Как работает бензиновый двигатель: Бензиновые двигатели: виды, принцип работы, преимущества бензиновых двигателей

Содержание

Бензиновые двигатели: виды, принцип работы, преимущества бензиновых двигателей

Бензиновые двигательные агрегаты представляют собой особую разновидность двигателей внутреннего сгорания. В них изначально сжатая топливовоздушная смесь поджигается электроискрой, что приводит к ее воспламенению и расширению.

Практически все крупные автопроизводители (и модели, представленные в ГК Favorit Motors — не исключение) сегодня оснащают часть моделей (или комплектаций одной модели) именно двигателями, работающим на бензине класса А-92 или А-95.

Двигательная установка, потребляющая бензиновое топливо, состоит из следующих компонентов:

  • искровые свечи зажигания;
  • цилиндры;
  • клапаны;
  • поршень;
  • шатун;
  • коленвал.

Основным узлом бензинового двигателя является блок цилиндров с поршнями.

Количество цилиндров зависит от модификации двигателя, их может быть четыре, шесть, восемь и более. Поршень, находящийся в каждом цилиндре, через шатун присоединяется к коленчатому валу. Сверху блок цилиндров закрыт головкой, в ней расположены впускные и выпускные клапаны – по паре на каждый цилиндр. Через них осуществляется подача топливовоздушной смеси и отвод отработанных газов.

Искровая свеча зажигания отвечает за воспламенение горючей смеси. При сгорании газы расширяются и приводят поршень вместе с головкой шатуна в поступательное движение «вверх-вниз». А головка шатуна, прикрепленная к коленвалу, осуществляет при этом вращательные движения по часовой стрелке.

Коленвал проворачивается на 360 градусов за два хода поршня в цилиндре (вверх и вниз). К коленвалу жестко крепится маховик, а к нему корзина сцепления – через нее крутящий момент мотора передается на коробку передач.

Мощностью бензинового двигателя управляют при помощи специальной дроссельной заслонки (дросселя). Дроссель регулирует подачу воздуха в цилиндры и образование воздушно-топливной смеси.

В старых автомобилях управление заслонкой осуществляется при помощи педали газа. А вот современные бензиновые силовые агрегаты – это высокотехнологичные механизмы, работой которых «руководит» электронный блок управления (в народе известный, как «мозги»). Дроссельная заслонка в таких авто изменяет свое положение при помощи электромотора, которым управляет электронный блок. А в педальном блоке имеется потенциометр, который изменяет силу сопротивления в зависимости от силы нажатия на педаль газа и посылает соответствующий сигнал на блок управления двигателем.

Особенности бензиновых двигателей

Автомобили, оснащенные бензиновыми силовыми агрегатами, имеют множество достоинств:

  • отменные динамические характеристики;
  • устойчивость к низким температурам;
  • низкий уровень вибраций и шума;
  • экономичность обслуживания;
  • долговечность моторов.

При одном и том же объеме мощность бензинового двигателя будет, как правило, выше, чем у дизельного мотора. Поэтому авто, работающее на бензине, станет отличным выбором для тех, кто любит чувствовать себя королем автострады. Кстати, недаром спорткары в подавляющем большинстве оснащаются именно бензиновыми моторами.

Бензиновые агрегаты дешевле в обслуживании, чем дизельные моторы. Периодичность ТО у них реже, чем у дизелей. И, кроме того, расходные материалы стоят дешевле.

Силовые агрегаты, работающие на бензине, менее требовательны к качеству топлива, чем дизели. Конечно, от низкокачественного горючего ухудшится динамика, но авто будет ехать. В худшем случае, придется через некоторое время чистить форсунки.

К особенностям современных бензиновых двигателей можно отнести еще и установку электропривода для повышения/понижения мощности вместо классического тросика на педали. Эта опция устанавливается практически на все модели с круиз-контролем и позволяет распределять топливо в оптимальном варианте.

Современная история бензиновых двигателей

Бензиновые двигатели нового поколения отличаются большим разнообразием – от самых простых до мощнейших. На моделях — как новых, так и б/у, — представленных в автосалоне ГК Favorit Motors, можно встретить силовые агрегаты различного объема и мощности, работающие на бензине. Каждый из них основывается на выработке механической энергии посредством поглощения топливовоздушной смеси.

Стоит заметить, что мощность и объем силового агрегата могут значительно различаться в зависимости от того, какие цели ставил перед собой завод-изготовитель. К примеру, Kia Venga оснащена бензиновым двигателем 1.4 литра мощностью в 90 лошадиных сил. Для городского компактного хэтчбэка этой мощности вполне хватит, чтобы владелец авто уверенно чувствовал себя на дорогах мегаполиса.

А дорогостоящий Chevrolet Corvette имеет очень мощный силовой агрегат в 466 л.с., объемом 6.2 литра. Это позволяет ему не только брать быстрый старт, но и быть лидером на трассах.

Подборка б/у автомобилей Chevrolet

Как сохранить работоспособность бензинового двигателя при многолетней эксплуатации?

Надежность и износостойкость бензинового агрегата практически во всех случаях определяются применяемыми на производстве технологиями. Однако не все зависит от производителя.

Автовладелец должен внимательно следить за состоянием двигателя:

  • своевременно проводить техническое обслуживание;
  • контролировать качество потребляемого бензина и заливаемых в мотор расходных материалов;
  • выбирать умеренный стиль езды;
  • выполнять профилактические работы, предупреждающие появление дефектов.

Внешне неисправности бензинового силового агрегата могут проявляться следующим образом:

  • появление посторонних звуков и вибрации;
  • ухудшение динамических характеристик;
  • увеличение расхода топлива;
  • повышенный расход масла;
  • быстрое падение уровня охлаждающей жидкости;
  • изменение цвета выхлопа;
  • неустойчивая работа;
  • отказ запуска.

Сегодня в интернете достаточно информации, чтобы автолюбитель получил минимальные знания о своем двигателе и мог своевременно замечать начавшиеся неполадки. Разумеется, самостоятельно производить ремонтные работы не рекомендуется, так как можно только усугубить положение. Вне зависимости от того способа, по которому образуется топливовоздушная смесь (то есть карбюраторный двигатель или инжекторный), можно быстро и без ущерба для своего кошелька выполнить диагностику и ремонт руками профессионалов.

Никаких проблем с проведением диагностики и ремонта бензинового двигателя не возникнет, если обратиться в ГК Favorit Motors. Специалисты компании обладают необходимым опытом работы, а также сертификацией, подтверждающий уровень их компетенции. Доверив нам автомобиль, можно не беспокоиться о грамотности и качестве любой проводимой операции — от стандартной диагностики до сложных ремонтных работ на двигателе. Все работы выполняются в строгом соответствии с регламентом производителей.

В зависимости от типа повреждений, после проведения диагностических работ выбирается методика ремонта или корректировки текущих настроек в двигателе. Как уже было сказано, бензиновые двигатели изначально обладают более простым устройством, чем дизельные, а потому восстановительные работы не затянутся надолго и не обернутся большими затратами.

Услуги, предоставляемые ГК Favorit Motors, полностью соответствуют золотому правилу «цена-качество», благодаря чему можно провести необходимые работы выгодно и в максимально короткий срок.


Принцип работы двигателя внутреннего сгорания

На наших дорогах чаще всего можно встретить автомобили, потребляющие бензин и дизельной топливо. Время электрокаров пока не настало. Поэтому рассмотрим принцип работы двигателя внутреннего сгорания (ДВС). Отличительной чертой его является превращение энергии взрыва в механическую энергию.

При работе с бензиновыми силовыми установками различают несколько способов формирования топливной смеси. В одном случае это происходит в карбюраторе, а потом это все подается в цилиндры двигателя. В другом случае бензин через специальные форсунки (инжекторы) впрыскивается непосредственно в коллектор или камеру сгорания.

Работа двигателя внутреннего сгорания

Для полного понимания работы ДВС необходимо знать, что существует несколько типов современных моторов, доказавших свою эффективность в работе:

  • бензиновые моторы;
  • двигатели, потребляющие дизельное топливо;
  • газовые установки;
  • газодизельные устройства;
  • роторные варианты.

Принцип работы ДВС этих типов практически одинаковый.

Такты ДВС

В каждом есть топливо, которое взрываясь в камере сгорания, расширяется и толкает поршень, установленный на коленчатом валу. Далее это вращение посредством дополнительных механизмов и узлов передается на колеса автомобиля.

В качестве примера будем рассматривать бензиновый четырехтактный мотор, так как именно он является самым распространенным вариантом силовой установки в машинах на наших дорогах.

Такты:

  1. открывается впускное отверстие и происходит заполнение камеры сгорания подготовленной топливной смесью
  2. происходит герметизация камеры и уменьшение ее объема в такте сжатия
  3. взрывается смесь и выталкивает поршень, который получает импульс механической энергии
  4. камера сгорания освобождается от продуктов горения

В каждом из этих этапов работы ДВС заложена своя происходит несколько одновременных процессов. В первом случае поршень находится в самой нижней своей позиции, при этом открыты все клапаны, впускающие топливо. Следующий этап начинается с полного закрытия всех отверстий и перемещения поршня в максимальную верхнюю позицию. При этом все сжимается.

Достигнув снова крайней верхней позиции поршня, на свечу поступает напряжение, и она создает искру, зажигая смесь для взрыва. Сила этого взрыва толкает поршень вниз, а в это время открываются выпускные отверстия и камера очищается от остатков газа. Затем все повторяется.

Работа карбюратора

Формирование топливной смеси в машинах первой половины прошлого века происходило с помощью карбюратора. Чтобы понять, как работает двигатель внутреннего сгорания, нужно знать, что автомобильные инженеры сконструировали топливную систему так, что в камеру сгорания подавалась уже подготовленная смесь.

Устройство карбюратора

Ее формированием занимался карбюратор. Он в нужных соотношениях перемешивал бензин и воздух и отправлял это все в цилиндры. Такая относительная простота конструкции системы позволяла ему долгое время оставаться незаменимой частью бензиновых агрегатов. Но позже его недостатки стали преобладать над достоинствами и не обеспечивать повышающихся требований к автомобилям в целом.

Недостатки карбюраторных систем:

  • нет возможности обеспечивать экономные режимы при внезапных переменах режимов езды;
  • превышение лимитов вредных веществ в выхлопных газах;
  • низкая мощность автомобилей из-за несоответствия подготовленной смеси состоянию автомобиля.

Компенсировать эти недостатки попытались прямой подачей бензина через инжекторы.

Работа инжекторных моторов

Принцип работы инжекторного двигателя заключается в непосредственном впрыске бензина во впускной коллектор или камеру сгорания. Визуально все схоже с работой дизельной установки, когда подача выполняется дозировано и только в цилиндр. Разница лишь в том, что у инжекторных агрегатов установлены свечи для поджигания.

Конструкция инжектора

Этапы работы бензиновых моторов с прямым впрыском не отличаются от карбюраторного варианта. Разница лишь в месте формирования смеси.

За счет этого варианта конструкции обеспечиваются достоинства таких двигателей:

  • увеличение мощности до 10% при схожих технических характеристиках с карбюраторным;
  • заметная экономия бензина;
  • улучшение экологических характеристик по выбросам.

Но при таких достоинствах есть и недостатки. Основными являются обслуживание, ремонтопригодность и настройка. В отличие от карбюраторов, которые можно самостоятельно разобрать, собрать и отрегулировать, инжекторы требуют специального дорогостоящего оборудования и установленного большого числа разных датчиков в автомобиле.

Способы впрыска топлива

В ходе эволюции подачи топлива в двигатель происходило постоянное сближение этого процесса с камерой сгорания. В наиболее современных ДВС произошло слияние точки подачи бензина и места сгорания. Теперь смесь формируется уже не в карбюраторе или впускном коллекторе, а впрыскивается в камеру напрямую. Рассмотрим все варианты инжекторных устройств.

Одноточечный вариант впрыска

Наиболее простой вариант конструкции выглядит как впрыск топлива через одну форсунку во впускной коллектор. Разница с карбюратором в том, что последний подает готовую смесь. В инжекторном варианте проходит подача топлива через форсунку. Выгода заключается в получении экономии при расходе.

Моноточечный вариант подачи топлива

Такой способ также формирует смесь вне камеры, но здесь задействованы датчики, которые обеспечивают подачу непосредственно к каждому цилиндру через впускной коллектор. Это более экономичный вариант использования топлива.

Прямой впрыск в камеру

Этот вариант пока наиболее эффективно использует возможности инжекторной конструкции. Топливо напрямую распыляется в камере. За счет этого снижается уровень вредных выхлопов, и автомобиль получает кроме большей экономии бензина увеличенную мощность.

Увеличенная степень надежности системы снижает негативный фактор, касающийся обслуживания. Но такие устройства нуждаются в качественном топливе.

Интересное по теме:

загрузка. ..

Facebook

Twitter

Вконтакте

Одноклассники

Google+

Принцип работы ДВС современного типа простыми словами

Современные двигатели работают по достаточно простой схеме, которая была изобретена целый век назад. Единственное, что подверглось сильному изменению после производства первого двигателя внутреннего сгорания, это система питания. С карбюраторов и прочих не слишком эффективных средств подачи топлива промышленность перешла на инжектор для бензиновых двигателей. Дизельные агрегаты обладают отдельным типом впрыска через систему с повышенным давлением. Все последние разработки в технологиях работы ДВС являются мелочными дополнениями к уже известной конструкции, которые призваны обеспечить либо автоматическую регулировку определенных параметров работы, либо определенную экономию топлива.

Тем не менее, суть двигателя остается прежней. По части работы двигателя внутреннего сгорания сегодня мы обсудим отдельно службу бензинового и дизельного силового агрегата, а также обсудим некоторые особенности использования бензинового двигателя в гибридных устройствах. Также затронем тему турбины в различных агрегатах, ее типов и смысла использования. Ознакомившись со всеми тонкостями работы современных силовых агрегатов внутреннего сгорания, вы поймете, что нынешние ДВС фактически ничем не отличаются от классических устройств.

Содержание

Бензиновый двигатель внутреннего сгорания — тонкости работы

Двигатель на бензиновом топливе представляет собою классический вариант силового агрегата, который может работать только на очищенном и качественном бензине, производимом из нефти. Современные двигатели работают только на бензине с октановым числом 95 или даже 98. Залив в хороший агрегат бензин плохого качества, вы можете приобрести массу проблем.

Топливо подается в агрегат с помощью бензонасоса, а количество подачи регулируется специальной системой впрыска. Инжекторы обладают тонкими форсунками, которые распыляют топливо в системе, позволяя его полностью сжечь в камерах сгорания. После подачи топлива по трубке на систему инжектора происходят следующие процессы:

  • инжектор распыляет бензин, превращая его в облако пара, а также смешивает получившиеся частицы с воздухом;
  • смесь бензина и кислорода попадает дальше в камеру сгорания, где в верхней части поджигается свечей зажигания;
  • подожженный бензин быстро воспламеняется, формируя определенной мощности взрыв с конкретным давлением и усилием;
  • камера сгорания исключительно герметична, потому сила этого взрыва направляется на рабочую плоскость поршня;
  • от мощности удара поршень опускается вниз и приводит в движение коленчатый вал, на котором закреплены другие поршни;
  • с помощью неоднократного повторения такого процесса происходит постоянное вращение двигателя.

Если топливо не распыляется должным образом, поскольку форсунки забиты или поломаны, один из цилиндров не будет давать нужной мощности, поскольку топливо не сможет поджигаться и нормально выполнять свои функции. В таком случае двигатель теряет мощность и значительно увеличивает расход. Также в таком агрегате крайне важна фильтрация воздуха.

Турбина в бензиновых двигателях представляет собой механизм усиленной подачи воздуха, за счет чего на определенных режимах работы увеличивается мощность агрегата без увеличения потребления топлива. Интенсивная подача воздуха с разными значениями позволяет компаниям достигать невероятных технических характеристик вполне стандартных бензиновых агрегатов.

Дизельный силовой агрегат — второй тип ДВС

Еще один важный тип двигателя, который стал прекрасной альтернативой бензиновому агрегату в обыденной и коммерческой эксплуатации, — это дизельный силовой агрегат. Его стандартными преимуществами считается менее активный расход топлива и очень ощутимая тяга. Такие выгоды дают возможность полностью переформатировать стиль поездки, изменить привычки управления автомобилем.

Дизельный силовой агрегат подает топливо также через форсунки со значительным распылением. Это требует высокой чистоты дизельного топлива и значительной безопасности работы системы подачи топлива, поскольку жидкость подается на форсунки в достаточно большом давлении. Принцип работы агрегата несколько отличается от бензинового:

  • топливо подается на распыление в гораздо большем давлении, оно прогревается еще до входа в камеры сгорания;
  • под воздействием значительного давления поршней в камерах сгорания топливо самовоспламеняется;
  • создаваемая при этом энергия производит толчок поршня в нижнее положение, выводя при этом другие поршни вверх;
  • для работы двигателя требуется меньше топлива, а вот подача воздуха имеет большое значение;
  • по данной причине в дизельных двигателях практически всегда присутствует турбина, распространены только турбодизели;
  • агрегат создает очень завидную мощность поршней, потому даже на низких оборотах он обладает большой тягой.

Определенная специфика работы дизельного двигателя вызывает и некоторые особенности его эксплуатации. В частности, водителю придется научиться раньше переключать передачи, довольствоваться низкими оборотами и контролировать тягу машины. Современные турбодизели потребляют на 15-20 процентов меньше топлива на ту самую мощность, чем бензиновые агрегаты.

Объемистые и тяговитые дизельные двигатели в промышленности могут работать не только на продуктах нефтеобработки. Многие агрегаты приспособлены даже на сжигание сырой нефти, а также принимают в качестве топлива природные биомасла, которые воспламеняются при сильном давлении. Это может стать одним из будущих перспективных моментов автомобилестроения.

Бензиновый гибридный двигатель — электричество в моде

Не так давно на рынок начали поступать гибридные автомобили. Это машины, у которых силовой агрегат состоит из двух частей. Первая часть не отличается от стандартных бензиновых агрегатов, но зачастую не столь объемистая и мощная. А вторая часть представлена электродвигателями в разных количествах и расположениях.

Батареи для электродвигателя оснащены отдельным генератором, который заряжается от работы бензинового агрегата. Также энергия берется из рекуперации энергии торможения и прочих процессов, которые обычно теряются в стандартном исполнении. Гибрид работает по следующей схеме:

  • в стандартных ситуациях городской поездки используются только электромоторы, вы ведете электромобиль;
  • когда энергия батарей на исходе, в дело включается бензиновый двигатель, нагнетающий запас в аккумуляторах;
  • также при резком нажатии на педаль газа включаются сразу все двигатели, давая огромную энергию;
  • при полной разрядке батарей ДВС продолжает работать и весьма экономично везет вас в нужном направлении;
  • у некоторых гибридных автомобилей есть выход для зарядки батарей от обычной электрической сети.

Такие технологии являются дыханием будущего, поскольку экономия на гибридных автомобилях ощутима. Большой внедорожник с такой установкой может затрачивать всего 5-6 литров топлива, независимо от выбранного режима поездки. Хороший двигатель внутреннего сгорания обеспечивает быструю зарядку батарей.

Сегодня активно развивается применение гибридных установок на основе дизельного двигателя. В таком случае расход опускается до невероятных 2-3 литров на 100 километров. Впрочем, технологии гибридного использования знают и расход в 1 литр на 100 километров, который является эталонным для современных производителей автомобилей. Предлагаем изучить принцип работы гибридного двигателя на следующем видео:

Подводим итоги

Сегодня покупатель автомобилей имеет большой выбор технологий, которые для него будут оптимальными во всех отношениях. Подобрать лучшее решение будет непросто, поскольку производители расписывают преимущества своих предложений в самых неожиданных аспектах. Иногда правильно преподнесенная технология кажется нам самым важным элементом автомобиля, но на самом деле не занимает и части технического потенциала транспорта.

Потому многие покупатели просто становятся жертвами рекламного влияния, покупая те или иные технологии и оплачивая их в полной мере. Сегодня лучше отказаться от рекламы при выборе типа машины. Положитесь на собственные впечатления и ощущения, на решения, которые вам нравятся больше всего. В каждом типе двигателя и силовой установки есть свои преимущества и недостатки. Расскажите о главных преимуществах двигателя в вашем автомобиле.

Мотор в будущее

Почему у двигателя внутреннего сгорания все еще нет серьезной альтернативы, узнал Кирилл Журенков


У двигателя внутреннего сгорания, без которого невозможно представить современный транспорт, юбилей — 195 лет. Однако полноценной замены имениннику так и не изобрели

Современный автомобиль, каким мы его знаем, рождался, наверное, целый век, и каждый из его дней рождения — исторический. Судите сами: 125 лет назад двумя венгерскими учеными, Донатом Банки и Яношем Чонка, запатентован карбюратор — устройство, где готовится горючая смесь для автомобильного двигателя. Долгое время его изобретателем вообще-то считался немец Вильгельм Майбах, запатентовавший карбюратор раньше венгерских коллег, и лишь после специальной экспертизы выяснилось — Банки и Чонка опередили его с публикацией. Счет шел на месяцы!

Но, пожалуй, еще важнее другая дата: в 1823 году, то есть 195 лет назад, другой инженер, британец Сэмуэль Браун, запатентовал первый получивший успех и коммерческое приложение двигатель внутреннего сгорания (ДВС)! Оговоримся: и на этот почетный титул — изобретателя ДВС — также претендует множество инженеров, выбирай любого. Вот, к примеру, один из претендентов — француз Жозеф Нисефор Ньепс больше известный как один из изобретателей фотографии. Он еще в 1807 году вместе с братом создал прототип ДВС, названный пирэолофором. Пирэолофор был установлен на корабль и успешно испытан, после чего братьям выдали патент, подписанный самим Наполеоном. Был в истории ДВС и русский след: бензиновый двигатель внутреннего сгорания с электрическим зажиганием — разработка российского конструктора сербского происхождения Огнеслава Костовича, известного проектами дирижабля, вертолета и даже рыбы-лодки.

Парадокс в другом: ни один из изобретателей этого чуда техники не был уверен, что его усилия пригодятся. Сегодня об этом уже не помнят, но с ДВС тогда конкурировали паровой и… электрический двигатель, изобретенный еще в 1828 году!

— Период, когда люди выбирали тип двигателя для безлошадных повозок (так называемое осевое время автомобилизма), пришелся как раз на конец XIX века,— говорит шеф-редактор журнала «Авторевю» Леонид Голованов.— Так вот, вплоть до середины 1900-х параллельно выпускались машины со всеми тремя типами силовых установок: ДВС, электроприводом и паровым двигателем. В результате победил двигатель внутреннего сгорания, причем заслуженно — он оказался эффективнее, проще в эксплуатации и более пригоден для массового производства. Но главное — сочетание энергоемкости, цены и скорости заправки, которое обеспечивало моторное топливо. Альтернативы этому не было!

О «нефтяном факторе» в успехе двигателя внутреннего сгорания говорит и декан транспортного факультета Московского политехнического университета Пабло Итурралде. По его словам, выпуск машин на ДВС в начале ХХ века получил поддержку у нефтяной отрасли — ей нужен был мощный потребитель производимой продукции, и автомобили, работающие на бензине, идеально подошли для этого.

Парадокс нынешнего момента, впрочем, в другом: топливо, которое когда-то помогло двигателю внутреннего сгорания победить конкурентов, сегодня может… его похоронить.

Разберемся.

«Топливо-изгой», «Европа отказывается от двигателей внутреннего сгорания», «Объявлена война дизелю»… Европейские СМИ предупреждают: в Старом Свете решили всерьез взяться за ДВС. Повод нашелся в 2015-м, когда в результате так называемого Дизельгейта выяснилось: крупнейший европейский производитель дизельных моторов занижал количество вредных выбросов во время тестов. И вот время перемен: к примеру, в Великобритании запретить продажи новых автомобилей на бензиновых или дизельных ДВС собираются уже к 2040 году. А Норвегия ставит дедлайн еще раньше — на 2025 год… Чем собираются заменить ДВС? Конечно же, старым добрым электромотором, но и тут все не однозначно.

— Конец ДВС приближают сразу несколько факторов: ужесточившиеся требования к токсичности отработавших газов, истерика по поводу антропогенной природы глобального потепления и, безусловно, электромобили,— уверен Леонид Голованов.— Впрочем, до массового распространения электромобилей еще далеко, и сдерживает его отсутствие аккумуляторных батарей с достаточной энергоемкостью.

Иными словами, современные литий-ионные батареи не способны обеспечить переход на массовую электромобилизацию — нужен качественный скачок, батареи нового типа, например на основе графена. Вот только когда их изобретут… Как открыт и вопрос о перспективах так называемых гибридов — автомобилей, где электродвигатель совмещен с ДВС.

Приговор специалистов: человечество на перепутье. Жить с ДВС больше не хочется, а переходить на электромобили не получается, да и последствия такого перехода никто толком не просчитал.

— Вся инфраструктура наших городов рассчитана под двигатели внутреннего сгорания, и перемены идут с большим трудом: посмотрите на Европу — станции для подзарядки встречаются там гораздо реже, чем автозаправки,— говорит Пабло Итурралде из Московского политеха.— Прибавьте к этому скорость самого процесса — чтобы заправить обычный автомобиль, у вас уйдет пять минут. А для зарядки электромобиля понадобится минимум часа два. Так что переход на новую инфраструктуру в перспективе довольно трудозатратен: всегда есть соблазн потратить эти деньги на что-то другое, например на развитие общественного транспорта.

Леонид Голованов, в свою очередь, уверен, что переход на электромобили неизбежен. Но и он соглашается: последствия такого перехода будут столь масштабны, что сравнить их можно разве что с появлением беспилотных электрических робомобилей. Попробуем представить этот транспорт будущего: никаких дилерских сетей, автозаправочных станций, водителей и даже автослесарей — «умные» машины будут сами «сообщать» в специализированные сервисы о поломках тех или иных систем. Есть и более радикальный взгляд: мол, двигатели будущих робомобилей почти не будут ломаться, а на старомодные ДВС, которые мог разобрать любой мальчишка, мы станем любоваться разве что в музеях. Впрочем, до этого еще надо дожить — или доехать.

экспертиза

Преждевременный энтузиазм

Игорь Моржаретто, партнер аналитического агентства «Автостат», автоэксперт

Появление двигателя внутреннего сгорания (ДВС) — это новый этап промышленной революции, перевернувший всю мировую экономику. До этого она пребывала в полусредневековом состоянии, а с появлением двигателя внутреннего сгорания и дешевого автомобиля, который мог доставить товары и грузы по всему миру на дальние расстояния, изменилась коренным образом. Изменилась и жизнь людей. Специалисты называют это транспортной доступностью «по Форду»: появилась возможность купить автомобиль и поехать на нем куда-то.

Так вот, с моей точки зрения, КПД двигателя внутреннего сгорания далеко не исчерпан. За последние 10–20 лет его параметры очень сильно изменились: он стал более экономичным, мощным, экологичным. К сожалению, сейчас сворачиваются дальнейшие разработки по ДВС, особенно по дизелю. Все кричат, что наше светлое будущее — это электродвигатели. Но перспективы есть и в других отраслях, например в нескольких странах работают над водородными топливными элементами. Возможно, какие-то прорывы будут и с двигателем на ядерном топливе…

А вот что касается электромобилей, то с ними еще очень много нерешенных вопросов.

Ключевой из этих вопросов: на сегодняшний день так и не создан аккумулятор, который позволил бы электромобилю на одном заряде проехать большое расстояние в любую погоду.

Сегодня максимум, который он может преодолеть,— это 300 км при теплой погоде и ровной дороге без пробок. Это много, но, к примеру, в условиях России явно недостаточно.

К тому же современные аккумуляторы чудовищно дороги. Если не будет государственной поддержки, электромобиль просто никто не купит: сегодня он стоит в 2,5—3 раза дороже, чем автомобиль с ДВС того же класса. И соответственно, все те продажи, которые идут в мире, происходят при поддержке разных государственных программ. Когда будет создан дешевый и мощный аккумулятор? Никто не знает. Его обещали создать и год, и пять лет назад…

Еще одна принципиальная проблема, связанная с электромобилями, заключается в том, что при выработке электроэнергии все равно расходуется топливо, просто другое. 60 процентов электростанций (а это они вырабатывают электроэнергию, которая используется для зарядки электромобилей.— «О») в мире сегодня, напомню, работает на угле и, соответственно, загрязняют окружающую среду.

Нельзя не упомянуть и об отсутствии программы утилизации аккумуляторов. Одна компания — мировой лидер по производству электромобилей — после 7 лет эксплуатации забирает эти аккумуляторы и предлагает их владельцам частных домов в качестве аварийного источника энергии. То есть утилизировать их не умеют… В общем, как мне кажется, энтузиазм стран и правительств по поводу электромобилей несколько преждевременен: без госпрограмм поддержки все это долго не продержится. А вот прощаться с ДВС я бы не торопился…

брифинг

Торстен Мюллер-Отвос, гендиректор английской компании, выпускающей автомобили класса люкс

Мы представим электрическую модель в следующем десятилетии, однако не будем спешить убирать ДВС из портфолио. Переход к электрокарам будет постепенным, и какое-то время они пойдут параллельно… Беспилотники станут для нас интересны тогда, когда они будут функциональными, удобными в использовании, не требующими усилий и полностью автономными, то есть тогда, когда они смогут полностью заменить водителя. Вот тогда мы скажем: «Давайте сделаем это».

Александр Фертман, директор по науке, технологиям и образованию фонда «Сколково» 

Александр Фертман, директор по науке, технологиям и образованию фонда «Сколково». Фото: Sk.ru

Те горизонты, которые сегодня нарисованы в Европе по поводу отказа от двигателя внутреннего сгорания, наводят на мысль, что это серьезный технологический рывок. А главное, что создается огромный рынок. <…> Новые виды аккумуляторов постоянно разрабатываются, эта тема одна из самых инвестируемых, если не говорить об IT-секторе. И это не только сама батарея, это и система управления. Здесь, кстати, у России действительно есть интересные проекты. Важно не только то, как вам отдает энергию батарея, но и то, как вы управляете ячейками, чтобы ячейки разряжались одновременно, равномерно.

Коджи Нагано, автодизайнер

— Каким будет автомобиль лет через 30? 

— Думаю, внешний вид автомобилей будет сильно зависеть от типа двигателя. Но, как и раньше, автомобилю нужен будет кузов, внутреннее пространство, колеса. Если говорить об автомобиле будущего, то есть такая жутко интересная вещь, как 3D-принтер. И я могу себе представить, что скоро каждый человек сможет создать автомобиль у себя дома, просто напечатать именно тот, который нужен ему. Возможно, он нарисует этот автомобиль сам или использует готовый дизайн.

     

Источник: kommersant.ru

Как работает двигатель внутреннего сгорания

Вы когда-нибудь открывали капот вашего автомобиля? Для непосвященного человека двигатель выглядит как нагромождение металла, труб и проводов.

В этой статье мы обсудим основную идею двигателя, а затем рассмотрим подробнее, как все его части работают вместе и что в нем может пойти не так.

Цель бензинового автомобильного двигателя заключается в преобразовании бензина в движение, чтобы ваш автомобиль смог двигаться. В настоящее время самый простой способ создания движения из бензина это сжигать бензин внутри двигателя. Таким образом, такой автомобильный двигатель называется двигатель внутреннего сгорания – в нем сгорание происходит внутри.

Обратим внимание на два аспекта:

1. Существуют различные виды двигателей внутреннего сгорания. Дизельные двигатели — это одна из их форм, а газотурбинные двигатели — это другая. Существуют также HEMI двигатели, роторные двигатели, четырехтактные и двухтактные двигатели. Каждый тип имеет свои достоинства и недостатки.

2. Так же существуют двигатели внешнего  сгорания. Паровой двигатель в старинных поездах и пароходах, — это лучший пример двигатель внешнего сгорания. Топливо (уголь, древесина, нефть, все, что угодно), паровой двигатель сжигает за пределами двигателя для создания пара, а пар создает движение внутри двигателя. Двигатель внутреннего сгорания является гораздо более эффективным (потребляет меньше топлива на километр пробега), чем внешнего сгорания, плюс двигатель внутреннего сгорания значительно меньше, чем эквивалентный по мощности двигатель внешнего сгорания. Это объясняет, почему мы не видим никаких современных автомобилей, передвигающихся с помощью паровых двигателей.

Давайте рассмотрим процесс внутреннего сгорания более подробно.

 

Внутреннее сгорание

Принцип, лежащий в основе любого поршневого двигателя внутреннего сгорания: Если вы поместите небольшое количество высокоэнергетического топлива (например, бензин) в маленьком, замкнутом пространстве и воспламените его, невероятное количество энергии выделится в виде расширяющегося газа. Вы можете использовать эту энергию, чтобы продвинуть поршень вперед внутри цилиндра. В этом случае энергия взрыва бензина преобразуется в движение поршня. Вы также можете создать цикл, который позволит вам осуществлять такие взрывы сотни раз в минуту. И если вы сможете использовать эту энергию полезным образом, то у вас получится ядро двигателя автомобиля!

Почти все автомобили в настоящее время используют четырехтактный цикл сгорания для преобразования бензина в движение. Четырехтактный цикл также известен как Цикл Отто, в честь Николауса Отто.

1. Такт впуска

2. Такт сжатия

3. Такт рабочего хода

4. Такт выхлопа

Одним из основных устройств такого двигателя является поршень.  Поршень соединен с коленчатым валом с помощью шатуна. Когда  коленчатый вал вращается, он выполняет очередной такт работы двигателя. Вот что происходит, когда двигатель проходит свой цикл:

1. Поршень находится вверху, впускной клапан открывается, и поршень движется вниз, давая двигателю принять в цилиндр смесь из воздуха и бензина. Это такт впуска. Только мельчайшие капли бензина должны быть в смеси с воздухом. Иначе поджечь эту смесь не удастся или горение будет неэффективным.

2. Затем поршень перемещается обратно вверх, чтобы сжать смесь топлива и воздуха. Сжатие смеси позволит сделать более мощный взрыв.

3. Когда поршень достигает вершины своего хода, свеча зажигания дает искру, чтобы зажечь смесь. Смесь в цилиндре взрывается, двигая поршень вниз.

4. После того, как поршень достигнет нижней части цилиндра, открывается выпускной клапан и поршень снова поднимается вверх, очищая цилиндр от выхлопных газов, которые затем выходят из выхлопной трубы.

И теперь двигатель снова готов для следующего цикла потребления заряда из воздуха и бензина.

Обратите внимание, что двигатель внутреннего сгорания создает движение вращательное, в то время как движение, произведенное поршнем — линейное. В двигателе линейное движение поршня преобразуется во вращательное движение коленчатого вала. Вращательное движение двигателя — это как раз то, что нам и нужно, потому что мы планируем с его помощью вращать колеса автомобиля.

Двигатель внутреннего сгорания — Что такое Двигатель внутреннего сгорания?

Двигатель внутреннего сгорания — тепловой двигатель, который преобразовывает теплоту сгорания топлива в механическую работу.

Двигатель внутреннего сгорания — тепловой двигатель, который преобразовывает теплоту сгорания топлива в механическую работу.

По сравнению с паромашинной установкой двигатель внутреннего сгорания характеризуется следующими признаками:

  • принципиально проще (нет парокотельного агрегата),

  • компактнее,

  • легче,

  • экономичнее,

  • требует газообразное и жидкое топливо лучшего качества.

Типы двигателей внутреннего сгорания


По назначению:

  • транспортные, 

  • стационарные, 

  • специальные.

По роду применяемого топлива:

  • легкие жидкие (бензин, газ), 

  • тяжелые жидкие (дизельное топливо, судовые мазуты).

По способу образования горючей смеси:

  • внешнее (карбюратор),

  • внутреннее (в цилиндре ДВС).

По способу воспламенения:

  • с принудительным зажиганием, 

  • с воспламенением от сжатия, 

  • калоризаторные.

По расположению цилиндров:

  • рядные, 

  • вертикальные, 

  • оппозитные с одним и с двумя коленвалами, 

  • V-образные с верхним и нижним расположением коленвала, 

  • VR-образные и W-образные, 

  • однорядные и двухрядные звездообразные, 

  • Н-образные, 

  • двухрядные с параллельными коленвалами, 

  • «двойной веер», 

  • ромбовидные, 

  • трехлучевые и др.

Поршневой двигатель — это двигатель, у которого камера сгорания находится в цилиндре, где тепловая энергия топлива превращается в механическую энергию, а механическая из поступательного движения поршня превращается во вращательную с помощью кривошипно-шатунного механизма.

Бензиновый двигатель — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. 

Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.

Дизельный двигатель характеризуется воспламенением топлива без использования свечи зажигания. 

В разогретый от сжатия воздух (до температуры, превышающей температуру воспламенения топлива) через форсунку впрыскивается порция топлива. 

В процессе впрыскивания топлива происходит его распыливание, а затем вокруг отдельных капель топлива возникают очаги сгорания. 

Т.к. дизельные двигатели не подвержены явлению детонации, характерному для двигателей с принудительным воспламенением, в них допустимо использование более высоких степеней сжатия (до 26), что благотворно сказывается на КПД данного типа двигателей, который может превышать 50% в случае с крупными судовыми двигателями.

Газовый двигатель — двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях

Роторно-поршневой двигатель — двигатель, конструкция которого предложена изобретателем Ванкелем в начале ХХ века. 

Основа двигателя — треугольный ротор (поршень), вращающийся в камере особой 8-образной формы, исполняющий функции поршня, коленвала и газораспределителя. 

Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. 

За 1 оборот двигатель выполняет 3 полных рабочих цикла, что эквивалентно работе 6-цилиндрового поршневого двигателя.

что это и как работает. 5 интересных фактов :: Autonews

Двигатель внутреннего сгорания, или сокращённо ДВС, — это «сердце» большинства современных автомобилей. И не только машин, но также мотоциклов, кораблей, тепловозов, самолётов и даже масштабных моделей транспортных средств.

Что такое ДВС

ДВС — это пока основной вид двигателей транспортных средств, тепловая машина, преобразующая химическую энергию топлива в механическую работу. Сжигая горючее во внутренних камерах, двигатель внутреннего сгорания освобождает энергию, а затем преобразует её во вращательное движение. Оно, в свою очередь, раскручивает колёса или лопасти.

Двигатели внутреннего сгорания принято делить на несколько основных типов:

  • Поршневой двигатель внутреннего сгорания;
  • Роторно-поршневой двигатель внутреннего сгорания:
  • Газотурбинный двигатель внутреннего сгорания.

Основным типом ДВС является классический поршневой двигатель, поэтому преимущественно речь дальше пойдёт о нём.

Как создавался ДВС

Двигатель внутреннего сгорания стар как мир. История создания этой машины тесно связана с паровыми двигателями, то есть двигателями внешнего сгорания.

Паровые двигатели, применяемые в XVIII веке, были громоздкими и слабыми, с чрезвычайно низким коэффициентом полезного действия. Тепло от сгорания топлива в них использовалось для нагрева жидкости, а та в свою очередь, превращалась в пар и совершала работу. Звучит красиво, а что на деле? По факту практический КПД, то есть эффективность преобразования энергии, обычно составлял от 1 до 8%. Уже тогда было ясно — систему нужно улучшать. Зачем сжигать горючее вне мотора, не лучше ли делать это прямо в нём?

Попытки создания ДВС начались намного раньше, чем вы можете себе представить, — ещё в XVII веке. В 1678 году голландский математик Христиан Гюйгенс создал примитивный ДВС, работающий… на порохе. Идея получила развитие: экспериментаторы в различных странах шли по схожему пути, но далеко не все из них попали в историю.

Доподлинно известно, что в 1794 году Робертом Стритом был запатентован двигатель внутреннего сгорания на жидком топливе. Построен первый рабочий прототип. В 1807 году француз Нисефор Ньепс разработал твердотельный ДВС, работающий на порошке пиреолофора. С прототипом лично ознакомился Наполеон Бонапарт. В том же году Франсуа Исаак де Риваз создал поршневой ДВС, работающий на газообразном водороде — этот мотор получил поршневую группу и искровое зажигание.

Первый автомобильный ДВС в привычном понимании был создан в 1885 году Карлом Бенцем — мотор использовался на автомобиле Benz Patent-Motorwagen.

Многие изобретатели приложили руку к сознанию двигателя внутреннего сгорания, но первым коммерчески успешным проектом стало детище французского изобретателя из Бельгии Жана Этьена Ленуара. К 1864 году он продал свыше 1 400 своих двигателей и неплохо на этом нажился.

Первый автомобильный ДВС в привычном понимании был создан в 1885 году Карлом Бенцем — мотор использовался на автомобиле Benz Patent-Motorwagen.

Устройство поршневого ДВС

Традиционный поршневой двигатель внутреннего сгорания — чрезвычайно сложная система. Однако основных деталей у классического ДВС не так уж и много. Без этих элементов работа двигателя внутреннего сгорания невозможна:

  • блока цилиндров — механической основы мотора;
  • головки блока цилиндров;
  • поршней;
  • шатунов;
  • коленчатого вала;
  • распределительного вала с кулачками;
  • впускных и выпускных клапанов;
  • свечей зажигания*.

* — на самом деле деталей значительно больше, но рассказать о каждой из них в рамках короткой статьи не представляется возможным.

Принципы работы ДВС

Все классические ДВС работают по схожему принципу. В процессе их работы энергия вспышки топлива, то есть тепловая энергия, преобразуется в энергию механическую. Обычно это происходит следующим образом:

  1. Когда поршень в цилиндре движется вниз, открывается впускной клапан. В цилиндр поступает топливовоздушная смесь.
  2. Поршень поднимается, а выпускной клапан закрывается. Поршень сжимает топливовоздушную смесь и доходит до верхней мёртвой точки.
  3. На свече зажигания возникает искра, топливовоздушная смесь мгновенно сгорает, выделяя большой объём газов. Под их действием поршень устремляется вниз.
  4. Открывается выпускной клапан и выхлопные газы выдавливаются в выпускной коллектор.

Четырехтактный двигатель

В четырёхтактном моторе происходит четыре непрерывных последовательных стадии:

  1. Впуск (наполнение цилиндра смесью).
  2. Сжатие.
  3. Рабочий ход или сгорание.
  4. Выпуск отработавших газов.

Двухтактный двигатель

Но бывают и иные моторы — двухтактные. Они работают немного по-другому и применяются, как правило, на мототехнике и бензиновых инструментах вроде бензопил. Что происходит в них?

  1. Когда поршень движется снизу-вверх, в камеру сгорания поступает топливо. Сжатая поршнем топливовоздушная смесь поджигается искрой.
  2. Смесь загорается и поршень устремляется вниз. Открывается доступ к выпускному коллектору и из цилиндра выходят продукты сгорания.

Разница в том, что тактов всего два: на первом одновременно происходит впуск и сжатие, а на втором — опускание поршня и выпуск продуктов сгорания из коллектора.

Какие ещё бывают ДВС

Помимо поршневых двигателей внутреннего сгорания создано немало иных разновидностей ДВС — роторные, газотурбинные, реактивные, турбореактивные и бесчисленное множество их модификаций. Чем они отличаются?

  • Газотурбинные ДВС

Если в традиционных поршневых ДВС работа расширения газообразных продуктов сгорания преобразуется во вращательное движение коленчатого вала, то в газотурбинных работа расширения продуктов сгорания воспринимается рабочими лопатками ротора, а в реактивных используется реактивное давление, возникающее при истечении продуктов сгорания из сопла. Все эти типы ДВС объединяет одно — во время работы они внутри себя сжигают топливо.

Крайне необычные моторы, которые можно встретить даже на серийных машинах. Первый роторно-поршневой мотор был создан немецким инженером Феликсом Ванкелем в 1957 году. Этот ДВС внешне совершенно не похож ни на один традиционный поршневой мотор.

Двигатель Ванкеля состоит из корпуса, камеры сгорания, впускного и выпускного окон, неподвижной шестерни, зубчатого колеса, ротора, вала и свечи зажигания. Ротор на эксцентриковом валу приводится в действие силой давления газов в результате сгорания топливовоздушной смеси. Он вращается относительно статора посредством шестерён. Когда ротор совершает эксцентричные круговые движения, его грани соприкасаются с внутренней поверхностью камеры сгорания. Таким образом создаются три изолированные камеры, в которых попеременно сжигается топливо. Вращающийся ротор передаёт крутящий момент на трансмиссию.

Человечество создало немало невероятных и по-настоящему уникальных моторов. Вот 10 самых совершенных из них:

👉 Железные мускулы. 10 лучших двигателей в истории

5 интересных фактов о ДВС

ДВС может работать на альтернативном топливе

Современные ДВС принято делить на два основных типа по применяемому топливу — бензиновые и дизельные. Однако сама история создания двигателей внутреннего сгорания позволяет понять: сжигать в таких моторах можно многие виды горючего — от различных газов до всевозможных растворителей и спиртов. Главное — испарить их и подмешать воздух в нужных пропорциях.

Наиболее распространённые альтернативы бензину и дизелю — пропан-бутан и метан, но можно использовать даже «гремучую смесь» — водород с кислородом. И это далеко не всё: почти любая современная машина с ДВС способна ездить на смеси бензина с этанолом или на чистом этаноле, то есть спирте, получаемом экологически чистым путём. Поедет бензиновый автомобиль и на различных растворителях. К примеру, запустить ДВС можно на обычном сольвенте из хозяйственного магазина — с помощью этой жидкости обычно осуществляют чистку топливной системы.

ДВС выживет в космосе и под водой (если очень постараться)

Двигатель внутреннего сгорания можно заставить работать даже в космосе. Всё, что для этого требуется, — обеспечить подачу кислорода для создания топливовоздушной смеси. При соблюдении этого нехитрого условия ДВС может запуститься и работать даже под водой. Для него нет ничего невозможного.

ДВС действительно плох

Несмотря на всю свою технологичность и сложность, по уровню КПД бензиновый ДВС недалеко ушёл от парового мотора. Эффективность этих агрегатов оставляет желать лучшего. Коэффициент полезного действия в среднем варьируется в диапазоне от 20 до 25%.

Иными словами, при сжигании условных 10 литров бензина лишь около трёх литров выполняют полезное действие. Всё остальное горючее тратится на тепловые и механические потери. С этой точки зрения дизельные движки намного круче: их КПД достигает 40%. Но и их век уже прошёл.

Отказ от ДВС неизбежен

Одну из причин грядущего отказа от двигателей внутреннего сгорания мы уже раскрыли — это низкий КПД. Но есть и ещё один немаловажный момент — влияние на экологию. Поскольку почти все ДВС работают на невозобновляемых ресурсах (бензине, дизеле, нефтяном газе), отказ от них жизненно необходим.

По данным специалистов, мировой запас нефти составляет 1,726 трлн баррелей, которых хватит при нынешнем уровне потребления немногим более чем на 50 лет. Из нефти делают не только топливо. Она — основа синтетических каучуков, пластиков, еды, тканей, шампуней и даже аспирина. Всего того, без чего жизнь человека уже практически невозможна.

Как работают бензиновые автомобили?

Бензиновые и дизельные автомобили аналогичны. Оба они используют двигатели внутреннего сгорания. В бензиновых автомобилях обычно используется двигатель внутреннего сгорания с искровым зажиганием, а не системы с воспламенением от сжатия, используемые в дизельных автомобилях. В системе с искровым зажиганием топливо впрыскивается в камеру сгорания и смешивается с воздухом. Воздушно-топливная смесь воспламеняется от искры свечи зажигания. Хотя бензин является наиболее распространенным топливом для транспортных средств, существуют альтернативные варианты топлива, в которых используются аналогичные компоненты и системы двигателя.Узнайте об альтернативных видах топлива.

Изображение высокого разрешения

Ключевые компоненты бензинового автомобиля

Аккумулятор: Аккумулятор обеспечивает электроэнергией запуск двигателя и электронику/аксессуары автомобиля.

Электронный блок управления (ECM): ECM управляет топливной смесью, опережением зажигания и системой выбросов; следит за работой автомобиля; защищает двигатель от небрежного обращения; и обнаруживает и устраняет проблемы.

Выхлопная система: Выхлопная система направляет выхлопные газы двигателя наружу через выхлопную трубу. Трехкомпонентный каталитический нейтрализатор предназначен для снижения выбросов выхлопных газов в выхлопной системе.

Топливозаправочная горловина: Форсунка от топливораздаточной колонки присоединяется к приемнику на автомобиле для заполнения бака.

Система впрыска топлива: Эта система подает топливо в камеры сгорания двигателя для воспламенения.

Топливопровод: Металлическая трубка или гибкий шланг (или их комбинация) подает топливо из бака в систему впрыска топлива двигателя.

Топливный насос: Насос, который перекачивает топливо из бака в систему впрыска топлива двигателя через топливопровод.

Топливный бак (бензин): В этом баке хранится бензин на борту транспортного средства до тех пор, пока он не понадобится двигателю.

Двигатель внутреннего сгорания (с искровым зажиганием): В этой конфигурации топливо впрыскивается либо во впускной коллектор, либо в камеру сгорания, где оно смешивается с воздухом, а воздушно-топливная смесь воспламеняется искрой от свечи зажигания. .

Трансмиссия: Трансмиссия передает механическую мощность от двигателя и/или тягового электродвигателя на привод колес.

Как работает двигатель?

Вы уже знаете, что завести машину так же просто, как повернуть ключ, но задумывались ли вы когда-нибудь, что на самом деле происходит под капотом?

Когда вашему телу нужно топливо, вы кормите его едой. Когда вашему автомобилю нужно топливо, вы «кормите» его бензином.Точно так же, как ваше тело превращает пищу в энергию, автомобильный двигатель преобразует газ в движение. Некоторые новые автомобили, известные как гибриды, также используют электричество от аккумуляторов для приведения в движение транспортного средства.

Процесс преобразования бензина в движение называется «внутреннее сгорание». Двигатели внутреннего сгорания используют небольшие контролируемые взрывы для выработки энергии, необходимой для перемещения вашего автомобиля в нужное место.

Если вы создаете взрыв в крошечном замкнутом пространстве, например, в поршне двигателя, огромное количество энергии высвобождается в виде расширяющегося газа.Типичный автомобильный двигатель производит такие взрывы сотни раз в минуту. Двигатель использует энергию и использует ее для движения вашего автомобиля.

Взрывы заставляют двигаться поршни в двигателе. Когда энергия первого взрыва почти иссякает, происходит еще один взрыв. Это заставляет поршни двигаться снова. Цикл повторяется снова и снова, давая автомобилю мощность, необходимую для движения.

Автомобильные двигатели используют четырехтактный цикл сгорания. Четыре такта: впуск, сжатие, сгорание и выпуск.Удары повторяются снова и снова, генерируя энергию. Давайте подробнее рассмотрим, что происходит во время каждой фазы цикла сгорания.

Впуск: Во время цикла впуска впускной клапан открывается, и поршень движется вниз. Цикл начинается с подачи воздуха и газа в двигатель.

Сжатие: Когда начинается цикл сжатия, поршень движется вверх и выталкивает воздух и газ в меньшее пространство. Меньшее пространство означает более мощный взрыв.

Воспламенение: Затем свеча зажигания создает искру, которая воспламеняет и взрывает газ. Сила взрыва заставляет поршень опуститься.

Выхлоп: В последней части цикла выпускной клапан открывается, чтобы выпустить отработанный газ, образовавшийся в результате взрыва. Этот газ перемещается в каталитический нейтрализатор, где очищается, а затем проходит через глушитель, прежде чем выйти из автомобиля через выхлопную трубу.

Как на самом деле работает двигатель внутреннего сгорания?

Каждый год около 222 миллионов человек в США ездят на самых разных транспортных средствах.Почти все эти автомобили оснащены двигателем внутреннего сгорания. Однако недавний опрос, проведенный AA, показал, что только 10% водителей могут в общих чертах описать, как работает двигатель внутреннего сгорания.

Если вы только сейчас осознали, что не входите в эти 10%, не волнуйтесь, мы собрали краткое описание удивительного процесса, который использует ваша машина для движения.

Основы

Горение, также известное как горение, представляет собой основной химический процесс высвобождения энергии из топливно-воздушной смеси.В двигателе внутреннего сгорания воспламенение и сгорание топлива происходят внутри самого двигателя.

Затем двигатель частично преобразует энергию сгорания в работу. Двигатель состоит из неподвижного цилиндра и подвижного поршня. Расширяющиеся газы сгорания толкают поршень, который, в свою очередь, вращает коленчатый вал. В конечном счете, через систему шестерен в трансмиссии это движение приводит в движение колеса автомобиля.

Различные типы двигателей внутреннего сгорания 

Двумя наиболее распространенными типами двигателей внутреннего сгорания являются бензиновый двигатель с искровым зажиганием и дизельный двигатель с воспламенением от сжатия.Эти двигатели специально разработаны для работы как с бензином, так и с дизельным топливом, поэтому использование неподходящего топлива в вашем автомобиле может привести к значительному повреждению двигателя.

В двигателе с искровым зажиганием топливо смешивается с воздухом и затем всасывается в цилиндр в процессе впуска. После того, как поршень сжимает топливно-воздушную смесь, искра воспламеняет ее, вызывая сгорание. Расширение продуктов сгорания толкает поршень во время рабочего такта.

В дизельном двигателе в двигатель всасывается только воздух, а затем сжимается.Затем дизельные двигатели распыляют топливо в горячий сжатый воздух с подходящей, отмеренной скоростью, вызывая его воспламенение.

Большинство двигателей внутреннего сгорания являются двигателями с четырехтактным циклом, что означает, что для завершения цикла необходимо четыре хода поршня. Цикл двигателя состоит из четырех отдельных процессов. Это впуск, сжатие, сгорание и рабочий ход, а также выпуск.

Разработка двигателя внутреннего сгорания

Вместо одной значительной разработки двигатель внутреннего сгорания появился благодаря серии постепенных изменений в установленных патентах.Первый коммерчески успешный двигатель внутреннего сгорания был создан Этьеном Ленуаром примерно в 1860 году. 

Эксперименты Ленуара с электричеством привели его к разработке первого двигателя внутреннего сгорания, в котором сжигалась смесь угольного газа и воздуха, воспламеняемая системой зажигания «прыгающих искр» катушкой Румкорфа.

То, что мы могли бы считать первым современным двигателем внутреннего сгорания, было создано в 1876 году Николаусом Отто. Двигатель Отто представляет собой большой стационарный одноцилиндровый четырехтактный двигатель внутреннего сгорания.Двигатели изначально использовались для стационарных установок, поскольку Отто не интересовался транспортом, и в конечном итоге были разработаны для автомобилей Готлибом Даймлером.

Отто фактически создал свой двигатель на основе коммерческого жидкостного двигателя внутреннего сгорания 1872 года, изобретенного американцем Джорджем Брайтоном.

В то время как двигатели внутреннего сгорания чаще всего ассоциируются с транспортными средствами, термин двигатель внутреннего сгорания может также применяться к пушкам, ракетам или чему-либо, что использует силу взрыва для получения энергии или импульса.

В последние годы доминирование бензина и дизельного топлива в качестве основных видов топлива для двигателей транспортных средств уступило место более экологичным видам топлива, таким как биодизельное топливо, биоэтанол, водород и этил-трет-бутиловый эфир (ЭТБЭ). Многие производители автомобилей также производят гибридные автомобили, которые работают на смеси традиционного топлива и электричества, или, в случае таких компаний, как Tesla, полностью электрические автомобили

.

Научитесь водить машину в Неваде уже сегодня!

Северо-западная школа вождения и школа дорожного движения предоставляют сообществу Лас-Вегаса живые уроки вождения и дорожного движения, проводимые опытными инструкторами.Все наши инструкторы по вождению прошли проверку биографических данных. Каждый автомобиль одобрен DMV по безопасности, и каждый член семьи Northwest стремится обеспечить отличное обучение водителей и вождению за рулем.

В Northwest вы можете рассчитывать на выдающиеся занятия как в кампусе, так и за рулем, увлекательные, наполненные фактами, занимательные и ориентированные на успех.

Мы не скрываем этого, мы считаем, что Northwest предлагает лучшие уроки вождения в Лас-Вегасе, независимо от вашего возраста или происхождения.Мы гордимся тем, что 98% наших студентов сдают тест с первого раза. Позвоните нам по телефону (702) 403-1592 , чтобы начать свое вождение с одним из наших опытных инструкторов.

 

Автор:

Рич Генрих

Мастер-инструктор, заслуженный

 

Бензиновый двигатель — обзор

6.5 Проблемы со смазкой бензиновых двигателей

Достижения в области технологий бензиновых двигателей способствуют значительному прогрессу в разработке масел для бензиновых двигателей.Ключевой технологией, внедренной в последние годы, является прямой впрыск бензина (GDI), который часто сочетается с турбонаддувом (TGDI), чтобы обеспечить компактный, экономичный, но мощный двигатель. Основное внимание в этом разделе уделяется проблемам, связанным с этими типами двигателей.

На рис. 6.7 показано сравнение удельной мощности между типичными вариантами с впрыском топлива во впускной коллектор (PFI) и вариантами TGDI, доступными на автомобилях одного OEM-производителя. Можно увидеть, что удельная мощность последнего намного выше, часто значительно превышающая 100 л.с. (Pferdestarke — метрическая лошадиная сила) на литр, и эти цифры увеличиваются с каждой новой линейкой двигателей.Эти изменения создают более суровые условия для смазки. Более высокая удельная мощность означает увеличение давления и температуры в цилиндре, а также большие силы, действующие на подшипники меньшего размера. Температура турбины в небольших двигателях с турбонаддувом может достигать более 1000 °C, а использование жидкостного охлаждения турбонагнетателя связано со стоимостью и конструктивными ограничениями.

6.7. Сравнение удельной мощности, PFI и TGDI.

Цикл движения, очевидно, влияет на долговечность турбонагнетателя.Режим работы, который оказался особенно тяжелым, состоит в движении по высокоскоростным автомагистралям/автобанам с периодическими остановками. На высоких оборотах и ​​мощности турбонагнетатель тяжело работает и сильно нагревается. Температура выхлопной турбины может превышать 1000 °C. Когда автомобиль останавливается, воздействие тепла на турбокомпрессор подвергает экстремальному испытанию смазку внутри него. Окисление смазки в таких условиях может привести к значительным отложениям на валу турбокомпрессора и в зоне подшипника, что в конечном итоге приведет к заклиниванию подшипника.На рис. 6.8 показаны два примера, иллюстрирующие улучшение, возможное при использовании смазочного материала более высокого качества.

6.8. Отложения на валу/подшипнике турбокомпрессора, двигатель TGDI.

Если отложения на турбонагнетателе не наносят значительного вреда самому турбонагнетателю, они все же могут вызвать повреждение других частей двигателя. На фотографиях на рис. 6.9 показаны отложения, извлеченные из маслозаборной трубы бензинового двигателя с турбонаддувом. Мелкие твердые частицы характерны для более агрессивной окислительной среды в зоне подшипников турбонагнетателя.Было замечено, что они блокируют сетку маслоприемника и вызывают отложения шлама. Как видно из «пробок» шлама, обнаруженных в приемной трубе, они могут серьезно ограничить подачу масла к масляному насосу двигателя. Также часто наблюдается увеличение отложений шлама в «традиционных» зонах, таких как поддон картера и поверхность головки блока цилиндров.

6.9. Масляные отложения до и после промывки растворителем.

Еще одну иллюстрацию относительной серьезности двигателей TGDI можно увидеть, когда вязкость масла отслеживается в ходе испытания на динамометрическом стенде двигателя, как показано на рис.6.10. Тест проводился с использованием одного и того же топлива и масла для двигателей PFI и TGDI. Характерна форма кривой вязкости. Вначале происходит некоторый сдвиг, а затем масло имеет период относительно стабильной вязкости. В период между 160 и 220 часами вязкость масла в двигателе PFI начинает снижаться, поскольку окисление действительно начинает проявляться. В конце испытания при разборке двигателя выявляются шлам и более твердые отложения в критических зонах двигателя. Двигатель TGDI был испытан по немного другому испытательному циклу, более подходящему для этого типа двигателя.Однако тяжесть цикла считается такой же, как у двигателя PFI. Очевидно, что окисление происходит гораздо более агрессивно, и снижение вязкости происходит намного раньше. Пробег на эквивалентное расстояние по дороге может иметь катастрофические последствия для состояния масла и, следовательно, двигателя. Ситуацию можно значительно улучшить, используя улучшенные рецептуры, включающие более устойчивые к окислению базовые компоненты и более надежные пакеты присадок.

6.10.Испытания на динамометрическом стенде двигателей PFI и TGDI.

Когда топливо впрыскивается во впускное отверстие, оно успевает полностью испариться и не приводит к значительному разжижению топлива. Однако GDI означает, что в цилиндр под высоким давлением впрыскивается мелкодисперсная струя топлива. Достигаются точный контроль и тонкое распыление, но неизбежно возрастает тенденция к тому, чтобы топливные брызги вступали в прямой контакт со стенками цилиндра, увеличивая количество топлива, попадающего в картер для разбавления масла.Отложения на форсунках могут повлиять на точность распыления, еще больше увеличивая склонность топлива к попаданию в масло. Очевидным эффектом такого разбавления топлива является разжижение масла, что является серьезной проблемой, учитывая более высокую нагрузку на подшипники из-за более высокого крутящего момента и более узких шеек. По этой причине OEM-производители часто неохотно снижают вязкость моторного масла, а амбиции по улучшению топливной экономичности ставятся под угрозу, чтобы защитить долговечность двигателя.Состав топлива в сочетании с типом эксплуатации оказывает существенное влияние на то, сколько его остается в масле и какое влияние оно оказывает на смазку.

Проблемы, связанные с этими двигателями, хорошо подытожил Даниэль Капп, директор Ford по исследованиям силовых агрегатов (Kapp, 2010). Он обратился к Североамериканскому обществу трибологов и инженеров по смазочным материалам в мае 2010 года и подчеркнул проблемы, которые эти двигатели (названные Ford EcoBoost™) создают для смазочных материалов.«Смазочные материалы могут продолжать играть очень важную роль, но, возможно, некоторые проблемы немного отличаются», — заметил он. Если мы просто посмотрим на EcoBoosting, мы, безусловно, увидим более высокие рабочие температуры и гораздо более высокие удельные нагрузки. Итак, представьте теперь очень маленькие двигатели, работающие при очень высоких температурах сгорания». Далее он упомянул такие проблемы, как сильное разжижение топлива и высокие удельные нагрузки. В январе 2012 года компания Ford of Europe представила двигатель EcoBoost™ объемом 1 литр, который заменяет двигатели PFI до 1.6 литров. Это типичная тенденция в этой области. Максимальная температура выхлопных газов указана как 1050 °C, а выходная мощность превышает 120 л.с. В статье журнала Automotive Engineer (2012 г.) за январь 2012 г. приводится дополнительная информация. Другие OEM-производители следуют очень похожей стратегии в стремлении к снижению расхода топлива и выбросов CO 2 . Понятно, что они потребуют более качественного масла, чем их предшественники.

Бензиновый двигатель — Energy Education

Движущаяся схема рядного четырехцилиндрового двигателя.Поршни серые, коленчатый вал зеленый, блок прозрачный. [1]

Бензиновый двигатель — это разновидность теплового двигателя, в частности внутреннего сгорания, работающего на бензине. Эти двигатели являются наиболее распространенными способами приведения в движение автомобилей. В то время как турбины могут работать на бензине, бензиновый двигатель относится именно к бензиновым двигателям с поршневым приводом.

Бензиновые двигатели во многом являются причиной того, что мир берет так много нефти из-под земли для переработки в нефтепродукты, такие как бензин.Во всем мире транспорт составляет примерно 18% нашего потребления первичной энергии, а бензин — немногим меньше половины этого объема. [2] Это означает, что бензиновые двигатели потребляют примерно 8% всей первичной энергии в мире.

Анатомия двигателя

Блок

Блок является основой двигателя. Это большой металлический блок, обычно алюминиевый или стальной (в Формуле-1 используется магниевый сплав), с прорезанными в нем отверстиями для цилиндров.

Цилиндры

Работа выполняется в цилиндрах двигателя.Топливо впрыскивается в цилиндры, где оно воспламеняется свечами зажигания, которые перемещают поршни, совершая работу.

Поршни

Поршни — это устройства, которые скользят вверх и вниз внутри цилиндров. Их работа состоит в том, чтобы скользить внутрь и наружу, соединенные с коленчатым валом, чтобы превращать горящий бензин в работу.

Свечи зажигания

Работа свечи зажигания заключается в воспламенении топлива внутри цилиндра. Быстрое расширение топлива из-за создаваемого тепла воздействует на поршень, отодвигая его от свечи зажигания.

Распределительный вал

основной артикул

Распределительный вал — это устройство, которое управляет синхронизацией двигателя. Работа распределительного вала заключается в регулировании подачи топлива в двигатель и выпуска выхлопных газов.

Форсунки

Топливная форсунка предназначена для распыления топлива. Это означает превращение жидкого топлива в туман, что резко увеличивает площадь его поверхности. Это позволяет топливу сгорать быстрее, давая больший импульс поршню.

Коленчатый вал

основной артикул

Коленчатый вал — это клей, соединяющий части двигателя. Его цель состоит в том, чтобы превратить прямолинейное (вверх и вниз) движение поршней во вращательное движение. Один конец коленчатого вала прикреплен к распределительному валу через зубчатый ремень. Другой конец подключен к маховику, который регулирует мощность, выходящую из двигателя, что-то вроде защиты от перенапряжения для вашего компьютера.

Маховик

Маховик — это устройство управления мощностью двигателя.Он соединен со сцеплением, которое соединено с коробкой передач. Чтобы узнать больше о том, как двигатель передает свою мощность на колеса, нажмите здесь.

Для дальнейшего чтения

Ссылки

Как работают автомобильные двигатели?

Бензиновый двигатель

Бензиновый двигатель — это тип двигателя внутреннего сгорания. Бензиновый двигатель имеет 4 основных такта: впуск, сжатие, сгорание и выпуск. Бензин легко смешивается с воздухом, поэтому он может воспламениться даже при небольшой искре.В результате бензиновый двигатель имеет свечу зажигания для воспламенения воздушно-топливной смеси. Вот как работают четыре такта бензинового двигателя.

 

1. Впуск

Впускной клапан открывается и топливно-воздушная смесь всасывается в цилиндр.

 

2. Сжатие

Впускной клапан закрывается и топливно-воздушная смесь сжимается поршнем.

   

3. Сжигание

На этом этапе смесь воздуха и топлива взрывается, и мощность, создаваемая взрывом, заставляет поршень двигаться вниз.

 

4. Выхлоп

Дымовые газы в цилиндре удаляются через клапан.

 

Дизельный двигатель

Работа дизельного двигателя аналогична работе бензинового двигателя, но они немного отличаются способом воспламенения топливно-воздушной смеси. В бензиновых двигателях воздух и топливо предварительно смешиваются перед всасыванием в цилиндр. С другой стороны, дизельные двигатели используют топливные форсунки для распыления топлива в цилиндр.Поскольку в дизельных двигателях нет свечи зажигания, они должны иметь более высокую степень сжатия, чтобы обеспечить достаточное сжатие воздушно-топливной смеси для воспламенения.

 

Электрический и гибридный автомобиль

У электромобилей нет двигателя внутреннего сгорания, вместо этого у них есть электродвигатель, так как они работают на электричестве. Аккумуляторная батарея внутри автомобиля хранит электрическую энергию и питает электродвигатель. Аккумулятор заряжается путем подключения к зарядной станции.

 

Напротив, в гибридных автомобилях используется как двигатель внутреннего сгорания, так и электродвигатель. Таким образом, две разные системы работают в гармонии, приводя транспортные средства в движение. Аккумуляторы в гибридных автомобилях не нужно подключать, так как их заряжает двигатель внутреннего сгорания.

Как работают автомобильные двигатели? — Теперь из общенационального

Несмотря на относительно простое управление, автомобили на самом деле очень сложные машины. Автомобили нуждаются в топливе для работы, но что на самом деле делает с ним двигатель?

В общем, стандартный двигатель внутреннего сгорания, который сегодня используется в большинстве транспортных средств, работающих на топливе, использует воздух в сочетании с бензином для производства энергии.[1] Конечно, все становится сложнее.

Компоненты двигателя

Перед тем, как углубиться в работу автомобильного двигателя, полезно изучить его базовую анатомию (что также важно, если вам нужно выполнить какое-либо техническое обслуживание автомобиля). Взгляните на схему двигателя автомобиля ниже, а затем просмотрите список основных компонентов двигателя и их функции:

 

  • Блок цилиндров: Блок цилиндров обычно изготавливается из железа или алюминия и содержит большинство деталей, обеспечивающих работу двигателя, включая цилиндры, поршни, коленчатый и распределительный валы.[2] (Если вы открываете капот, генератор переменного тока обычно крепится к передней части блока цилиндров.)
  • Головка блока цилиндров: Головка блока цилиндров включает в себя компоненты, управляющие потоками всасываемого воздуха и выхлопных газов, такие как клапаны и распределительные валы.[2]
  • Коленчатый вал: Коленчатый вал преобразует движение поршней вверх-вниз в соответствующее круговое движение. Он прикреплен к поршням через шатун.[2]
  • Шатуны: Шатун крепит коленчатый вал к поршням.Он вращается на каждом конце, что дает ему возможность перемещаться с обоими компонентами.[3]
  • Поршни: Поршни двигаются вверх и вниз внутри цилиндра, передавая энергию коленчатому валу, который, в свою очередь, приводит автомобиль в движение. Поршневые кольца, расположенные внутри поршней, помогают герметизировать края цилиндра и уменьшают трение во время движения.[2],[3]
  • Свечи зажигания: Свечи зажигания вызывают сгорание, создавая искру, которая воспламеняет поступающую смесь воздуха и топлива.[3]
  • Топливные форсунки : Топливная форсунка подает топливо в двигатель. В процессе он превращает топливо в крошечные туманообразные частицы, чтобы его легче сжигать в двигателе.[4]
  • Клапаны: В двигателе есть два типа клапанов: впускные клапаны и выпускные клапаны. Первый пропускает воздух и газ в двигатель; последний выпускает выхлоп.
  • Распределительный вал: Распределительный вал контролирует открытие и закрытие клапанов.Для этого он преобразует круговое движение коленчатого вала в движение вверх-вниз, открывающее и закрывающее клапаны.[2]
  • Ремень или цепь ГРМ: Ремень или цепь ГРМ проходит между распредвалом и коленчатым валом, обеспечивая их синхронную работу.[2]

Процесс четырехтактного двигателя

Большинство двигателей внутреннего сгорания работают по четырехступенчатому циклу. Эти шаги формально известны как ходы по отношению к четырем движениям, которые поршень совершает для завершения каждого цикла.Такты происходят в следующем порядке: впуск, сжатие, сгорание, выпуск.

При каждом такте поршень перемещается вверх или вниз внутри цилиндра, двигаясь вместе с впуском воздуха и топлива или выпуском выхлопных газов. Вот обзор того, как работает этот процесс[1]:

1. Такт впуска

Во время такта впуска поршень смещается вниз, а впускной клапан открывается, пропуская поток бензина и воздуха. Как только поршень достигает основания цилиндра, клапаны закрываются, герметизируя смесь бензина и воздуха.(Стоит отметить, что в некоторых современных автомобилях бензин впрыскивается позже, во время такта сжатия.)

2. Такт сжатия

В этот момент поршень движется обратно вверх, чтобы сжать газ и воздух к верхней части цилиндра. Проталкивание этой смеси в более ограниченное пространство подготавливает ее к воспламенению в такте сгорания.

3. Такт сгорания

Также известный как рабочий ход, рабочий ход — это то, что действительно создает мощность вашего двигателя и заставляет автомобиль двигаться.Здесь свеча зажигания воспламеняет газ. Возникающее в результате тепло и расширяющийся газ заставляют поршень двигаться вниз по цилиндру.

4. Такт выпуска

Когда поршень достигает дна цилиндра, открывается выпускной клапан, и поршень может откачивать отработавшие газы из двигателя. Оттуда газы попадают в выхлопную систему и выходят из автомобиля. Наконец, выпускной клапан закрывается, и четырехтактный цикл повторяется.

Различные типы автомобильных двигателей

Хотя все двигатели внутреннего сгорания в целом работают одинаково, существует несколько различных типов двигателей.При обсуждении двигателей, которые чаще всего используются в личных транспортных средствах, различия в основном связаны с расположением цилиндров. Например, цилиндры рядных двигателей расположены прямо, в то время как в двигателях V-образного типа цилиндры разделены на две группы и образуют V-образную форму. Другие двигатели будут регулировать определенные механизмы, такие как фазы газораспределения или количество воздуха, добавляемого в четырехтактный цикл, для повышения эффективности или мощности.

Знание того, как работает автомобильный двигатель, может оказаться полезным, когда придет время покупать следующую машину, особенно если вы покупаете ее у частного лица, а не у дилера.Узнайте, как купить автомобиль у частного продавца.

 

[1] «Вот как работает двигатель вашего автомобиля» (17 апреля 2019 г.)

[2] «Запчасти для автомобильных двигателей» (по состоянию на 24 сентября 2020 г.)

[3] «Как работают автомобильные двигатели» (по состоянию на 24 сентября 2020 г.)

[4] «Как работают системы впрыска топлива» (по состоянию на 24 сентября 2020 г.)

.

Добавить комментарий

Ваш адрес email не будет опубликован.

2022 © Все права защищены.