилях.

Очистка карбюратора

Одним из способов обслуживания карбюратора является поддержание его в чистоте. Из-за того, что через него постоянно проходит воздух и топливо, в карбюраторе могут застрять любые оставшиеся примеси от топлива.Если внутри карбюратора накапливаются загрязнения или грязь, он не будет работать должным образом. Частицы, которые не должны находиться в карбюраторе, будут разбалансированы в воздушно-топливной смеси и в конечном итоге могут привести к неравномерной работе вашего автомобиля. Если вы не будете регулярно чистить карбюратор, ваш автомобиль даст вам знать, что он грязный, потому что он будет кашлять, иметь неприятные последствия или иметь низкую мощность при ускорении.

Существует специальных инструментов , которые вам потребуются для качественной очистки карбюратора.Вам понадобится крестообразная или плоская отвертка, прозрачный гибкий шланг, длинногубцы, инструмент и раствор для чистки карбюратора, а также сжатый воздух. Вам нужно будет полностью снять карбюратор с двигателя , чтобы провести его надлежащую очистку. В связи с тем, что каждый карбюратор уникален, руководство по эксплуатации автомобиля поможет вам узнать, как безопасно его снять. Затем вам нужно хорошенько почистить карбюратор.Войдите во все отверстия, через которые должны беспрепятственно проходить воздух и топливо. Чтобы убедиться, что вы успешно очистили карбюратор, продувка сжатым воздухом покажет, что дыхательные пути не заблокированы.

Обслуживание карбюратора

Если вы ездите на старой машине, но чувствуете, что не так уж и практичны, вполне нормально доверить машину профессионалу. Это на самом деле рекомендуется, потому что это уменьшит вероятность того, что карбюратор или любые другие детали будут повреждены при попытке снять деталь для очистки.

Orange Motors удобно доступен из районов Anaheim Hills , Yorba Linda , Irving и Fullerton, CA , и это команда, на которую вы можете положиться. Если вы столкнулись с обратным эффектом и низким энергопотреблением при ускорении, идеальным вариантом будет доставить ваш автомобиль к одному из наших сертифицированных техников . Мы проведем тщательный осмотр и диагностику вашего автомобиля и определим, требует ли карбюратор просто хорошей чистки или нуждается в ремонте или замене.Как только будет определена правильная проблема, мы обсудим с вами ваши варианты и объясним наши качественные услуги по доступным ценам . Таким образом, вы знаете, что получаете лучший сервис, не тратя на это руки и ноги. Вы и ваш автомобиль будете в безопасности в кратчайшие сроки после того, как о вас позаботится наша команда.

Есть ли в современных автомобилях карбюраторы? – М.В.Организинг

Есть ли в современных автомобилях карбюраторы?

Все серийные автомобили сегодня используют компьютеризированные системы впрыска топлива для подачи топлива и воздуха в камеру сгорания двигателя.После этого нужно дать двигателю прогреться. В противном случае он просто не будет работать правильно. Карбюраторы на автомобилях работали так же.

Когда Honda перестала использовать карбюратор?

1990

Гоночные автомобили все еще используют карбюраторы?

Начиная с сезона NASCAR Sprint Cup Series 2012, карбюраторы были официально заменены на впрыск топлива, что сделало эту технологию законной после 55 лет «запрещения». Первой гонкой в ​​истории NASCAR Sprint Cup Series, в которой использовался впрыск топлива, стала гонка 2012 года на традиционно дружественном к карбюратору …

Чем заменили карбюраторы в автомобилях?

системы впрыска топлива корпуса дроссельной заслонки

Какая карбюраторная машина была последней?

Поскольку карбюраторы существуют так долго, они были очень дешевыми в производстве и легко устанавливались на дешевые автомобили.Последним автомобилем с карбюратором был пикап Isuzu 1994 года выпуска; он перешел на впрыск топлива в 1995 году.

Надежны ли карбюраторные двигатели?

Опять же, поскольку впрыск топлива и современное электронное управление более точны, подачу топлива можно настроить в соответствии с потребностями водителя. Карбюраторы точны, но не точны, поскольку они не могут учитывать изменения температуры воздуха или топлива или атмосферного давления.

Что дает больший пробег карбюратор или инжектор?

Карбюраторный вариант вернул 48.54кмпл и 55.02кмпл по городу и трассе соответственно. Помимо этого, автомобили с впрыском топлива производят гораздо меньше выбросов углерода по сравнению с автомобилями с карбюраторами.

Сколько стоит перейти с карбюратора на инжектор?

Обычно замена регулятора давления впрыска топлива стоит от 40 до 200 долларов в зависимости от модели автомобиля. Установка его в профессиональном гараже будет стоить около 50-100 долларов.

Увеличивает ли впрыск топлива мощность?

Во-первых, установка топливных форсунок большего размера НЕ ПРИВЕДЕТ ДОПОЛНИТЕЛЬНУЮ МОЩНОСТЬ! Существует распространенное заблуждение, что чем больше топливная форсунка, тем большую мощность она создает.Топливные форсунки не создают мощность, они ее поддерживают. Чем больше скорость потока, тем больше лошадиных сил они могут поддерживать.

Какие бывают 3 типа карбюраторов?

Существует три основных типа карбюраторов в зависимости от направления потока воздуха.

  • Типы карбюраторов.
  • Карбюратор постоянной воздушной заслонки:
  • Карбюратор постоянного вакуума:
  • Несколько карбюраторов Вентури:

Что означает SU carb?

Союз скиннеров

Какая марка карбюратора лучше?

Лучший карбюратор (обзор) 2020 — лучшие варианты и полное руководство

  • Карбюратор Edelbrock 1406 Performer 600 CFM – оптимально подходит для Chevy 327.
  • Карбюратор Holley 0-7448 — оптимально подходит для Chevy 350.
  • КАРБЮРАТОР Caltric – оптимально подходит для внедорожных и спортивных автомобилей.
  • Двухцилиндровый карбюратор Waverspeed — оптимально подходит для Ford 302.

В чем разница между инжекторным и карбюраторным двигателем?

В отличие от карбюраторов, система впрыска топлива состоит из сложного набора электроники и датчиков. В карбюраторных системах топливо подается из бака, тогда как в системе с впрыском топлива это зависит от топливного насоса, установленного внутри бака для точного контроля над потоком топлива.

Есть ли у карбюраторных двигателей свечи зажигания?

Карбюраторные двигатели Дроссель регулирует, сколько воздуха поступает в двигатель, а смесь регулирует, сколько топлива смешивается с воздухом. Затем эта топливно-воздушная смесь поступает через систему впуска в цилиндры двигателя, где воспламеняется свечами зажигания для выработки мощности.

Звук карбюраторных двигателей отличается?

Нет, это не связано с впрыском топлива. Изменение звука связано с синхронизацией клапанов и, в меньшей степени, с рабочим объемом.Частью того, что заставило эти двигатели звучать так, было глупое количество перекрытий клапанов и продолжительность открытия клапана на холостом ходу и на низких оборотах.

Карбюратор или система впрыска топлива для вашего классического автомобиля

Какой вариант лучше всего подходит для моего классического автомобиля?

Обе системы имеют свои преимущества и недостатки. EFI (электронный впрыск топлива) может дать на 15-20% лучшую экономию топлива и увеличить мощность, но в то же время он сложен, и одним из лучших качеств старых автомобилей является их простота.Кроме того, комплекты для впрыска топлива дороги и обычно требуют дополнительных деталей, которые не могут быть включены из-за разнообразия комбинаций автомобилей и двигателей, которые они могут установить.

С карбюратором довольно просто работать, но он, вероятно, потребует регулярного внимания. Кроме того, все в карбюраторной системе дешевле, включая сам карбюратор. Не раз я заменял карбюратор, а не восстанавливал его… Это напомнило мне, что у меня в магазине есть пара карбюраторов, которые нужно восстановить.

Итак, если вы решили, что вам нужен впрыск топлива, пришло время решить, какой комплект лучше всего подходит для вашей сборки, и хотите ли вы взяться за эту работу самостоятельно.

За прошедшие годы я установил несколько таких комплектов, и они не для среднего мастера. Если вы не будете следовать инструкциям к письму, у вас будут проблемы. Одна из наиболее частых проблем, на которые я слышал, как люди жалуются, — это электрические помехи, которые вызывают ошибки компьютера, а это не та проблема, с которой вы должны иметь дело на старой машине.В некоторых случаях эти ошибки будут препятствовать запуску вашего автомобиля. Поэтому следует уделять особое внимание любым предупреждениям в указаниях по прокладке жгута проводов.

Для установки потребуется давление топлива 50-60 фунтов на квадратный дюйм, как я упоминал ранее. Для этого вам понадобится правильный топливный насос. Есть внешние насосы, которые вы можете использовать, но насос в баке будет самым надежным. Однако для насоса в баке потребуется либо новый топливный бак, либо модификация существующего бака. Большинству систем также требуется обратная топливная линия, которая помогает регулировать давление, отправляя неиспользованное топливо обратно в бак.Датчик кислорода требуется, чтобы ECM мог контролировать фактическое сжигание топлива и соответствующим образом регулировать, слишком много или слишком мало кислорода указывает на слишком мало или слишком много топлива.

Вам нужно будет установить заглушку датчика O2 в выхлопную трубу, большинство комплектов включают зажим на заглушке, но на самом деле лучший способ — это сварка в стиле. Хомуты со временем ослабевают, и наружный воздух может втягиваться и сбивать показания датчика.

Дальше многое зависит от типа приобретаемого набора. Наиболее распространенным типом является модифицированный комплект для впрыска корпуса дроссельной заслонки, такой как Holley Sniper 550-511 EFI 4150, который похож на карбюратор и болты на впуске, как на карбюратор.Многие люди предпочитают этот стиль, потому что он выглядит несколько традиционно (в большинстве случаев вы даже можете использовать свой оригинальный воздушный фильтр) и дешевле. Другой тип — это многоточечный впрыск, например Edelbrock 35883 Pro-Flo 4 XT, в котором весь впускной коллектор заменяется современным впускным коллектором. Многопортовый имеет форсунку для каждого цилиндра, тогда как корпус дроссельной заслонки имеет меньшее количество форсунок (обычно 2-4) на корпусе дроссельной заслонки. Многопортовый является наиболее эффективным, но требует большего количества деталей и более сложного программного обеспечения, а в некоторых случаях может потребоваться другая система зажигания, которая работает с ним, поэтому эти комплекты стоят дороже.

Сегодня на рынке так много вариантов, поэтому важно провести собственное исследование, и, по моему опыту, вы получаете то, за что платите. Если это намного дешевле, чем другие наборы, всегда есть причина. Обязательно читайте отзывы и ищите распространенные проблемы. В большинстве торговых точек есть техническая поддержка, поэтому вы можете задавать вопросы до и после покупки. У Summit Racing есть удобный инструмент на своем веб-сайте, где вы можете задать вопрос о предмете и получить ответы от их технической команды и других клиентов, которые использовали детали.Я обнаружил, что это очень полезно. И, конечно же, вы всегда можете зайти в наше собственное сообщество Car Talk и задать там вопрос.

Интересная информация о карбюраторах

Информация о плохом состоянии бензина: нажмите здесь   Историческая информация о карбюраторах Rochester Quadrajet: статья Hemmings 2007 года нажмите здесь Где находится OEM-номер карбюратора: нажмите здесь

Карбюратор выполняет несколько функций: 1) смешивает бензин и воздух, образуя легковоспламеняющуюся смесь, 2) регулирует соотношение воздуха и топлива, 3) регулирует частоту вращения двигателя.

Как карбюратор смешивает топливо и воздух

Когда поршень движется вниз по цилиндру на такте впуска, он всасывает воздух из цилиндра и впускного коллектора. Создается вакуум, засасывающий воздух из карбюратора. Поток воздуха через карбюратор заставляет топливо поступать из карбюратора через впускной коллектор мимо впускных клапанов в цилиндр. Количество топлива, смешиваемого с воздухом для получения требуемого соотношения воздух-топливо, регулируется дросселем Вентури или дросселем.Когда воздух проходит через трубку Вентури, его скорость увеличивается, а давление падает. Это приводит к тому, что топливо всасывается в воздушный поток из отверстия или жиклера. Когда двигатель работает на холостом ходу или при быстром ускорении, через трубку Вентури проходит недостаточно воздуха для подачи топлива. Для преодоления этих проблем используются другие системы.

Подача бензина в карбюратор

Бензин подается в карбюратор топливным насосом и хранится в топливном баке. Для поддержания постоянного уровня топлива в баке при любых условиях используется поплавковая система.Поплавковый игольчатый клапан и седло на входе топлива используются для контроля уровня топлива в баке. Если уровень топлива падает ниже определенного уровня, поплавок опускается и открывает клапан, пропуская больше топлива. Когда поплавок поднимается, он прижимает иглу к седлу и перекрывает подачу топлива в бак.

 

Управление скоростью двигателя

Дроссельная заслонка регулирует скорость двигателя, контролируя количество воздуха, подаваемого в двигатель.Дроссель представляет собой дроссельную заслонку, расположенную после трубки Вентури и открывающуюся нажатием на педаль газа. Чем дальше открыт клапан, тем больше воздушно-топливной смеси попадает в двигатель и тем быстрее работает двигатель. При низких оборотах двигателя, когда дроссельная заслонка открыта лишь немного, потока воздуха недостаточно для всасывания топлива.

Для решения этой проблемы используются две схемы. Один контур расположен в зоне низкого давления, а контур холостого хода расположен ниже. При низких оборотах двигателя оба контура потребляют топливо, чтобы поддерживать работу двигателя.По мере увеличения оборотов двигателя подача топлива из 2 контуров уменьшается до полной остановки.

Работа на низких скоростях

Когда двигатель работает на холостом ходу, через трубку Вентури проходит очень мало воздуха, поскольку дроссельная заслонка закрыта. Схема холостого хода позволяет двигателю работать в этих условиях. Топливо подается через контур холостого хода из-за перепада давления между воздухом в топливной камере и вакуумом под дроссельной заслонкой. Топливная смесь на холостом ходу регулируется регулируемым игольчатым клапаном.

Работа на высоких скоростях

При более высоких оборотах двигателя из главного жиклера поступает больше топлива. Топливо поступает из топливного бака через усилитель(и) в горловину карбюратора, где смешивается с воздухом.

Типы карбюраторов

В настоящее время используются 3 основных типа карбюраторов. Это одноствольные, двухствольные и четырехствольные. Как правило, тип двигателя и его использование определяют, какой карбюратор используется. В высокопроизводительных двигателях можно использовать несколько карбюраторов для подачи необходимого количества топлива.Независимо от того, какой тип карбюратора используется в вашем двигателе, National Carburetors — ваш поставщик высококачественных карбюраторов.

Типы карбюраторов

Существует три основных типа карбюраторов в зависимости от направления потока воздуха.

Типы карбюраторов

 

Существует три основных типа карбюраторов в зависимости от направления потока воздуха. Первый — это тип с восходящей тягой, показанный на рис.8(а), в котором воздух входит снизу и выходит вверху, так что направление его потока вверх. Недостатком карбюратора с верхней тягой является то, что он должен поднимать распыляемую каплю топлива за счет трения о воздух. Следовательно, он должен быть рассчитан на относительно небольшую смесительную трубу и горловину, чтобы даже при низких оборотах двигателя скорость воздуха была достаточной для подъема и переноса частиц топлива. В противном случае капли топлива имеют тенденцию отделяться, обеспечивая двигатель только обедненной смесью. С другой стороны, смесительная трубка конечна и мала, поэтому она не может подавать смесь в двигатель с достаточно высокой скоростью на высоких скоростях.


Для преодоления этого недостатка используется карбюратор с нисходящим потоком [Рис.8 (b)]. Он расположен на уровне выше впускного коллектора, и в нем воздух и смесь обычно направляются вниз. Здесь топливо не должно подниматься за счет трения воздуха, как в карбюраторах с восходящей тягой, а должно поступать в цилиндры под действием силы тяжести, даже если скорость воздуха низкая. Следовательно, смесительная трубка и горловина могут быть сделаны большими, что делает возможными высокие обороты двигателя и высокую удельную производительность.

 

Карбюратор с постоянной воздушной заслонкой:

 

В карбюраторе с постоянной воздушной заслонкой площади воздушных и топливных потоков всегда поддерживаются постоянными. Но перепад давления или разрежение, которое вызывает поток топлива и воздуха, изменяется в соответствии с требованиями двигателя. К этому классу относятся карбюраторы «Солекс» и «Зенит».

 

Карбюратор постоянного вакуума:

 

поддерживается всегда одинаковым.С.У. и карбюраторы Carter относятся к классу тиллов.

Карбюратор с несколькими трубками Вентури:

 

В системе с несколькими трубками Вентури используются двойные или тройные трубки Вентури. Трубка Вентури наддува расположена концентрически внутри главной трубки Вентури.

Добавить комментарий

Ваш адрес email не будет опубликован.