Электродвигатель как работает: типы, устройство, принцип работы, параметры, производители

Содержание

9 типичных неисправностей электродвигателя и способы их устранения

В этом обзоре мы рассмотрим типичные неисправности трехфазных асинхронных электродвигателей и способы их предупреждения и устранения.

Электрические неисправности электродвигателя

Электрические неисправности двигателя всегда связаны с обмоткой.

  1. Межвитковое замыкание может возникнуть при ухудшении изоляции в пределах одной обмотки. Возможные причины: перегрев обмотки, некачественная изоляция, износ изоляции вследствие вибрации. Определить межвитковое замыкание бывает сложно. Основной метод диагностики – сравнение сопротивления и рабочего тока всех трех обмоток. Первые симптомы межвиткового замыкания – повышенный нагрев двигателя и падение момента на валу. При этом по одной из фаз ток больше, чем по двум другим.
  2. Замыкание между обмотками происходит из-за смещения обмоток, механической вибрации и ударов. При отсутствии должной электрической защиты может возникнуть короткое замыкание и пожар.
  3. Замыкание обмотки на корпус
    . При данной неисправности электродвигатель может продолжать работать, если неправильно выполнены заземление и защита от короткого замыкания. Однако в работе он будет смертельно опасен, так как его потенциал будет находиться под фазным напряжением.
  4. Обрыв обмотки. Эта неисправность равносильна пропаданию фазы. Если обрыв происходит в работе, то двигатель резко теряет мощность и начинает перегреваться. При правильно выполненной защите двигатель отключится, поскольку ток по другим фазам будет повышен.

Для устранения большинства из этих поломок требуется перемотка двигателя.

Механические неисправности электродвигателя

Механические неисправности электродвигателя связаны с его конструкцией.

  1. Износ и трение в подшипниках. Проявляется в повышении механической вибрации и шума при работе. В этом случае требуется замена подшипников, иначе неисправность приведет к перегреву и падению производительности двигателя.
  2. Проворачивание ротора на валу. Ротор может вращаться в магнитном поле статора, а вал будет неподвижен. Требуется механическая фиксация ротора на валу.
  3. Зацепление ротора за статор. Эта проблема связана с механической поломкой подшипников, их посадочных мест или корпуса двигателя. Кроме того, подобная неисправность приводит к повреждению обмотки статора. Практически не подлежит ремонту.
  4. Повреждение корпуса двигателя
    . Может происходить из-за ударов, повышенных нагрузок, неправильного крепления или низкого качества двигателя. Ремонт является трудоемким из-за трудностей соосной установки переднего и заднего подшипников.
  5. Проворачивание или повреждение крыльчатки обдува. Несмотря на то, что двигатель продолжит работать, он будет перегреваться, что существенно сократит срок его службы. Крыльчатку необходимо закрепить (для этого используется шпонка или стопорное кольцо) или заменить.

Аварийные ситуации при работе электродвигателя

Существуют неисправности, не связанные непосредственно с двигателем, но влияющие на его работу, характеристики и срок службы. Большинство этих неисправностей вызваны механической перегрузкой, увеличением тока, и, как следствие, перегревом обмоток и корпуса.

  1. Увеличение нагрузки на валу вследствие заклинивания привода либо приводимых механизмов.
  2. Перекос напряжения питания, который может быть вызван проблемами питающей сети либо внутренними проблемами привода.
  3. Пропадание фазы, которое может произойти на любом участке питания двигателя – от питающей трансформаторной подстанции до обмотки двигателя.
  4. Проблема с обдувом (охлаждением). Может возникнуть из-за повреждения крыльчатки двигателя при собственном охлаждении, из-за останова вентилятора внешнего принудительного охлаждения или вследствие значительного повышения температуры окружающей среды.

Способы защиты электродвигателя

Для защиты электродвигателя от внутренних и внешних неисправностей, а также для минимизации дальнейших трудозатрат по его ремонту применяют различные устройства.

1. Мотор-автоматы и тепловые реле

Мотор-автоматы (автоматы защиты двигателя) и тепловые реле используют для обнаружения превышения тока по одной или всем фазам двигателя. В случае превышения через некоторое время происходит отключение привода.

В отличие от мотор-автомата, у теплового реле нет силовой коммутации. Оно имеет только управляющий контакт, который размыкает питание силовой цепи. Мотор-автомат является самостоятельным коммутационным устройством, способным выключать двигатель.

Минус теплового реле заключается в отсутствии защиты от короткого замыкания. Мотор-автомат имеет защиту от перегрузки и электромагнитную защиту от короткого замыкания, которая мгновенно срабатывает и выключает двигатель при превышении тока уставки в 10-20 раз.

Данные устройства используются наиболее широко и при правильной установке и настройке способны с большой долей вероятности защитить электродвигатель и оборудование от поломки и других негативных последствий.

2. Электронные реле защиты двигателей

Данный вид защиты обеспечивает большой выбор различных защит. Основным элементом таких реле является микропроцессор, который анализирует мгновенные значения напряжения и тока и принимает решения на основе заданных настроек. Это может быть выдача сигнала на индикацию либо на отключение двигателя.

3. Термисторы и термореле

Когда по какой-то причине не сработала тепловая защита по перегрузке, последний рубеж обороны — термозащита. Внутрь обмотки устанавливается термочувствительный элемент (как правило, термистор или позистор), который меняет свое сопротивление в зависимости от температуры. При пересечении порога срабатывает соответствующая защита, и двигатель отключается.

Возможно применение более простых дискретных термореле (термоконтактов), которые размыкают контрольную или тепловую цепь, что приводит к аварийной остановке электродвигателя.

4. Преобразователи частоты

Обычно преобразователи частоты располагают несколькими видами защиты – по превышению момента и тока, по превышению напряжения, обрыву фазы и проч. Кроме того, возможно ограничение момента и тока. В этом случае на двигатель будет подаваться напряжение с меньшим уровнем и частотой, если будет обнаружена перегрузка. При этом будет выдано соответствующее сообщение оператору, а двигатель может продолжать работать.

Также производители частотных преобразователей рекомендуют устанавливать защитный автомат на входе ПЧ, тепловое реле на выходе и термисторную защиту.

Другие полезные материалы:
Выбор электродвигателя для компрессора

Как определить параметры двигателя без шильдика?
Выбор мотор-редуктора для буровой установки

Асинхронный электродвигатель постоянного тока 220В и 380В.

Электродвигатель – машина, преобразовывающая энергию электромагнитного поля во вращательное движение (электрический двигатель). Это, пожалуй, наиболее гениальное изобретение, позволившее человечеству сделать цивилизационный скачок в индустриальное общество. Коэффициент его полезного действия составляет 95-98 процентов.

Основа принципа действия

В основе принципа действия любого электрического двигателя лежит феномен электромагнитной индукции. Если скрутить любой проводник в кольцо и через него протащить магнит, то в нем возникнет электрический ток, направление течения которого будет противоположно движению магнита. Верно и обратное: прохождение электричества через проводник вызывает индуцирование ЭДС в металлическом стержне.

Этот эффект был открыт в 1832 году английским физиком Майклом Фарадеем, создавшим прибор, состоящий из постоянного магнита и бронзового диска, помещенного между его полюсами. При вращении диска с подключенных к нему проводов снималось небольшое напряжение и переменный ток большой силы. Поэтому диск Фарадея называют еще и униполярным генератором, который при всей архаичности конструкции до сих пор используется. Например, в установках ТОКАМАК для разогрева плазмы и рельсотронах – разновидности оружия.

Электрический двигатель постоянного тока

Если к диску Фарадея подключить гальваническую батарею, то он совершит один оборот – до того момента, как совпадут разноименные полюса – ее и магнита. Электродвигатель постоянного тока в своей работе использует эффект отталкивания одноименных полюсов магнита. Чтобы вращение стало непрерывным, на его роторе закреплено особое устройство (коллектор) – кольцо из металла, поделенное на сектора диэлектриком.


Питающее напряжение подводится к коллектору посредством скользящих контактов – щеток. Когда вал машины поворачивается, сектора коллектора меняются местами и полюса остаются разноименными. Поэтому вращение продолжается. Скорость вращения ротора машин постоянного тока зависит от количества обмоток на нем. Каждая из них представляет собой своеобразный диск Фарадея и подключена к своей паре пластин коллектора.

Если ее мощность электрической машины невелика, то статорные магниты делают из природного металла с соответствующими свойствами. В промышленных машинах постоянного тока используются электромагниты – катушки из проводников. Они питаются тем же напряжением, что и катушки ротора.

Двигатели переменного тока

Конструкция электродвигателя переменного потом электроэнергии выглядит как бы вывернутой наизнанку по отношению к машинам постоянного тока. Питающее напряжение в нем подводится к статорным обмоткам, а принцип действия основан не на отталкивании одноименных полюсов магнита, а на притягивании имеющих противоположный знак.


Магнитное поле статора машины переменного тока вращается. Этот феномен возникает в результате сложения векторов магнитной индукции нескольких переменных токов, фазы синусоид которых сдвинуты друг относительно друга на некоторый угол – 900, если питание двухфазное, и 600 при трехфазном напряжении. Величины углов объясняются просто: отдельная обмотка генератора переменного тока состоит из двух катушек, а на статоре они расположены диаметрально противоположно. Если поделить 3600 на четыре (две обмотки) или на шесть (три обмотки), то получим исходные значения.

Магнитное поле ротора индуцируется  энергией в статорных обмотках и имеет два свойства:

  1. Оно противоположно статорному по знаку.
  2. Отстает от статорного, поскольку на его индукцию требуется некоторое время, а сам ротор имеет физический вес и по этой причине обладает моментом инерции.
Полюса магнитного поля ротора стремятся притянуться к противоположным полюсам статорного, но эта своеобразная погоня никогда не может закончиться по двум причинам:
  1. Линейная скорость ротора ниже из-за разницы в размерах.
  2. Существуют потери энергии в воздушном зазоре между деталями машины.

Угол рассогласования между ротором и статором достигает 180, из-за его наличия электродвигатели переменного электричества называют асинхронными.

Наиболее распространенной конструкцией является электрическая машина, обмотка ротора которой состоит из нескольких проводников, замкнутых двумя металлическими кольцами. По форме она похожа на так называемое беличье колесо. Таковы все общепромышленные электродвигатели. Они просты, но имеют неустранимый недостаток: большие пусковые токи, которые приводят к перегрузкам в сети и авариям.

Двигатели с фазным ротором запускаются плавно, без перегрузок, но они сложны и дороги. Применяются для обеспечения больших тяговых усилий. Например, в крановом оборудовании или на электротранспорте.

Видео — как работает Электродвигатель:

Как правильно эксплуатировать электродвигатель

Асинхронный электродвигатель на сегодня является наиболее широко используемым двигателем в промышленности и строительстве. Чтобы устройство было всегда в форме и не пришлось его отправлять на свалку в результате преждевременного износа, хорошие хозяева проявляют заботу о нём и эксплуатируют правильно. В этой статье мы обсудим, как правильно эксплуатировать электродвигатель во избежание возникновения неполадок при его работе.

Условия работы электрического двигателя

Электрический двигатель будет в полной мере соответствовать характеристикам, указанным в паспорте, если его, прежде всего, правильно установить и использовать. Условия обеспечения номинальных параметров двигателем следующие:

— колебания напряжения питающей сети электрического тока, к которой подключен агрегат, не должны превышать 5% от номинала;

— максимально допустимая температура воздуха, окружающего конструкцию, должна быть не более +350 С;

— во избежание перегрузки мотора необходимо следить за показаниями амперметра, не допуская увеличения силы тока более 5% от номинала;

— корпус устройства надежно следует заземлить и регулярно проверять сопротивления заземления;

— конструктивные элементы, изготовленные из коррозируемых материалов, необходимо покрыть краской. Коррозия всегда начинается на поверхности металла, а затем распространяется вглубь, ухудшая механические свойства материала;

— кабельные сети, по которым поступает питающее напряжение, следует надёжно изолировать и защитить от случайных механических повреждений. Подключение выполнить напрямую к контактным зажимам двигателя, находящимся в коробке.

Элементарные правила эксплуатации в отношении своего двигателя

Правильная эксплуатация электродвигателя обеспечивает его надёжную работу в течение всего установленного ресурса. До включения устройства в работу обязательно проверить:

— чистоту и отсутствие ненужных предметов на корпусе и рядом;

— состояние заземления;

— качество крепления статора.

Первый запуск электродвигателя лучше доверить специалисту, который будет обслуживать все движущиеся механизмы.

Рекомендации по эксплуатации асинхронных электродвигателей:

  1. У работающего двигателя основные электрические и механические показатели должны быть следующими:

— температура нагрева статора не более 900 С;

— вибрация в пределах нормы, а именно в соответствии с количеством оборотов двигателя;

— вращение ротора бесшумное, без скачков;

— установленная заводом-изготовителем величина нагрузки;

— отсутствие искрения щёток у коллекторных двигателей.

  1. Защита электрических цепей осуществляется плавкими вставками. Значение тока по номиналу пишется на вставке.

  2. Аварийное отключение электродвигателя производится в следующих случаях:

— появился сильный запах горения, дым, искры, огонь;

— повышенный уровень вибрации, из-за которого возможно разрушение двигателя;

— выход из строя электропривода;

— резкое снижение оборотов и повышенный нагрев.

Владелец также обязан планировать профилактические ремонты, которые повышают надёжность оборудования.

Некоторые двигатели используются крайне редко. Как поступать в этом случае? Рекомендуется постоянно осматривать, проверять сопротивление изоляции и запускать устройства, что позволит при необходимости без промедления их использовать.

Вывод

Конструкция асинхронного электродвигателя простая и надёжная. И, если соблюдать правила эксплуатации, в том числе не превышать основные электрические и механические параметры, установленные изготовителем, то срок его службы можно будет увеличить.

Электродвигатели

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Как работает электродвигатель [на понятном языке] | Инженерные знания

Вокруг нас становится всё больше электродвигателей. Вместе с безнадежным устареванием бензиновых агрегатов в мире транспорта, появляются и принципиально новые сферы использования электродвигателей. Многие высокотехнологичные электронные устройства используют такие двигатели для самых различных целей, например чтобы реализовать работу вибровызова у смартфона.

Полезно и интересно разобраться в логике функционирования этого нехитрого, но крайне востребованного сегодня устройства. Давайте опустим все сложные высказывания и формулировки, а попробуем на простом языке сформулировать основы функционирования электрических агрегатов.

Ротор электродвигателя

Ротор электродвигателя

Начнем с самого простого. Наверняка каждый из читателей игрался с магнитиками и обращал внимание, что в одну сторону магниты притягиваются, а в другую сторону магниты отталкиваются. Говоря научным языком — полюса магнита, имеющие одинаковые знаки, отталкиваются, а полюса магнита с разными знаками притягиваются.

Поведение магнитов

Поведение магнитов

Причину этого явления объясняют спецификой поведения зарядов. Но полностью объяснить природу взаимодействия пока не получилось. Да нам и не нужно сейчас это делать. Для нас важен сам факт подобного явления. Обратите внимание, что отталкиваются магниты гораздо раньше, чем будут подведены друг к другу вплотную. Всё дело в линиях магнитной индукции.

Линии магнитной индукции

Линии магнитной индукции

Теперь представим, что мы разместили магнитики таким образом, когда возможно использовать эту силу отталкивания нам во благо. Один магнитик поместили на ось, а второй поставили где то рядом. Вектора действующих сил распихали таким образом, что они по касательной толкают ось и заставляют её крутиться. Получилось, что система будет вращаться при правильном подборе точек расположения магнитов. Эффект напоминает раскручивание карусели, на котором катаются дети. Когда карусель с ребенком проходим мимо папы, он подкручивает систему и поддерживает вращение. Замени мы папу одним магнитом, а ребенка другим того же полюса — выйдет модель электродвигателя.

Может сложиться неправильное представление, что мы получили вечный двигатель. На самом деле это не так. Мы не сможем без прочих ухищрений заставить эту систему работать постоянно из-за потери энергии на сторонние факторы.

Теперь представим, что нам нужно управлять такой моделью. Ведь когда магниты постоянные, мы не сможем регулировать процесс вращения. Да и оптимизировать его не получится. Поэтому, мы прибегнем к помощи электромагнита. Электромагнит может создавать поле тогда, когда нам это нужно. Нажали на кнопочку — ток проходит через цепь и формируется магнитное поле.

Логика работы электромагнита

Логика работы электромагнита

Но в более простом случае рационально использовать рамку с током. Там начинает работать закон Ампера, а род взаимодействия будет таким же. Вспомним, что закон Ампера описывает влияние магнитного поля на проводник с током. Он описывает силу, которая будет действовать на проводник с током со стороны магнитного поля.

Закон Ампера

Закон Ампера

Теперь представим, что мы взяли рамку с током и поместили её в магнитное поле. Рамка с током представляет собой проводник, который оказался в магнитном поле. Пропускаем через рамку ток и поле начинает воздействовать с некоторой силой на этот проводник. Если рамка замкнутая, то ток меняет в ней свой направление.

Смена направления тока

Смена направления тока

Получается, что на рамке формируется вращающий момент. Ведь когда направление тока в проводнике меняется, меняется и направление вектора силы, воздействующей со стороны магнитного поля.

Если разместить рамку правильно, то появится именно крутящий момент. Если нет — поле будет гнуть рамку. Наша задача «снять» крутящий момент. Для этого рамку нужно правильно расположить или увеличить количество рамок. Тогда одна из них обязательно попадет в нужное положение.

Кстати, это магнитное поле формируется неподвижными постоянными магнитами статора двигателя.

Простейший электродвигатель

Простейший электродвигатель

Вращающаяся часть будет называться ротором или якорем. Неподвижная на корпусе — статором. Приведенная модель является рабочей моделью двигателя постоянного тока. В реальной схеме всё организовано точно также, только якорь имеет множество таких рамок внутри своей конструкции. Полезно прочитать эту статью.

Рамки внутри ротора

Рамки внутри ротора

Но есть одно несчастье. Подключи мы такую модель к источнику переменного напряжения, и получим не равномерное движение, а постоянные рывки. Всё дело в том, что переменный ток постоянно меняет своё направление.

Направление сил, воздействующих на ротор, тоже будет меняться.

В случае с электродвигателями переменного тока конструкция строится немного иначе.

Обмотка располагается не на роторе, а на статоре. Пропуская через обмотку статора электрический ток, мы получим пульсирующее магнитное поле. Ток, как и в примере выше, меняет своё направление. Ведь намотка выполнена тоже как рамка. И потому актуальна картинка про смену направления электрического тока. Магнитное поле тоже будет направлено в разные стороны.

Схема обмотки статора и направление тока

Схема обмотки статора и направление тока

Если в такое поле поместить магнитик или ротор особой конфигурации (колесо для грызуна, в котором индуцируется ток сам) опять получим описываемый ранее эффект и крутящий момент. Только обмоток нужно много, чтобы «толкались» они одна за другой. Тогда оно будет пульсировать и подпихивать наш якорь. Получили опять вращающий момент. Вуаля!

Электродвигатель стиральной машины не работает: причины

Чтобы проводить грамотный ремонт электродвигателя, нужно понять, какая конкретно проблема привела к неисправности. Если:

1) Электродвигатель при включении гудит, но барабан не вращается. Главные причины сбоя в работе двигателей:

  • a) Вода попадает в роторный подшипник. Эта самый частый дефект двигателей. Барабан при вращении в режиме отжима начинает сильно шуметь. Подшипник может заклинить, и тогда барабан вообще не будет крутиться.
  • b) Изнашиваются или повреждаются ламели коллектора. Данный дефект вызывает искрение и со временем полностью ломает двигатель. Привести к этой проблеме могут перегрузки двигателя, когда стиральная машина работает часто и без пауз. Узнать об изношенных ламелях можно так: когда снятый с машины ротор двигателя вращается, его щетки «клацают» о ламели со специфическим звуком. Серьезная изношенность детали не подлежит ремонту, и двигатель нужно менять.

2) Наблюдается слишком высокая или слишком низкая скорость вращения барабана в режиме стирки. Причем скорость в режиме стирке и при отжиме может стать почти одинаковой, что нередко осложняет жизнь хозяевам автоматических машин. Это ненормально и говорит о неисправности тахогенератора в двигателе.

Как понять, что проблема заключается именно в тахогенераторе? Набирается вода, начинается стирка, но в самом ее начале резко повышается скорость вращения барабана. И такой темп может держаться до самого конца стирки. Бывает, что скорость повышается не каждый раз, но это не меняет ситуацию. Ремонта вряд ли удастся избежать. В тахогенераторе раскручивается магнит, контакты окисляются, нарушается электрическое питание.

В такой ситуации ремонт своими силами возможен, только если хозяин техники имеет электротехнические знания и опыт. Кроме того, желательно знать особенности конкретной модели стиральной машины. Могут понадобиться и специальные инструменты для диагностики и ремонта. В любом случае самый безопасный и надежный вариант – позвонить, проконсультироваться и вызвать специалиста.

Простейший электродвигатель

Долго тянется время на отдыхе (на работе)? Вот трюк, который заставит ваших  друзей (коллег) улыбнуться.
Униполярные двигатели и генераторы проще, чем их многополярные родственники, но они очень редко используется на практике. Тем не менее, они явно иллюстрируют принципы действия, а также их легко сделать, и легко понять.
Для того, чтобы сделать простейший электродвигатель, необходимо иметь:
один винт для гипсокартона, одну 1.5  вольтовую щелочную батарейку, 15 сантиметровый обычный медный провод,один неодимовый магнит дисковой формы .Никаких других инструментов и расходных материалов не потребуется. Вам понадобится не более 30 секунд, чтобы  электродвигатель заработал при скорости вращения более десяти тысяч оборотов в минуту. Сможете ли вы это сделать?
Давайте сделаем шаг назад. Наиболее распространенный тип электродвигателя постоянного тока — щеточный электродвигатель. Этот тип электродвигателя вы найдете внутри почти во  всем, что движется (или вибрирует) и работает от батареек. Этот тип двигателя притягивает электромагнит к постоянному магниту. Когда оба достаточно близко, полярность тока через электромагнит меняется, так что теперь отталкивается постоянный магнит, и таким образом сохраняется поворот. Сделать рабочую модель довольно легко.
«Простейший в мире двигатель» просто выключает ток для половины цикла, разрешая угловому моменту вращающегося якоря двигателя довести его до конца. Но в действительности он не самый простой двигатель. Настоящим победителем является униполярный двигатель.
Итак, вы подготовили следующие инструменты и материалы:

один  ферримагнитный винт, одна батарейка, медная проволока и 1 неодимовый магнит дисковой формы. Лучше использовать  винт для гипсокартона, так как он имеет плоскую головку и лучше  будет видно его кручение. Также можете использовать гвоздь. Батарейка может быть любого типа; щелочная батарейка прекрасно работает и ее удобно держать. Практически любой медный провод нормально подойдет для этой цели. В данном примере использовался провод с частично снятой красной изоляцией, это легко увидеть на фотографиях. Голый медный провод также хорошо подойдет.

Лучшим магнитом для этой работы есть неодимовый магнит дисковой формы с проводящим покрытием.  Вы можете найти его в разных пластиковых игрушках, вытащить из наушников  или купить в одном из многочисленных магазинов. Обычные керамические магниты, скорее всего, будут слишком слабые, так что лучше используйте неодимовый.

Установите винт на магнит, согните проволоку.

Приложите магнит к одному концу батарейки. Слабый контакт в одной точке, который вы делаете, служит низким коэффициентом трения скольжения. На рисунке прикрепление сделано снизу, но можно прикрепить и сверху (если вы так сделаете, то двигатель будет вращаться в противоположном направлении. Вы можете также изменить направление, перевернув магнит на другую сторону).
Чем тяжелее ваш комплекс «магнит плюс винт», тем ниже будет трение, вплоть до значения, когда магнит не будет достаточно сильным, чтобы дальше их удерживать. Это происходит потому, что сила трения пропорциональна нормальной силе. Другими словами, чем больше магнит, тем, как правило, лучше.

Прижмите и удерживайте верхний конец провода c верхним концом батарейки, делая электрическое соединение верхнего конца батарейки с проводом.

Здесь мы идем следующее: легкое прикосновение свободного конца провода к  боковой поверхности магнита. Магнит и винт начинают вращаться немедленно. Так мы можем получить  до 10000 оборотов в  секунду.  Берегитесь: винт и магнит может легко вылететь из рук, а вам  ненужно, чтобы винт вас поранил.
Также отметим, что некоторые компоненты, такие как проволока, могут  очень  сильно нагреваться. Наденьте защитные очки и следуйте здравому смыслу!

Как это работает?
Когда вы делаете прикосновение провода с боковой поверхностью магнита, вы делаете замыкание электрической цепи. Электрический ток из батарейки течет вниз через винт, через боковую поверхность магнита к проволоке и через провод к другому концу батарейки. Магнитное поле от магнита ориентировано через плоские грани, так что оно параллельно оси симметрии магнита. Электрический ток течет через магнит в направлении от центра магнита к краю, таким образом, он течет в радиальном направлении,  перпендикулярно к оси симметрии магнита. Магнитное поле  воздействует на подвижные электрические  заряды: они испытывают силу, которая перпендикулярна направлению движения и магнитному полю. Так как поле направлено вдоль оси симметрии магнита,  а заряды движутся радиально наружу от этой оси, то сила имеет тангенциальное направление, так что магнит начинает вращаться.


История

Униполярный двигатель был первым электрическим двигателем. Принцип действия был  продемонстрирован Майклом Фарадеем в 1821 в Королевском институте в Лондоне.

Источник

Электродвигатель BMW 5-го поколения работает без редкоземельных магнитов

Новый и самый мощный электро-кроссовер BMW iX M60, впервые представленный на CES 2022, получит два фирменных электромотора пятого поколения, суммарной мощностью 455 кВт/619 л.с. и максимальным крутящим моментом 1100 Нм. Автомобиль разгоняется от 0 до 100 за 3,8 секунды и может проехать до 575 километров без подзарядки. Максимальная скорость — 250 км/ч.

Чтобы достичь таких впечатляющих показателей, BMW разработала электрический безмагнитный двигатель, который сочетает чувствительность старой школы с технологиями современных электромоторов. И в нем не используются редкоземельные металлы, пишет MotorTrends.

BMW Gen5 eDrive работает как трехфазный синхронный двигатель переменного тока, и в то же время содержит щетки и коммутатор для питания обмоток ротора. Компания надеется, что современные материалы и новые технологии герметизации обеспечат более длительный срок службы нового двигателя. В коллекторном моторе «минусом» было то, что щетки и коллекторы изнашивались и образовывалась пыль, вследствие чего периодически их нужно менять. Но щеточные модули нового электродвигателя BMW размещены в герметичном отсеке, что исключает попадание пыли внутрь проводки статора/ротора.

По словам автопроизводителя, двигатель пятого поколения имеет большую плотность энергии, лучшую теплоотдачу и более высокую частоту переключения. Все это дает более высокие обороты, большие крутящий момент и мощность.

Также технология BMW eDrive пятого поколения включает приводной блок, в котором электродвигатель, системная электроника и трансмиссия объединены в центральный корпус.

Люксовый бренд Bentley еще в 2020 году представил конструкцию электродвигателя, в которой не используются редкоземельные магниты. А в 2021 году немецкая компания Mahle разработала автомобильный электромотор без постоянных магнитов.

Редкоземельные металлы все труднее добывать. Китай контролирует более 90% мировых запасов. Поэтому различные компании ищут способы обойтись без них.

Итоги года на ITC.ua: ТОП-10 лучших автомобилей и электромобилей

Как работает коллекторный двигатель постоянного тока

Добавлено 4 июля 2019 в 15:29

Сохранить или поделиться

Узнайте все преимущества и недостатки коллекторного электродвигателя для вашего проекта.

Если вы работаете над проектом, в котором есть движущаяся часть, вы, вероятно, будете искать двигатель, чтобы сделать это движение возможным. В этой серии статей мы рассмотрим наиболее популярные типы двигателей, которые используют разработчики. Прежде всего, это коллекторный двигатель постоянного тока.

Чтобы узнать, для каких проектов лучше всего подходят коллекторные двигатели постоянного тока, ознакомьтесь с обзором:

Самый простой тип электродвигателя (и самый распространенный) – это коллекторный двигатель постоянного тока. Вы можете найти этот двигатель везде. В вашем телефоне, вероятно, тоже есть один, обеспечивающий функцию вибрации. Коллекторные двигатели постоянного тока используются практически в любой движущейся игрушке. Аккумуляторные дрели работают на коллекторных двигателях постоянного тока.

Коллекторные двигатели постоянного тока используются везде: в игрушках, в чем-либо с вибрирующим мотором, в таких обычных инструментах, как аккумуляторные дрели.

Как они работают?

Коллекторные двигатели постоянного тока представляют собой простые устройства, состоящие из нескольких частей.

Коллекторные двигатели постоянного тока состоят всего из нескольких основных частей.

Вокруг корпуса двигателя расположены магниты статора. Это постоянные магниты, положительные с одной стороны и отрицательные с другой. В середине двигателя, соединенного с валом двигателя, находятся, по меньшей мере, три проволочных обмотки, соединенных с металлическими пластинами, которые называются якорем.

На противоположной от вала двигателя стороне обмоток расположен коллектор (от которого в русскоязычном варианте этот тип двигателя получил свое название) – пара металлических пластин, прикрепленных к обмоткам. Наконец, щетки (в англоязычном варианте этот тип двигателя называется «brushed», «щеточный») также расположены на стороне двигателя, противоположной валу двигателя.

Щетки создают физический контакт с коллектором. Когда на щетки подается постоянное напряжение, это напряжение передается на коллектор, который, в свою очередь, питает обмотки. Это входное напряжение генерирует магнитное поле вокруг якоря.

Левая сторона якоря отталкивается от левого магнита статора в направлении магнита справа. А правая сторона якоря отталкивается от правого магнита влево.

При постоянном изменении полярности магнитного поля вокруг якоря вал будет постоянно вращаться.

Достоинства коллекторных двигателей постоянного тока

Недорогие

Коллекторные двигатели постоянного тока производятся большими сериями и широко используются, что делает их дешевле других типов электродвигателей.

Простота управления

Чтобы заставить двигатель вращаться, просто подайте постоянное напряжение. Более высокое напряжение (или более высокий коэффициент заполнения, или более низкая скважность, ШИМ сигнала) заставит двигатель работать быстрее. Изменение полярности напряжения изменит направление вращения. Коллекторные двигатели постоянного тока даже не нуждаются в использовании микроконтроллера, вы можете запустить их, просто подключив к аккумулятору.

Высокий начальный крутящий момент

Коллекторные двигатели постоянного тока выдают высокий крутящий момент на низких скоростях. Это важно, потому что этот высокий начальный крутящий момент позволяет электродвигателю быстро набирать скорость, даже если у двигателя есть нагрузка.

Оценка характеристик коллекторных двигателей постоянного тока.

Недостатки коллекторных двигателей постоянного тока

Быстрый износ

Поскольку щетки физически трутся об коллектор, они со временем изнашиваются. Следовательно, по сравнению с другими типами электродвигателей, коллекторные двигатели постоянного тока изнашиваются быстрее.

Много электрического шума

Внутри коллекторного двигателя постоянного тока между щетками и коллектором образуются электрические дуги. Это вызывает много электрического шума, что не очень хорошо для микроконтроллеров или датчиков, работающих в этой же системе.

Ограниченная максимальная скорость

Физический контакт между щетками и коммутатором во время работы означает, что между этими двумя частями есть трение. Там, где есть трение, есть тепло. Коллекторные двигатели постоянного тока имеют ограниченную максимальную скорость, потому что слишком высокая скорость может привести к нагреву, способному нанести повреждения.

Оригинал статьи:

Теги

ДвигательДвигатель постоянного токаКоллекторный двигатель постоянного токаЭлектродвигатель

Сохранить или поделиться

Как работают асинхронные двигатели переменного тока?

Если вы когда-либо включали вентилятор в жаркий день или достраивали белье в стиральной машине, вы лично сталкивались с асинхронным двигателем переменного тока. Это одни из самых универсальных и часто используемых двигателей в мире, а также один из многих типов электродвигателей, которые мы настраиваем в соответствии с вашими потребностями.

Несмотря на то, что конструкция асинхронных двигателей проста, принципы их работы требуют небольшого пояснения.

Асинхронные двигатели переменного тока: богатая история использования

История изобретения асинхронного двигателя насчитывает более 100 лет.Хотя несколько человек внесли свой вклад в его разработку, его изобретение часто приписывают Николе Тесле. Он был первым, кто подал заявку на патент в Соединенных Штатах в 1887 году.

В то же время Джордж Вестингауз разрабатывал систему для получения электроэнергии от переменного тока, что имело решающее значение для успеха асинхронного двигателя. Westinghouse заключила контракт с Tesla на разработку двигателя, но только когда General Electric лицензировала и усовершенствовала конструкцию 10 лет спустя, родился двигатель, который мы используем сегодня.

Асинхронные двигатели переменного тока: богатая история использования

История изобретения асинхронного двигателя насчитывает более 100 лет. Хотя несколько человек внесли свой вклад в его разработку, его изобретение часто приписывают Николе Тесле. Он был первым, кто подал заявку на патент в Соединенных Штатах в 1887 году.

В то же время Джордж Вестингауз разрабатывал систему для получения электроэнергии от переменного тока, что имело решающее значение для успеха асинхронного двигателя. Westinghouse заключила контракт с Tesla на разработку двигателя, но только когда General Electric лицензировала и усовершенствовала конструкцию 10 лет спустя, родился двигатель, который мы используем сегодня.

Две основные части: статор и ротор

Асинхронный двигатель переменного тока состоит из двух основных компонентов:

В соответствии со своим названием статор представляет собой внешнюю неподвижную камеру, в которой вращается ротор. Статор создает магнитную силу через переменный ток, который «заставляет» ротор вращаться.

Статор

Статор образован кольцом электромагнитов. Он состоит из тонких стальных или железных слоев с прорезями, сложенных вместе в виде цилиндра.Медная проволока наматывается в чередующихся направлениях через внутреннюю часть цилиндра, создавая магнитные полюса.

Когда переменный ток протекает через эти проволочные катушки, они образуют пары чередующихся полюсов, один северный и один южный. Этот ток заставляет направленный поток и полярность полюсов прыгать между северным и южным полюсами с каждым полупериодом. Это приводит к переменному магнитному полю, которое вращается с единой силой.

Ротор

Ротор также состоит из группы электромагнитов, расположенных вокруг цилиндра.Этот похожий на ось аппарат прижимается внутри статора. Магнитные поля, индуцированные внутри ротора, притягиваются к магнитному полю, создаваемому статором, следуя за ним по мере его вращения с каждым полупериодом переменного тока.

Этот тип двигателя называется асинхронным, потому что магнитное поле, создаваемое в статоре, индуцирует магнитное поле в роторе. В роторе асинхронного двигателя нет постоянных магнитов.

Как работает электродвигатель? Пэт Суонсон

Целью этой статьи будет краткое объяснение того, как работает двигатель.Короче говоря, электродвигатель «просто» преобразует электрическую энергию в механическую.
Электродвигатель буквально везде. От маленьких вентиляторов, которые вы слышите в своем компьютере, до устройства открывания двери в вашем гараже, до системы отопления в вашем доме, есть десятки элементов, на которые мы полагаемся каждый день, используя электродвигатель. Исторически они сыграли неотъемлемую роль в превращении машин, позволивших осуществить промышленную революцию. По мере того, как они становятся меньше и эффективнее, наряду с аккумуляторными технологиями, мы продолжим видеть, как они заменяют двигатель внутреннего сгорания.По данным Министерства энергетики США, 62,6% промышленной электроэнергии в США потребляется электродвигателями.
Так как, черт возьми, они работают, спросите вы…
Мы все понимаем, как работают магниты, верно? Магниты имеют положительный и отрицательный полюс. Однополюсные отталкиваются, а противоположные притягиваются. Силы одноименных полюсов создают движение в электродвигателе.

Существует связь между электричеством, магнетизмом и движением.(А) Когда ток проходит по электрическому проводу, он создает вокруг себя магнитное поле. (B) Когда вы закручиваете провод, вы создаете небольшой электромагнит… обратите внимание на поляризацию, происходящую подобно традиционному магниту, упомянутому выше, с определенными Северным и Южным полюсами. (C) В 1820 году Эрстед Стерджен обнаружил, что, когда вы наматываете проволоку на железный сердечник, вы усиливаете силу этого магнитного поля.

Теперь, когда мы понимаем основное поведение магнитных полей и то, как электричество может их создавать, давайте посмотрим, как эта технология использовалась для разработки электродвигателя.

Так выглядит статор трехфазного асинхронного двигателя переменного тока. Красная, желтая и синяя катушки представляют собой три отдельные фазы, поступающие от промышленной энергосистемы.
Думайте о каждом из этих контуров как об отдельном независимом электромагните.

Современная промышленная энергетика состоит из 3 отдельных фаз с одинаковыми синусоидальными волнами, каждая из 3 волн смещена на 120 градусов друг от друга, как показано ниже.По мере того, как отдельные фазы циклически проходят через свои волновые формы, их электромагниты возбуждаются в 3 разных промежутка времени, создавая вращающееся магнитное поле.

А как же ротор… механическая часть мотора?
Асинхронные двигатели имеют так называемый короткозамкнутый ротор. Глядя на него ниже, вы можете увидеть, откуда он получил свое название. Это похоже на колесо, внутри которого мог бы пробежать грызун, если бы оно было полым… а это не так.

Ротор состоит из стального сердечника с алюминиевыми или медными стержнями. Алюминий является более экономичным выбором по сравнению с медью. Слева вверху показан пример заполненного алюминием ротора…

Вместо того, чтобы оснащать ротор отдельными стержнями, в большинстве асинхронных двигателей мощностью менее 500 л.с. используются литые роторы.Расплавленный алюминий или медь создают стержни… вы можете увидеть, как эти стержни формируются на разрезе ниже. Выступы, выступающие с обоих концов, действуют как лопасти вентилятора, которые помогают выравнивать внутреннюю температуру внутри двигателя. Добавьте вал, и теперь у вас есть двигатель, вращающийся в сборе.

Давайте теперь все это соберем… Вставьте вращающийся узел в статор.

Когда вы возбуждаете статоры, вращая магнитное поле, напряжение индуцируется на стержнях ротора, создавая магнитное поле в роторе.Это тот же принцип, что и при зарядке телефона в беспроводном зарядном устройстве. Теперь подумайте о том, как одноименные полюса в обычном магните отталкиваются друг от друга. Помните, что магнитное поле в статоре двигателя вращается, это вращающееся поле толкает ротор под напряжением.

Вот так асинхронный двигатель превращает электрическую энергию в механическую. Просто… Верно?

Как работают электродвигатели — инженерное мышление

Узнайте, как работает электрический двигатель, основные части, почему и где они используются, а также рабочие примеры.

Прокрутите вниз, чтобы посмотреть обучающее видео на YouTube

Электродвигатель

Это электрический двигатель. Это одно из самых важных устройств, когда-либо изобретенных. Эти двигатели используются повсюду: от перекачки воды, которую мы пьем, до питания лифтов и кранов и даже охлаждения атомных электростанций. Итак, мы собираемся заглянуть внутрь одного и подробно узнать, как именно они работают в этой статье.

Электрический асинхронный двигатель

Асинхронный двигатель будет выглядеть примерно так.Они превращают электрическую энергию в механическую, которую мы можем использовать для привода насосов, вентиляторов, компрессоров, шестерен, шкивов и т. д. Почти все детали находятся внутри основного корпуса. Спереди мы находим вал, это та часть, которая вращается, и мы можем подключить к ней такие вещи, как насосы, шестерни и шкивы, чтобы они работали за нас. Сзади мы видим вентилятор и защитную крышку, вентилятор соединен с валом, поэтому он вращается всякий раз, когда работает двигатель. Асинхронный двигатель может выделять много тепла во время работы, поэтому вентилятор обдувает корпус окружающим воздухом, охлаждая его.Если асинхронный двигатель станет слишком горячим, изоляция внутренних электрических катушек расплавится, что вызовет короткое замыкание, и двигатель разрушится. Ребра на боковой стороне корпуса помогают увеличить площадь поверхности, что позволяет отводить больше нежелательного тепла.

Вал поддерживается несколькими подшипниками, расположенными внутри переднего и заднего щитков. Подшипники помогают валу вращаться плавно и удерживают его в нужном положении.

Передний щит

Внутри корпуса находим статор.Статор неподвижен и не вращается. Он состоит из нескольких медных проводов, намотанных в катушки между пазами, расположенными по внутреннему периметру. Медный провод покрыт специальной эмалью, которая электрически изолирует провода друг от друга, это означает, что электричество должно проходить через всю катушку, иначе оно пойдет по кратчайшему пути — и мы увидим, почему это важно, чуть позже. эта статья. Это трехфазный асинхронный двигатель, поэтому у нас есть три отдельных набора катушек в статоре.Концы каждого комплекта подключаются к клеммам в электрической клеммной коробке. Мы увидим, как они связаны чуть позже в этой статье. При подключении к электросети статор создает вращающееся электромагнитное поле.

Статор

С валом соединен ротор. В данном случае это ротор с короткозамкнутым ротором. Она называется беличьей клеткой, потому что у нее есть два концевых кольца, которые соединены стержнями, и они вращаются вместе. Эта конструкция похожа на маленькую клетку или колесо для упражнений, которое используют домашний хомяк или даже белка.

Беличья клетка

Беличья клетка оснащена несколькими ламинированными стальными листами. Эти листы помогут сконцентрировать магнитное поле на стержнях. Листы используются вместо сплошного куска металла, поскольку это повышает эффективность за счет уменьшения размера вихревых токов в роторе.

Когда ротор помещен внутрь статора, а статор подключен к источнику электропитания, ротор начнет вращаться. Итак, как это возможно?

Как работают асинхронные двигатели

Когда электричество проходит по проводу, вокруг провода создается электромагнитное поле.Мы можем увидеть это, поместив несколько компасов вокруг провода, компасы будут вращаться, чтобы выровняться с этим магнитным полем. Если направление тока меняется на противоположное, меняется и магнитное поле, поэтому компас меняет направление.

Магнитное поле провода тянет и толкает циферблаты компаса. Точно так же, как если бы мы сдвинули два стержневых магнита навстречу друг другу. Они будут либо притягиваться, либо отталкиваться. Мы даже можем использовать один магнит для вращения другого магнита. Или мы можем вращать магнит, изменяя интенсивность магнитного поля вокруг него.

Если мы поместим провод в магнитное поле и пропустим через него ток, магнитное поле провода будет взаимодействовать с постоянными магнитами, магнитное поле и провод будет испытывать силу. Эта сила будет перемещать провод либо вверх, либо вниз, в зависимости от направления тока и полярности магнитных полей.

Провод в магнитном поле

Если мы смотаем провод в катушку, электромагнитное поле станет сильнее, катушка создаст северный и южный полюса, как постоянный магнит.Мы называем эти катушки проволоки индуктором. Когда мы пропускаем переменный ток через провод, электроны будут постоянно менять направление между движением вперед и назад. Таким образом, магнитное поле также будет расширяться и сжиматься, а полярность каждый раз будет меняться. Когда мы поместим другую отдельную катушку в непосредственной близости и замкнем цепь, электромагнитное поле индуцирует ток в этой второй катушке.

Мы можем соединить две катушки вместе и разместить их друг напротив друга, чтобы создать большее магнитное поле.Если мы поместим замкнутую проволочную петлю внутри этого большого магнитного поля, мы индуцируем ток в этой петле. Как мы знаем, когда мы пропускаем ток через провод, он генерирует магнитное поле, и мы также знаем, что магнитные поля будут толкать или притягивать друг друга. Таким образом, эта проволочная петля также будет генерировать магнитное поле, и оно будет взаимодействовать с большим магнитным полем. На каждую сторону катушки действуют противоположные силы, заставляющие ее вращаться. Таким образом, эта петля является нашим ротором, а катушки — статором.

Замкнутая петля провода внутри магнитного поля

Ротор будет вращаться только до тех пор, пока он не выровняется с катушками статора, а затем он застрянет, когда индуцированный ток изменит свое направление с катушкой. Чтобы преодолеть это, нам нужно ввести еще один набор катушек в статоре, и мы должны подключить их к другой фазе. Электроны в этой фазе текут в несколько другое время, поэтому электромагнитное поле также будет изменять силу и полярность в несколько другое время. Это заставит ротор вращаться.

Внутри асинхронного двигателя у нас есть 3 отдельные катушки, которые используются для создания вращательного электромагнитного поля. Когда мы пропускаем переменный ток через каждую катушку, катушки будут создавать электромагнитное поле, интенсивность и полярность которого меняются по мере того, как электроны меняют направление, но если бы мы соединили каждую катушку с другой фазой, то электроны в каждой катушка изменит направление в разное время. Это означает, что полярность и напряженность магнитного поля также будут иметь место в разное время.

Фаза 1, 2, 3

Чтобы распределить это магнитное поле, нам нужно повернуть наборы катушек на 120 градусов по сравнению с предыдущей фазой, а затем объединить их в статор. Магнитное поле различается по силе и полярности между катушками, которые в совокупности создают эффект вращающегося магнитного поля.

Ранее в этой статье мы видели, что ток может индуцироваться во второй катушке, когда она находится в непосредственной близости. Стержни беличьей клетки закорочены на каждом конце, что создает несколько петель или катушек, поэтому каждый стержень индуцирует ток и создает магнитное поле.

Магнитное поле стержней ротора взаимодействует с магнитным полем статора. Магнитное поле стержней ротора притягивается к магнитному полю статора. Поскольку магнитное поле вращается, ротор также будет вращаться в том же направлении, что и магнитное поле, пытаясь выровняться с ним, но он никогда не сможет полностью догнать его.

Стержни ротора часто перекошены. Это помогает распределить магнитное поле по нескольким стержням и препятствует выравниванию и заклиниванию двигателя.

Электрические соединения

Статор содержит все катушки или обмотки, используемые для создания вращающегося электромагнитного поля при пропускании электричества по проводам. Для питания катушек мы находим электрическую клеммную коробку сверху, а иногда и сбоку.

Внутри этой коробки у нас есть 6 электрических клемм. Каждый терминал имеет соответствующую букву и номер, у нас есть U1, V1 и W1, затем W2, U2 и V2. У нас есть катушка первой фазы, подключенная к двум клеммам U, затем катушки фазы 2, подключенные к двум клеммам V, и, наконец, катушка фазы 3, подключенная к двум клеммам W.Обратите внимание, что электрические клеммы расположены по-разному на одной стороне и на другой. Мы увидим, почему это так, через мгновение.

Электрическая клеммная коробка

Теперь мы подключаем наш трехфазный источник питания и подключаем его к соответствующим клеммам. Чтобы двигатель заработал, нам нужно замкнуть цепь, и есть два способа сделать это. Первый способ — дельта-конфигурация. Для этого мы подключаем клеммы от U1 к W2, от V1 к U2 и от W1 к V2. Это даст нам нашу дельта-конфигурацию.

Конфигурация треугольника

Теперь, когда мы подаем переменный ток по фазам, мы видим, что электричество течет от одной фазы к другой, поскольку направление переменного тока меняется на противоположное в каждой фазе в разное время. Вот почему у нас есть терминалы в разном расположении в клеммной коробке, потому что мы можем легко соединиться и позволить электричеству течь между фазами, когда электроны меняются местами в разное время.

Другим способом подключения терминалов является использование конфигурации «звезда» или «звезда».В этом методе мы соединяем W2, U2 и V2 только с одной стороны. Это даст нам наше эквивалентное звездообразное или звездообразное соединение. Теперь, когда мы пропускаем электричество через фазы, мы видим, что электроны распределяются между выводами фаз.

Конфигурация «звезда»

Из-за различий в конструкции величина тока, протекающего в конфигурации «звезда» и «треугольник», отличается, и мы увидим некоторые расчеты для них ближе к концу статьи.

Звезда (звезда) Дельта Расчеты

Давайте посмотрим на разницу между конфигурациями звезда и треугольник.

Допустим, у нас есть двигатель, соединенный треугольником, с напряжением питания 400 Вольт. Это означает, что когда мы используем мультиметр для измерения напряжения между любыми двумя фазами, мы получим показание 400 вольт, мы называем это межфазным напряжением.

Теперь, если мы измерим два конца катушки, мы снова увидим линейное напряжение 400 Вольт. Допустим, каждая катушка имеет сопротивление или импеданс, поскольку это переменный ток, 20 Ом. Это означает, что мы получим показание тока на катушке 20 ампер.Мы можем рассчитать это из 400 вольт, разделенных на 20 Ом, что составляет 20 ампер. Но ток в линии будет другой, он будет 34,6А. Мы получаем это из 20 ампер, умноженных на квадратный корень из 3, что составляет 34,6 ампер, потому что каждая фаза подключена к двум катушкам.

Соединение треугольником

Теперь, если мы посмотрим на конфигурацию звезды или звезды, мы снова получим линейное напряжение 400 В. Мы видим это, если измеряем между любыми двумя фазами. Но в конфигурации звезды все наши катушки соединены вместе и встречаются в точке звезды или в нейтральной точке.Именно отсюда мы можем провести нейтральный провод, если это необходимо. Итак, на этот раз, когда мы измеряем напряжение на концах любой катушки, мы получаем более низкое значение 230 вольт, потому что фаза не подключена напрямую к двум катушкам, как в конфигурации треугольника, один конец катушки подключен к фаза, а другая подключена к общей точке, поэтому напряжение является общим. Напряжение меньше, так как одна фаза всегда перевернута. Мы можем рассчитать это, разделив 400 вольт на квадратный корень из 3, что равно 230 вольтам.Чем меньше напряжение, тем меньше будет ток. Если эта катушка также имеет импеданс 20 Ом, то 230 вольт разделить на 20 ампер = 11,5 ампер. Таким образом, линейный ток также будет одинаковым и составит 11,5 ампер.

Соединение звездой

Таким образом, мы можем видеть из конфигурации треугольника, катушка подвергается воздействию полного напряжения 400 В между двумя фазами, но начальная конфигурация подвергается воздействию только 230 В между фазой и нейтралью. Таким образом, звезда использует меньшее напряжение и меньший ток по сравнению с треугольной версией.


Как сделать простой электродвигатель | Научный проект

  • Батарея D
  • Изолированный провод 22G
  • 2 длинные металлические швейные иглы с большими ушами (уши должны быть достаточно большими, чтобы продеть проволоку)
  • Пластилин для лепки
  • Изолента
  • Хобби-нож
  • Малый круглый магнит
  • Тонкий маркер
  1. Начиная с центра проволоки, плотно и аккуратно обмотайте ее вокруг маркера 30 раз.
  2. Сдвиньте спираль, которую вы сделали, с маркера.
  3. Оберните каждый свободный конец провода вокруг катушки несколько раз, чтобы скрепить ее, затем отведите провода от петли, как показано на рисунке:

Что это? Какова его цель?

  1. Попросите взрослого с помощью канцелярского ножа снять верхнюю половину изоляции провода на каждом свободном конце катушки. Открытый провод должен быть обращен в одном направлении с обеих сторон. Как вы думаете, почему половина провода должна оставаться изолированной?
  1. Проденьте каждый свободный конец катушки проволоки через большое игольное ушко. Старайтесь, чтобы катушка была как можно более прямой, не сгибая концы проволоки.
  1. Положите батарею D боком на ровную поверхность.
  2. Наклейте пластилин для лепки с обеих сторон батареи, чтобы она не скатилась.
  3. Возьмите 2 маленьких шарика пластилина и накройте ими острые концы иглы.
  4. Поместите иглы вертикально рядом с клеммами каждой батареи так, чтобы сторона каждой иглы касалась одной клеммы батареи.
  1. Используйте изоленту, чтобы прикрепить иглы к концам батареи. Ваша катушка должна висеть над батареей.
  2. Прикрепите небольшой магнит к боковой стороне батареи так, чтобы он располагался по центру под катушкой.
  1. Покрутите свою катушку. Что происходит? Что происходит, когда вы вращаете катушку в другом направлении? Что произойдет с большим магнитом? Аккумулятор побольше? Более толстый провод?

Двигатель будет продолжать вращаться при перемещении в правильном направлении.Двигатель не будет вращаться, когда первоначальный толчок будет в противоположном направлении.

Металл, иглы и проволока создали замкнутый контур цепи , по которой может проходить ток. Ток течет от отрицательной клеммы батареи через цепь к положительной клемме батареи. Ток в замкнутом контуре также создает собственное магнитное поле , которое можно определить по «Правилу правой руки». Делая знак «большой палец вверх» правой рукой, большой палец указывает в направлении тока, а изгиб пальцев показывает, в какую сторону ориентировано магнитное поле.

В нашем случае ток проходит через созданную вами катушку, которая называется якорем двигателя. Этот ток индуцирует магнитное поле в катушке, что помогает объяснить, почему катушка вращается.

Магниты имеют два полюса, северный и южный. Взаимодействие север-юг скрепляет друг друга, а взаимодействия север-север и юг-юг отталкивают друг друга. Поскольку магнитное поле, создаваемое током в проводе, не перпендикулярно магниту, прикрепленному лентой к батарее, по крайней мере, некоторая часть магнитного поля провода будет отталкиваться и заставлять катушку продолжать вращаться.

Так почему же нам нужно было снимать изоляцию только с одной стороны каждого провода? Нам нужен способ периодически разрывать цепь, чтобы она пульсировала и выключалась в такт вращению катушки. В противном случае магнитное поле медной катушки выровняется с магнитным полем магнита и перестанет двигаться, потому что оба поля будут притягиваться друг к другу. То, как мы настроили наш двигатель, делает так, что всякий раз, когда ток проходит через катушку (придавая ей магнитное поле), катушка находится в хорошем положении, чтобы отталкиваться магнитным полем неподвижного магнита.Всякий раз, когда катушка активно не отталкивается (в те доли секунды, когда цепь выключена), импульс переносит ее по кругу до тех пор, пока она не окажется в правильном положении, чтобы замкнуть цепь, создать новое магнитное поле и оттолкнуться от стационарного поля. снова магнит.

После перемещения катушка может продолжать вращаться, пока батарея не разрядится. Причина того, что магнит вращается только в одном направлении, заключается в том, что вращение в неправильном направлении заставит магнитные поля не отталкивать друг друга, а притягивать.

Отказ от ответственности и меры предосторожности

Education.com предоставляет идеи проекта научной ярмарки для ознакомления только цели. Education.com не дает никаких гарантий или заявлений относительно идей проекта научной ярмарки и не несет ответственности за любые убытки или ущерб, прямо или косвенно вызванные использованием вами таких Информация. Получая доступ к идеям проекта научной ярмарки, вы отказываетесь и отказаться от каких-либо претензий к Образованию.com, которые возникают из-за этого. Кроме того, ваш доступ к веб-сайту Education.com и проектным идеям научной ярмарки покрывается Политика конфиденциальности Education.com и Условия использования сайта, включая ограничения об ответственности Education.com.

Настоящим предупреждаем, что не все проектные идеи подходят для всех отдельных лиц или во всех обстоятельствах. Реализация любой идеи научного проекта следует проводить только в соответствующих условиях и с соответствующими родителями. или другой надзор.Чтение и соблюдение мер предосторожности всех материалы, используемые в проекте, является исключительной ответственностью каждого человека. Для дополнительную информацию см. в справочнике по научной безопасности вашего штата.

Как работает двигатель?

Ранее было продемонстрировано, что электрический ток, протекающий по проводу, создает магнитное поле, направление которого зависит от направления тока. См. «Магнетизм из электричества».

Можно также продемонстрировать, что магнитная сила действует на провод, по которому течет ток. Проденьте проволоку через магнит, как показано ниже, и прикрепите к тесту (Direct Cureent). Сила, направленная вниз, заставит проволоку тянуться вниз.

СИЛА, ДЕЙСТВУЮЩАЯ НА ПРОВОД В МАГНИТНОМ ПОЛЕ

 

ПРОСТАЯ СХЕМА КОНТУРА ДВИГАТЕЛЯ

Если мы теперь вставим петлю вместо провода между магнитным полем (см. изображение ниже), левая сторона петли будет тянуться вниз, а правая сторона будет выталкиваться вверх.Но пока направление тока остается прежним, петля не будет вращаться — — она просто выровняется с магнитным полем магнита. Чтобы заставить петлю вращаться, нам нужно, чтобы ток постоянно менял направление. Если вместо постоянного тока подается переменный ток, проволочная петля будет вращаться.

 

 

ПРОСТАЯ СХЕМА КОНТУРА ДВИГАТЕЛЯ С КОММУТАТОРОМ

Однако есть способ заставить петлю вращаться с помощью постоянного тока (постоянный ток).При добавлении «раздельного» коммутатора направление тока в катушке будет меняться каждые пол-оборота, что обеспечивает условия, необходимые для поддержания постоянного вращения катушки.

 

ЭЛЕКТРОДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА

 

В простом двигателе, показанном выше, ток во вращающейся катушке реверсируется каждые пол-оборота с помощью устройства автоматического переключения, состоящего из разъемного металлического кольца, называемого коммутатором .Вращающаяся часть двигателя называется якорем и состоит из катушки с множеством витков провода. Якорь установлен на оси между двумя неподвижными магнитными полюсами. Каждый конец якоря прикреплен к одному концу коммутатора (см. красные стрелки). Ток поступает в коммутатор через одну щетку, подключенную к аккумулятору. Ток выходит из якоря через вторую щетку, контактирующую с другой половиной коллектора. Так как при вращении коммутатора щетки неподвижны, то каждая щетка в течение одного полуоборота контактирует с одной половиной коллектора, а в течение второго полуоборота с противоположной половиной или коллектором.В результате ток в якоре меняет свое направление каждые пол-оборота и обеспечивает условия, необходимые для поддержания вращения якоря


Электродвигатель — введение, работа, детали и использование

В начале 1800-х годов Майкл Фарадей раскрывал аспекты и использование электричества.

Электродвигатель, как правило, хорошо известен как двигатель, являющийся одним из самых больших достижений в области науки.Жизнь, которую мы ведем сегодня, связана с изобретением двигателей, иначе мы использовали бы электричество только для того, чтобы зажечь лампочку. Электродвигатель – это устройство, преобразующее электрическую энергию в механическую. Проще говоря, электродвигатель — это устройство, используемое для производства вращательной энергии.

Принцип работы электродвигателя

Принцип действия электродвигателя заключается в том, что катушка помещается в магнитное поле и через нее проходит ток, что приводит к вращению катушки.

Работа электродвигателя

Теперь давайте начнем с работы электродвигателя. Схематическое изображение электродвигателя показано ниже.

Прежде чем мы поймем, как это работает, давайте посмотрим на части электродвигателя. Базовая конструкция электродвигателя состоит из прямоугольного провода, двух сильных магнитов и аккумулятора. Если нас спросят, каковы два основных компонента электродвигателя, ответом будут магниты для создания магнитного поля и катушка для демонстрации эффекта магнитного поля.

Детали электродвигателя

  • Прямоугольная катушка ABCD.

  • Два сильных магнита, которые могут быть любого типа, будь то подковообразный или стержневой магнит. Они используются для создания сильного магнитного поля.

  • Разрезные кольца используются для вращения прямоугольной катушки.

  • Щетки используются в качестве контакта между разрезными кольцами.

Рабочий

  • Теперь при пропускании электрического тока через прямоугольную катушку ABCD.Мы замечаем, что ток между плечами BC и AD параллелен магнитному полю, тогда как ток между AB и CD перпендикулярен магнитному полю. Поэтому магнитное поле будет действовать только на плечи AB и CD.

  • Согласно правилу левой руки Флеминга, в плече АВ сила направлена ​​вниз, а магнитное поле направлено с севера на юг. Точно так же в руке CD направление силы направлено вверх.

  • Следовательно, силы в плечах AB и CD направлены в противоположные стороны, это приведет к вращению прямоугольной катушки ABCD.

  • После половины оборота кольцо Q соприкоснется со щеткой X, а кольцо P соприкоснется с Y, это приведет к изменению направления тока.

  • Поскольку направление тока изменилось, направление сил в плечах AB и CD также изменится, поэтому катушка продолжает вращаться в том же направлении.

После изучения двигателей обычно возникает вопрос, каково использование электродвигателей.Электродвигатели широко используются в большинстве бытовых приборов, например, в вентиляторах, миксерах и т. д.

Применение электродвигателей

Типы электродвигателей

Три основных типа электродвигателей: двигатели постоянного тока, двигатели переменного тока и другие двигатели специального назначения.

Ниже перечислены подтипы и пояснения к двигателям постоянного и переменного тока, а также двигателям специального назначения:

(A) Двигатель постоянного тока: Электродвигатель, который используется для преобразования постоянного электрического тока в механическую работу, называется двигателем постоянного тока.Различные типы двигателей постоянного тока включают шунтирующий двигатель постоянного тока, двигатель с независимым возбуждением, серийный двигатель, двигатель с постоянным током и комбинированный двигатель.

  1. Шунтирующий двигатель постоянного тока. Подобно обмоткам якоря и обмоткам возбуждения, обмотки шунтирующего двигателя постоянного тока соединены параллельно; эта параллельная связь называется шунтом, а обмотка называется шунтирующей обмоткой.

  2. Двигатель с независимым возбуждением. В этом типе двигателя обмотки якоря сделаны более прочными для создания большего потока, а соединение между статором и ротором построено с использованием различных источников питания.Электродвигатель с независимым возбуждением управляется из каскада.

  3. Двигатель постоянного тока — обмотки ротора в этом типе двигателя соединены последовательно. Двигатель постоянного тока работает по простому закону электромагнетизма. Электромагнитный закон гласит, что для создания электродвижущей силы электромагнитное поле приводится во взаимодействие с электрической цепью. Электромагнитный закон приводит к вращательному движению двигателя. Этот тип двигателя в основном используется в автомобилях или лифтах в качестве стартеров.

  4. Двигатель постоянного тока с постоянными магнитами. Двигатель постоянного тока с постоянными магнитами или постоянный магнит поставляется со встроенным магнитом, который постоянно находится внутри двигателя. Этот магнит обеспечивает формирование крайне необходимого для работы электродвигателя магнитного поля.

  5. Составной двигатель постоянного тока. Составной двигатель постоянного тока представляет собой сочетание последовательного двигателя постоянного тока и шунтирующего двигателя постоянного тока. Поскольку в этом двигателе присутствуют как последовательная, так и шунтирующая обмотки, пуск и ротор соединены друг с другом через соединение последовательной и шунтирующей обмотки.

(B) Двигатель переменного тока: AC в двигателе переменного тока обозначает переменный ток, который используется для его работы. Этот тип двигателя обычно состоит из внешней и внутренней частей; внешний статор состоит из катушек, через которые пропускается переменный заряд или ток для создания вращения в магнитном поле. В то время как внутренняя часть ротора соединена с выходным валом, который генерирует второе магнитное поле при вращении. Двумя основными типами двигателей переменного тока являются синхронный двигатель и асинхронный двигатель.

Ниже приведены пояснения по работе двух типов двигателей переменного тока:

  1. Асинхронный двигатель. Асинхронный двигатель — это тип двигателя переменного тока, который работает на асинхронной скорости; поэтому его также называют асинхронным двигателем. Этот двигатель использует электромагнитную индукцию для преобразования электрической энергии в механическое движение двигателя. Существует два типа асинхронных двигателей: двигатель с короткозамкнутым ротором и двигатель с фазной обмоткой.

  2. Синхронный двигатель- Синхронный двигатель работает от трехфазной сети.Статор генерирует ток вращающегося поля, от которого также зависит работа ротора. Когда точность вращения очень высока, эти типы двигателей можно использовать в робототехнике и автоматике.

(C) Двигатель специального назначения: Проще говоря, двигатели специального назначения включают все другие типы двигателей, кроме двигателей переменного тока и двигателей постоянного тока общего назначения. Некоторыми из широко используемых двигателей специального назначения являются шаговые двигатели, бесщеточные двигатели постоянного тока, гистерезисные двигатели и реактивные двигатели.

Ниже приведены пояснения по работе этих двигателей специального назначения:

  1. Шаговый двигатель. Эффективной альтернативой стабильному вращению является шаговое вращение, которое может быть обеспечено шаговыми двигателями. Мы знаем, что угол поворота любого ротора составляет 180 градусов. Однако в шаговых двигателях этот угол поворота делится на несколько шагов, например, 9 шагов по 20 градусов. Некоторые приложения шаговых двигателей включают генераторы, плоттеры, изготовление схем и инструменты управления технологическим процессом.

  2. Бесщеточный двигатель постоянного тока. Бесщеточные двигатели постоянного тока были разработаны для достижения высокого качества работы при меньшем занимаемом пространстве. Эти типы двигателей меньше, чем двигатели переменного тока. Отсутствие коммутатора и токосъемного кольца восполняется имплантацией контроллера в шаговый двигатель.

  3. Двигатель с гистерезисом. Двигатель с гистерезисом имеет самую уникальную работу из всех двигателей. Это синхронный двигатель, в котором вращательная сила в роторе создается с использованием гистерезиса и вихревых токов.Движение в роторе достигается за счет вращающегося потока обмотки статора.

  4. Реактивный двигатель. Этот тип двигателя представляет собой однофазный синхронный двигатель и обычно применяется в генераторах сигналов и регистраторах. Вспомогательная обмотка обеспечивает стабильную скорость двигателя.

Знаете ли вы?

Электрогенераторы – это оборудование, работающее в обратном направлении. Электрогенераторы производят электричество за счет вращения.

Электродвигатель Факты для детей

Электродвигатель преобразует электрическую энергию в механическое движение.Динамо или электрический генератор делают обратное: они превращают механическое движение в электрическую энергию. Большинство электродвигателей работают за счет силы магнетизма. Также использовались электростатические двигатели.

К машинам с электродвигателями относятся: вентиляторы, стиральные машины, холодильники, насосы и пылесосы.

Внутри электродвигателя

Анимация, показывающая работу коллекторного электродвигателя постоянного тока.

Начнем с общего плана простого двухполюсного электродвигателя постоянного тока.Простой двигатель состоит из шести частей:

.
  • Якорь или ротор
  • Коллектор
  • Щетки
  • Ось
  • Полевой магнит
  • Какой-то блок питания постоянного тока

Электродвигатель основан на магнитах и ​​магнетизме: двигатель использует магниты для создания движения. Если вы когда-нибудь играли с магнитами, то знаете об основном законе всех магнитов: противоположности притягиваются, а подобное отталкивается. Итак, если у вас есть два стержневых магнита с концами, помеченными «север» и «юг», то северный конец одного магнита будет притягивать южный конец другого.С другой стороны, северный конец одного магнита будет отталкивать северный конец другого (и точно так же южный будет отталкивать юг). Внутри электродвигателя эти притягивающие и отталкивающие силы создают вращательное движение.

Чтобы понять, как работают электродвигатели, нужно понять, как работают электромагниты. Электромагнит является основой электродвигателя.

Электродвигатели подразделяются на две разные категории: постоянного тока (постоянного тока) и переменного тока (переменного тока).В этих категориях существует множество типов, каждый из которых обладает уникальными способностями, которые хорошо подходят им для наилучшего применения.

История

В 1821 году Майкл Фарадей изготовил первый электродвигатель. Он работал, используя силу магнетизма.

Он создал простой электромагнит, взяв гвоздь и проволоку, обернув около 100 петель проволоки вокруг гвоздя и подключив его к батарее. При этом у него был простой электромагнит с северным и южным полюсами. В середине гвоздя он сделал отверстие и вставил в отверстие веретено, чтобы гвоздь мог вращаться.Затем он взял магнит в форме подковы и поместил в середину гвоздь, обмотанный проволокой.

Он подключил провод северного полюса к отрицательному полюсу батареи и провод южного полюса к положительному полюсу. Основной закон магнетизма сказал ему, что произойдет: северный конец электромагнита оттолкнет северный конец подковообразного магнита и притянет южный полюс. То же самое произошло и с другой стороны ногтя, в результате чего ноготь повернулся.

Фарадей не был доволен результатом работы электродвигателя, так как двигатель провернулся только один раз.Он поменял полярность батареи и провод, обмотанный гвоздем, снова повернулся всего один раз. Если бы он менял полярность каждый раз, когда северный полюс гвоздя, обернутого проволокой, находится напротив южного полюса подковообразного магнита, то он получил бы искомый результат. Обернутый проволокой гвоздь будет вращаться и вращаться вокруг шпинделя (пока батарея не разряжена).

Связанные страницы

Картинки для детей

  • Вид в разрезе статора асинхронного двигателя.

  • Электромагнитный эксперимент Фарадея, 1821 г.

  • «Электромагнитный саморотор» Джедлика, 1827 г. (Музей прикладного искусства, Будапешт). Исторический двигатель прекрасно работает и сегодня.

  • Ротор электродвигателя (слева) и статор (справа)

  • Небольшой игрушечный двигатель постоянного тока с коммутатором

  • Работа щеточного электродвигателя с двухполюсным ротором и статором с ПМ.(«N» и «S» обозначают полярность на внутренних поверхностях магнитов; внешние грани имеют противоположную полярность.)

  • Современный недорогой универсальный двигатель, от пылесоса. Обмотки возбуждения темно-медного цвета, сзади, с обеих сторон. Пластинчатый сердечник ротора серый металлик, с темными пазами для намотки катушек. Коммутатор (частично скрытый) потемнел от использования; это ближе к фронту. Большой коричневый литой пластиковый элемент на переднем плане поддерживает направляющие щеток и щетки (с обеих сторон), а также передний подшипник двигателя.

  • Большой асинхронный двигатель переменного тока мощностью 4500 л.

Добавить комментарий

Ваш адрес email не будет опубликован.