Принцип работы 4х тактного двигателя: Двигатель четырехтактный внутреннего сгорания: устройство и порядок работы

Содержание

Принцип работы 2-х и 4-х тактных двигателей

Чем четырехтактный мотор лучше двухтактного?

Для начала рассмотрим устройство двигателей внутреннего сгорания.

Тактом рабочего цикла ДВС является ход поршня от одной мёртвой точки до другой. Один такт соответствует 180-градусному повороту (полуобороту) коленчатого вала. При 4-тактном процессе рабочий цикл осуществляется за два оборота вала, при 2-тактном — за один.

Присутствуют те же 4 такта: впуск — сжатие — расширение — выпуск. Сначала открывается впускной клапан, поршень идёт вниз, под действием создающегося разрежения в цилиндр поступает свежая топливовоздушная смесь или воздух — это такт впуска. Затем клапан закрывается, поршень идёт вверх — происходит сжатие. Следующий такт: сжатая смесь воспламеняется искрой или в сжатый воздух форсунка впрыскивает топливо, которое самовоспламеняется, поршень под действием этого идёт вниз — это расширение, или рабочий ход поршня. Двигатель совершает полезную работу именно в течение такта расширения. Потом поршень идёт вверх, открывается выпускной клапан, через который продукты сгорания топлива выходят в атмосферу — это такт выпуска.

В случае с двухтактным процессом всё уже не так просто. Такты условно называются сжатие и расширение. Как видно, места отдельным тактам впуска и выпуска здесь не нашлось. Это не случайно. Хотя в двухтактном двигателе процессы впуска и выпуска присутствуют, для их осуществления необходимо, чтобы давление на входе в цилиндр было выше атмосферного. То есть нужен принудительный наддув. Те, кто знаком с двухтактными мотоциклетными бензиновыми двигателями, могут возразить: на мотоциклах нет никаких турбо- или механических компрессоров. Отдельного компрессора в мотоциклетном двухтактнике действительно нет. Функция компрессора возложена на картер двигателя.

В простых мотоциклетных моторах нет клапанов в головке цилиндра, вместо них существуют впускные и выпускные окна в стенках цилиндра, перекрываемые телом поршня. Впускные окна связаны с карбюратором не напрямую, а через перепускные каналы, выходящие в картер. В течение хода поршня вверх нижний край открывает окно, на котором находится карбюратор, рабочая смесь под действием разрежения, создаваемого идущим вверх поршнем, устремляется в картер. Когда поршень идёт вниз, он перекрывает это окно, рабочая смесь начинает сжиматься. Поршень идёт далее вниз, открывая перепускные окна, рабочая смесь под давлением подаётся в цилиндр, где вытесняет отработанные газы в выпускное окно. Поршень идёт снова вверх, и процессы под его днищем повторяются, а в это время в цилиндре происходит сжатие рабочей смеси. Затем сжатая смесь воспламеняется свечой, и поршень идёт вниз, совершая такт расширения, или рабочий ход.

По материалам сайта airbase.ru

Преимущества и недостатки двух и четырех тактных ЛОДОЧНЫХ моторов.

Двухтактные преимущества

1. Меньший вес. Пример: 15 л.с. 2х тактный 36 кг 4-х тактный 45 кг. Казалось — бы 45 кг. — легко. Все не так просто. Вес мотора распределен крайне неравномерно. Примерно 90% весит голова (сам двигатель) 10% нога. Не нужно также забывать и о большем у 4-х тактников размере головы. Все это + одна маленькая не всегда удобная ручка для переноски делает этот процесс крайне затруднительным. 

2. Цена. 4-х тактные двигатели сложнее в производстве, состоят из большего количества деталей, поэтому всегда дороже 2-х тактников.

3. Удобство перевозки 2-х тактника. Можно возить в любом положении, перед началом эксплуатации не требует отвешивания. Т.е. достал из багажника, поставил, завел, поехал. 

4. 2-х такт мотор живее реагирует на ручку газ. В 4-х тактниках для совершения полного рабочего цикла поршню необходимо сделать 2 полных оборота в то время как в 2-х тактных только один. Частый вопрос: А правда ли что 4-х такная 15 л.с. бежит быстрее чем такая же 2-х тактная? Ответ: нет не правда. У обеих этих двигателей мощность на валу 15 л.с. При прочих равных условиях почему один мотор должен ехать быстрее второго?

Преимущества и недостатки двух и четырех тактных ЛОДОЧНЫХ моторов

Двухтактные недостатки

1. Больший расход топлива. Напомним, примерный расход можно высчитать по формуле: для 2х такта 300 грамм на одну лошадинную силу для 4х такта 200 грамм.

2. Шумноcть. На максимальных оборотах 2-х тактные моторы как правило работают немного громче 4х тактников.

3. Комфорт. 4-х тактные моторы не так вибрируют на малых оборотах (Касается только двухцилинровых двигателей. Одноцилиндровые и 2-х и 4-х тактники вибрируют примерно одинаково) и не так дымят как 2-х тактники. Дымность важный момент, особенно если вы любите тролить.

4. Долговечность. Довольно спорный пункт. Бытует мнение, что 2-хтактные моторы менее долговечны. С одной стороны это понятно, потому как масло для смазки трущихся элементов двигателя подается вместе с бензином, а значит работает не так эффективно в отличие от  4-х тактных двигателей где трущиеся элементы буквально плавают в масле. Но с другой стороны 4-х тактный мотор по конструкции намного сложнее конкурента, состоит из значительно большего числа деталей, а золотой принцип механики «Чем проще тем надежнее» еще никто не отменял.

Какой же лодочный мотор выбрать? 

Взвесьте все за и против изложенные выше и сделайте выбор самостоятельно. Однозначного ответа на вопрос: какой из моторов лучше Вы не найдете ни в одной из книг ни на одном из форумов. И у тех и у других типов двигателей есть свои поклонники. Личное мнение автора: мотор до 40 л.с. должен быть 2-х тактным, а свыше 40 л.с. — четырехтактником.

Выберите свой лодочный мотор Тохатсу!

Рабочий цикл четырехтактного и двухтактного двигателей: описание и принцип работы

Процессы, протекающие в цилиндрах двигателя при его работе, повторяются циклично. Одним таким рабочим циклом считается совокупность тактов (впуск топливовоздушной смеси, сжатие, воспламенение и расширение газов, а также выпуск продуктов сгорания), обеспечивающая переход тепловой энергии, выделяемой при воспламенении одной порции смеси, непосредственно в работу. О том, что представляют собой рабочие циклы поршневых двигателей внутреннего сгорания, пойдет речь далее.

Что такое мертвые точки и такты ДВС

Количество этапов, входящих в один рабочий цикл ДВС (двигателя внутреннего сгорания), принято считать исходя из числа ходов поршня в цилиндре. Такие этапы получили название такты двигателя. Непосредственно ход поршня определяется его перемещением из одной крайней точки в другую. Они получили наименование мертвые, поскольку если в такой точке произойдет остановка поршня, он не сможет начать движение без внешнего воздействия. Простыми словами мертвые точки – это позиции, при которых движение в текущем направлении поршня прекращается и он начинает обратный ход.

Основные параметры работы ДВСОсновные параметры работы ДВС
Мертвые точки и ход поршня ДВС

Существуют две мертвые точки:

  • Нижняя (НМТ) – положение, при котором расстояние между поршнем и осью вращения коленвала минимально.
  • Верхняя (ВМТ) – положение, при котором цилиндр находится на максимальном удалении от оси вращения коленвала двигателя.

В англоязычной документации ВМТ обозначается как TDC (Top Dead Centre), А НМТ – BDC (Bottom Dead Centre).

Существуют двигатели, рабочий цикл которых может состоять из двух, а также из четырех тактов. Исходя из этого их разделяют на двухтактные и четырехтактные моторы.

Как работает четырехтактный двигатель

Конструктивно рабочий цикл типового четырехтактного агрегата обеспечивается работой следующих элементов:

  • цилиндр;
  • поршень – выполняет возвратно-поступательные движения внутри цилиндра;
  • клапан впуска – управляет процессом подачи топливовоздушной смеси в камеру сгорания;
  • клапан выпуска – управляет процессом выброса отработавших газов из цилиндра;
  • свеча зажигания – осуществляет воспламенение образовавшейся топливовоздушной смеси;
  • коленчатый вал;
  • распределительный вал – управляет открытием и закрытием клапанов;
  • ременной или цепной привод;
  • кривошипно-шатунный механизм – переводит движение поршня во вращение коленчатого вала.
Такты ДВС Такты ДВС Рабочий цикл четырехтактного двигателя

Рабочий цикл такого механизма состоит из четырех тактов, в ходе которых реализуются следующие процессы:

  1. Впуск (нагнетание топлива и воздуха). В начале цикла поршень находится в ВМТ. В момент, когда коленвал начинает вращаться, он воздействует на поршень и переводит его в НМТ. Это приводит к образованию разрежения в камере цилиндра. Распредвал воздействует на клапан впуска, постепенно открывая его. Когда поршень оказывается в крайнем положении клапан полностью открыт, в результате чего происходит интенсивное нагнетание топлива и воздуха в камеру цилиндра.
  2. Сжатие (увеличение давления горючей смеси). На втором этапе поршень начинает обратное перемещение к верхней мертвой точке такта сжатия. Коленвал совершает еще один поворот, а оба клапана полностью закрыты. Внутреннее давление увеличивается до величины 1,8 МПа и повышается температура горючей смеси до 600 С°.
  3. Расширение (рабочий ход). При достижении верхней позиции поршнем в камере сгорания устанавливается максимальная компрессия до 5 МПа и срабатывает свеча зажигания. Это приводит к возгоранию смеси и увеличению температуры до 2500 С°. Давление и температура приводят к интенсивному воздействию на поршень, и он начинает вновь перемещаться к НМТ. Коленвал совершает еще поворот, и таким образом, тепловая энергия переходит в полезную работу. Распредвал открывает выпускной клапан, и при достижении поршнем НМТ он полностью раскрыт. В результате отработавшие газы начинают постепенно выходить из камеры, а давление и температура снижаются.
  4. Выпуск (удаление отработавших газов). Коленвал двигателя поворачивается, и поршень начинает движение в верхнюю точку. Это приводит к выталкиванию отработавших газов и еще большему снижению температуры и уменьшению давления до 0,1 МПа. Далее, начинается новый цикл, в ходе которого указанные процессы вновь повторяются.

В ходе каждого такта коленчатый вал двигателя совершает поворот на 180°. За полный рабочий цикл коленвал поворачивается на 720°.

Четырехтактный двигатель получил широкое распространение. Он может работать как с бензином, так и с дизельным топливом. Отличием рабочего цикла для дизеля является то, что воспламенение топливовоздушной смеси происходит не от искры, а от высокого давления и температуры в конечной точке такта сжатия.

Особенности работы двухтактных моторов

Основой того, чем отличается двухтактный двигатель от четырехтактного, можно назвать тот факт, что в первом за один рабочий цикл коленвал совершает два оборота, а во втором весь рабочий цикл укладывается в один оборот коленвала (360°). Поршень при этом совершает лишь два хода. Процессы, происходящие в камере сгорания в течение рабочего цикла у двухтактного мотора, не отличаются от четырехтактных, но впуск горючей смеси и выпуск отработавших газов выполняются одновременно с тактами сжатия и расширения.

Процесс одновременного удаления отработавших газов и нагнетания в цилиндр свежего заряда, происходящий в двухтактном двигателе, получил название продувка.

Принцип работы 2-х и 4-х тактных двигателей


ПРИ КОПИРОВАНИИ СТАТЬИ АКТИВНАЯ ССЫЛКА НА НАШ САЙТ ОБЯЗАТЕЛЬНА. 

Принцип работы 2-х тактного двигателя, его достоинства и недостатки.

    Чем 4-х тактный мотор лучше двухтактного? Как выбрать лодочный мотор? Какой мотор лучше 2-х или 4-х тактный? Для начала рассмотрим устройство двигателей.    

Тактом рабочего цикла ДВС является ход поршня от одной мёртвой точки до другой. Один такт соответствует 180-градусному повороту (полуобороту) коленчатого вала.При 4-тактном процессе рабочий цикл осуществляется за два оборота вала, при 2-тактном — за один

При 4-тактном процессе (рис слева) присутствуют 4 такта: впуск — сжатие — расширение — выпуск. Сначала открывается впускной клапан, поршень идёт вниз, под действием создающегося разрежения в цилиндр поступает свежая топливовоздушная смесь или воздух — это такт впуска. Затем клапан закрывается, поршень идёт вверх — происходит сжатие. Следующий такт: сжатая смесь воспламеняется искрой или в сжатый воздух форсунка впрыскивает топливо, которое самовоспламеняется, поршень под действием этого идёт вниз — это расширение, или рабочий ход поршня. Двигатель совершает полезную работу именно в течение такта расширения. Потом поршень идёт вверх, открывается выпускной клапан, через который продукты сгорания топлива выходят в атмосферу — это такт выпуска.  

В случае с двухтактным процессом  (рис справа) всё уже не так просто. Такты условно называются сжатие и расширение. Как видно, места отдельным тактам впуска и выпуска здесь не нашлось. Это не случайно. Хотя в двухтактном двигателе процессы впуска и выпуска присутствуют, для их осуществления необходимо, чтобы давление на входе в цилиндр было выше атмосферного. То есть нужен принудительный наддув. Те, кто знаком с двухтактными мотоциклетными бензиновыми двигателями, могут возразить: на мотоциклах нет никаких турбо- или механических компрессоров. Отдельного компрессора в мотоциклетном двухтактнике действительно нет. Функция компрессора возложена на картер двигателя. В простых мотоциклетных (также и в лодочных) моторах нет клапанов в головке цилиндра, вместо них существуют впускные и выпускные окна в стенках цилиндра, перекрываемые телом поршня. Впускные окна связаны с карбюратором не напрямую, а через перепускные каналы, выходящие в картер. В течение хода поршня вверх, нижний край открывает окно, на котором находится карбюратор, рабочая смесь под действием разрежения, создаваемого идущим вверх поршнем, устремляется в картер. Когда поршень идёт вниз, он перекрывает это окно, рабочая смесь начинает сжиматься. Поршень идёт далее вниз, открывая перепускные окна, рабочая смесь под давлением подаётся в цилиндр, где вытесняет отработанные газы в выпускное окно. Поршень идёт снова вверх, и процессы под его днищем повторяются, а в это время в цилиндре происходит сжатие рабочей смеси. Затем сжатая смесь воспламеняется свечой, и поршень идёт вниз, совершая такт расширения, или рабочий ход.  

Преимущества и недостатки двух и четырех тактных ЛОДОЧНЫХ моторов.

Двухтактные преимущества

  1. Меньший вес. Пример: 15 л.с. 2х тактный — 36 кг, 4-х тактный — 50 кг. Казалось — бы 50 кг. — легко. Все не так просто. Вес мотора распределен крайне неравномерно. Примерно 80% весит голова (сам двигатель) 20% нога. Не нужно также забывать и о большем у 4-х тактников размере головы. Все это + одна маленькая не всегда удобная ручка для переноски делает этот процесс крайне затруднительным.

2. Цена. 4-х тактные двигатели сложнее в производстве, состоят из большего количества деталей, поэтому всегда дороже 2-х тактников.

3. Удобство перевозки 2-х тактника. Можно возить в любом положении, перед началом эксплуатации не требует отвешивания. Т.е. достал из багажника, поставил, завел, поехал.

4. 2-х такт мотор живее реагирует на ручку газ. В 4-х тактниках для совершения полного рабочего цикла поршню необходимо сделать 2 полных оборота в то время как в 2-х тактных только один. Частый вопрос: А правда ли что 4-х такная 15 л.с. бежит быстрее чем такая же 2-х тактная? Ответ: нет не правда. У обеих этих двигателей мощность на валу 15 л.с. При прочих равных условиях почему один мотор должен ехать быстрее второго?

Двухтактные лодочные моторы — недостатки

   1. Больший расход топлива. Напомним, примерный расход можно высчитать по формуле: для 2х такта — 300 грамм на одну лошадинную силу, для 4х такта — 200 грамм на 1л.с. в час при полном «газе». Больший расход связан с тем, что цикл выброса отработанных газов и впуска свежего топлива у двухтактников совмещен, поэтому часть свежего топлива выбрасывается вместе с отработанными газами в выхлоп. В этом же и экологическая проблема т.е. часть бензина, смешанного с маслом просто выливается в воду. Поэтому 2-х такные моторы (кроме моторов с системой поуровнего впрыска) запрещены в странах ЕС и США. 

2. Шумноть. На максимальных оборотах 2-х тактные моторы как правило работают немного громче 4х тактников.

3. Комфорт. 4-х тактные моторы не так вибрируют на малых оборотах (Касается только двухцилинровых двигателей. Одноцилиндровые и 2-х и 4-х тактники вибрируют примерно одинаково) и не так дымят как 2-х тактники. Дым образуется в основном из-за згорания масла, которое добавляется непосредственно в бензин у 2-х таных моделей. Дымность важный момент, особенно если вы любите тролить. Часто это очень напрягает особенно в тихую безветренную погоду. 

4. Долговечность. Довольно спорный пункт. Бытует мнение, что 2-хтактные моторы менее долговечны. С одной стороны это понятно, потому как масло для смазки трущихся элементов двигателя подается вместе с бензином, а значит работает не так эффективно в отличие от  4-х тактных двигателей, где трущиеся элементы буквально плавают в масле. Но с другой стороны 4-х тактный мотор по конструкции намного сложнее конкурента, состоит из значительно большего числа деталей, а золотой принцип механики «Чем проще тем надежнее» еще никто не отменял.  

Какой же мотор выбрать?

  Взвесьте все за и против изложенные выше и сделайте выбор самостоятельно. Однозначного ответа на вопрос: какой из моторов лучше Вы не найдете ни в одной из книг ни на одном из форумов. И у тех и у других типов двигателей есть свои поклонники. Личное мнение автора: основной параметр — вес. При выборе уделите этому наибольшее внимание.  

 

Сравнение двухтактного мотора с четырехтактным в компании «Мореход»

Принцип работы 2-х и 4-х тактных двигателей

Тактом рабочего цикла двигателя внутреннего сгорания является ход поршня от одной мёртвой точки до другой. Один такт соответствует 180-градусному повороту (полуобороту) коленчатого вала. При 4-х тактном процессе рабочий цикл осуществляется за два оборота вала, при 2-х тактном — за один.

Четырехтактный двигатель

Рабочий цикл четырёхтактного двигателя состоит из четырёх основных этапов — тактов. Поршень — металлический стакан, опоясанный пружинящими кольцами (поршневые кольца), вложенными в канавки на поршне. Поршневые кольца не пропускают газов, образующихся при сгорании топлива, в промежутке между поршнем и стенками цилиндра. Пoршень снабжен металлическим стержнем — пальцем, соединение с шатуном. Шатун передаёт прямолинейное возвратно-поступательное движение поршня во вращательное движение коленчатого вала.

I этап – Впуск. В процессе впуска поршень четырёхтактного двигателя идёт из верхней мёртвой точки в нижнюю мёртвую точку. Одновременно кулачком распредвала открывается впускной клапан, в цилиндр четырёхтактного двигателя затягивается свежая топливно-воздушная смесь.

II этап – Сжатие. Пoршень четырёхтактного двигателя поднимается из нижней мертвой точки в верхнюю мертвую точку, сжимая рабочую топливную смесь. Одновременно и значительно поднимается температура горючей смеси. Отношение рабочего объёма цилиндра в нижней мертвой точке и объёма камеры сгорания во внутренней мертвой точке называется степенью сжатия (не путать с компрессией). Степень сжатия — очень важный параметр, обычно, чем она больше, тем больше топливная экономичность двигателя. Но, для четырёхтактного двигателя с бОльшей степенью сжатия требуется топливо с бОльшим октановым числом, которое дороже.

III этап – Сгорание и расширение (рабочий ход поршня). Незадолго до окончания такта сжатия горючая смесь воспламеняется искрой от свечи зажигания. Во время следования поршня из верхней мертвой точки в нижнюю мертвую точку топливо сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, толкая поршень. Степень «недоворота» коленчатого вала двигателя до верхней мертвой точки при поджигании смеси именуется углом опережения зажигания. Опережение зажигания необходимо для того, чтобы давление газов достигло максимальной величины когда поршень будет находиться в верхней мертвой точке. Тогда использование энергии сгоревшего топлива будет максимальным. Скороть горения топлива практически не меняется, то есть занимает фиксированное время, следовательно чтобы достичь максимальной производительности двигателя нужно увеличивать угол опережения зажигания пропорционально уровню оборотов коленвала. В старых двигателях эта регулировка производилась механическим устройством (центробежным и вакуумным регулятором воздействующим на прерыватель). В более современных двигателях для регулировки угла используется электронное опережение зажигания.

IV этап – Выпуск. После нижней мертвой точки такта рабочего хода поршня четырёхтактного двигателя открывается выпускной клапан, и поднимающийся поршень вытесняет отработанные газы из цилиндра двигателя. При достижении поршнем верхней мертвой точки выпускной клапан закрывается и четырёхтактный цикл начинается сначала.

Необходимо также помнить, что следующий процесс (например, впуск), необязательно должен начинаться в тот момент, когда закончится предыдущий (например, выпуск). Такое положение, когда открыты сразу оба клапана (впускной и выпускной), называется перекрытием клапанов. Перекрытие клапанов необходимо для лучшего наполнения цилиндра/-ов горючей смесью, а также для лучшей очистки цилиндра/-ов четырёхтактного двигателя от отработанных газов.

Двухтактный двигатель

Двухтактный двигатель — поршневой двигатель внутреннего сгорания в котором рабочий процесс в каждом из цилиндров совершается за один оборот коленчатого вала, то есть за два хода поршня. Такты сжатия и рабочего хода в двухтактном двигателе происходят так же, как и в четырехтактном, но процессы очистки и наполнения цилиндра совмещены и осуществляются не в рамках отдельных тактов, а за короткое время, когда поршень находится вблизи нижней мертвой точки, с помощью вспомогательного агрегата — продувочного насоса.

В связи с тем, что в двухтактном двигателе при равном количестве цилиндров и числе оборотов коленчатого вала рабочие ходы происходят вдвое чаще, литровая мощность двухтактных двигателей выше чем четырехтактных — теоретически в два раза, на практике в 1,5-1,7 раза, так как часть полезного хода поршня занимают процессы газообмена, а сам газообмен менее совершенный чем у четырехтактных двигателей.

В отличие от четырехтактных двигателей, где вытеснение отработавших газов и всасывание свежей смеси осуществляется самим поршнем, в двухтактных двигателях газообмен выполняется за счет подачи в цилиндр рабочей смеси или воздуха (в дизелях) под давлением, создаваемым продувочным насосом, а сам процесс газообмена получил название — продувка. В процессе продувки свежий воздух (смесь) вытесняет продукты сгорания из цилиндра в выпускные органы, занимая их место.

По способу организации движения потоков продувочного воздуха (смеси) различают двухтактные двигатели с контурной и прямоточной продувкой.

Контурная продувка

При контурной продувке поток воздуха (смеси) движется вдоль внутренней поверхности цилиндра и его головки, повторяя их контур (отсюда название). Впускные и выпускные органы — окна в стенках цилиндра — расположены в его нижней части. Открытие и закрытие впускных и выпускных окон осуществляется самим поршнем, а специальный газораспределительный механизм отсутствует. Направление потока воздуха (смеси) по контуру цилиндра может осуществляться специальными дефлекторами на днище поршня и в головке цилиндра (в этом случае продувка называется дефлекторной) или специальной формой продувочных каналов, направляющих поток воздуха (смеси) к головке цилиндра, и сферической формой головки. Так как в последнем случае воздух (смесь) в цилиндре описывает петлю, такой тип продувки называется возвратно-петлевой или просто петлевой.

Прямоточная продувка

При прямоточной продувке поток воздуха (смеси) движется, не меняя направления, вдоль оси цилиндра. Управлять открытием и закрытием продувочных и выпускных окон одним поршнем невозможно, что требует применения специальных устройств. Может использоваться клапанный механизм, установленный в головке цилиндра, через который происходит выпуск отработавших газов (продувочные окна открываются и закрываются поршнем), или два поршня, встречно движущихся в одном цилиндре (один поршень управляет впускными окнами, другой выпускными).

При прямоточной продувке качество очистки цилиндра от остаточных газов существенно лучше, чем при контурной. Кроме того, поскольку открытие (и закрытие) выпускных и продувочных органов осуществляется различными элементами двигателя, подбор оптимальных фаз газораспределения не представляет затруднейний. Как правило, в двигателях с прямоточной продувкой выпускной клапан (выпускное окно) закрывается раньше продувочного, что исключает потерю свежего заряда и позволяет осуществлять дозарядку с повышением давления (то есть наддув).

Преимущества и недостатки 2-х и 4-х тактных подвесных лодочных моторов

Преимущества 2-х тактных перед 4-х тактными

Во-первых, меньший вес. Пример: 15 л.с. 2-х тактный 36 кг 4-х тактный 45 кг. Казалось — бы 45 кг. — легко. Все не так просто. Вес мотора распределен крайне неравномерно. Примерно 90% весит голова (сам двигатель) 10% нога. Не нужно также забывать и о большем у 4-х тактников размере головы. Все это + одна маленькая не всегда удобная ручка для переноски делает этот процесс крайне затруднительным.

Во-вторых, цена. 4-х тактные двигатели сложнее в производстве, состоят из большего количества деталей, поэтому всегда дороже 2-х тактников.

В-третьих, удобство перевозки 2-х тактника. Можно возить в любом положении, перед началом эксплуатации не требует отвешивания. Т.е. достал из багажника, поставил, завел, поехал.

В-четвертых, 2-х такт мотор живее реагирует на ручку газ. В 4-х тактниках для совершения полного рабочего цикла поршню необходимо сделать 2 полных оборота в то время как в 2-х тактных только один.

Частый вопрос: А правда ли что 4-х такная 15 л.с. бежит быстрее чем такая же 2-х тактная?
Ответ: нет не правда. У обеих этих двигателей мощность на валу 15 л.с. При прочих равных условиях почему один мотор должен ехать быстрее второго?

Недостатки 2-тактных перед 4-тактными

Во-первых, больший расход топлива. Напомним, примерный расход можно высчитать по формуле: для 2 такта 300 грамм на одну лошадинную силу для 4 такта 200 грамм.

Во-вторых, шумность. На максимальных оборотах 2-х тактные моторы как правило работают немного громче 4х тактников.

В-третьих, комфорт. 4-х тактные моторы не так вибрируют на малых оборотах (Касается только двухцилинровых двигателей. Одноцилиндровые и 2-х и 4-х тактники вибрируют примерно одинаково) и не так дымят как 2-х тактники. Дымность важный момент, особенно если вы любите заниматься троллингом.

В-четвертых, долговечность. Довольно спорный пункт. Бытует мнение, что 2-хтактные моторы менее долговечны. С одной стороны это понятно, потому как масло для смазки трущихся элементов двигателя подается вместе с бензином, а значит работает не так эффективно в отличие от 4-х тактных двигателей где трущиеся элементы буквально плавают в масле. Но с другой стороны 4-х тактный мотор по конструкции намного сложнее конкурента, состоит из значительно большего числа деталей, а золотой принцип механики «Чем проще тем надежнее» еще никто не отменял.

Какой же мотор выбрать?

Конечное решение всегда остается за вами, в этой статье мы лишь постарались дать объективную оценку этим моторам, поэтому взвесьте все за и против изложенные выше и сделайте выбор самостоятельно. Однозначного ответа на вопрос: какой из моторов лучше вы не найдете ни в одной из книг ни на одном из форумов, все зависит от того чего вы хотите от приобретаемого вами мотора, условия его использования и, конечно, ваши возможности.

Как работает 4-тактный двигатель

Чтобы привести ваше оборудование в действие, двигатель с верхним расположением клапанов выполняет повторяющийся четырехэтапный процесс, описанный ниже.

Элемент, обеспечивающий работу двигателей внутреннего сгорания

  • Воздух
  • Топливо
  • Сжатие
  • Искра

Шаг 1: Ход впуска

Воздух и топливо попадают в небольшой двигатель через карбюратор. Работа карбюратора — подавать смесь воздуха и топлива, которая обеспечивает правильное сгорание.Во время такта впуска открывается впускной клапан между карбюратором и камерой сгорания. Это позволяет атмосферному давлению нагнетать топливовоздушную смесь в канал цилиндра, когда поршень движется вниз.

>> Проблемы с производительностью? Узнайте, как устранить неполадки при ремонте карбюратора и очистить / обслужить карбюраторы двигателя малого объема.

Шаг 2: Ход сжатия

Сразу после того, как поршень переместится в нижнюю точку своего хода (нижняя мертвая точка), в отверстии цилиндра находится максимально возможная воздушно-топливная смесь.Впускной клапан закрывается, и поршень возвращается обратно в отверстие цилиндра. Это называется тактом сжатия процесса 4-тактного двигателя. Топливно-воздушная смесь сжимается между поршнем и головкой блока цилиндров.

Шаг 3: Рабочий ход

Когда поршень достигает вершины своего хода (верхней мертвой точки), он будет в оптимальной точке для воспламенения топлива и получения максимальной мощности для вашего внешнего силового оборудования. В катушке зажигания создается очень высокое напряжение.Свеча зажигания позволяет отвести это высокое напряжение в камеру сгорания. Тепло, создаваемое искрой, воспламеняет газы, создавая быстро расширяющиеся перегретые газы, которые заставляют поршень опускаться обратно в отверстие цилиндра. Это называется рабочий ход .

Шаг 4: ход выпуска

Когда поршень снова достигает нижней мертвой точки, выпускной клапан открывается. По мере того, как поршень движется обратно по каналу цилиндра, он выталкивает отработавшие газы сгорания через выпускной клапан и из систем выпуска.Когда поршень возвращается в верхнюю мертвую точку, выпускной клапан закрывается, а впускной клапан открывается, и процесс 4-тактного двигателя повторяется.

Для любого повторения цикла требуется два полных оборота коленчатого вала, в то время как двигатель создает мощность только во время одного из четырех тактов. Чтобы машина продолжала работать, ей нужен маховик небольшого двигателя. Рабочий ход создает импульс, который толкает маховик, инерция которого удерживает его и коленчатый вал во время тактов выпуска, впуска и сжатия.

.

Четырехтактный двигатель — Energy Education

Рис. 1. Четырехтактный двигатель внутреннего сгорания. 1: впрыск топлива, 2: зажигание, 3: расширение (работа выполнена), 4: выхлоп. [1]

Четырехтактный двигатель является наиболее распространенным типом двигателей внутреннего сгорания и используется в различных автомобилях (которые специально используют бензин в качестве топлива), таких как автомобили, грузовики и некоторые мотоциклы (на многих мотоциклах используется двухтактный двигатель). Четырехтактный двигатель обеспечивает один рабочий ход на каждые два цикла поршня (или четыре хода поршня).Справа (рис. 1) изображен четырехтактный двигатель, а ниже приводится дальнейшее объяснение процесса.

  1. Такт всасывания: Поршень движется вниз к основанию, это увеличивает объем, позволяя топливно-воздушной смеси попасть в камеру.
  2. Такт сжатия: Впускной клапан закрывается, и поршень перемещается по камере вверх. Это сжимает топливно-воздушную смесь. В конце этого такта свеча зажигания обеспечивает сжатое топливо энергией активации, необходимой для начала сгорания.
  3. Power Stroke: Когда топливо достигает конца сгорания, тепло, выделяющееся при сгорании углеводородов, увеличивает давление, которое заставляет газ давить на поршень и создавать выходную мощность.
  4. Такт выпуска: Когда поршень достигает дна, выпускной клапан открывается. Оставшийся выхлопной газ выталкивается поршнем, когда он движется обратно вверх.


Тепловой КПД этих бензиновых двигателей зависит от модели и конструкции автомобиля.Однако в целом бензиновые двигатели преобразуют 20% топлива (химическая энергия) в механическую энергию, в которой только 15% будет использоваться для движения колес (остальное теряется на трение и другие механические элементы). [2] Одним из способов повышения термодинамической эффективности двигателей является повышение степени сжатия. Это соотношение представляет собой разницу между минимальным и максимальным объемом в камере двигателя (на рисунке 2 обозначены как ВМТ и НМТ). Более высокое соотношение позволит входить большей топливно-воздушной смеси, вызывая более высокое давление, что приводит к более горячей камере, что увеличивает тепловой КПД. [2]

Цикл Отто

Рис. 2. Реальный процесс отто-цикла, происходящий в четырехтактном двигателе. [3] Рис. 3. Идеальный цикл Отто. [4]

Диаграмма «давление-объем» (PV-диаграмма), которая моделирует изменения давления и объема топливно-воздушной смеси в четырехтактном двигателе, называется циклом Отто. Изменения в них будут создавать тепло и использовать это тепло для перемещения транспортного средства или машины (вот почему это тип теплового двигателя).Цикл Отто можно увидеть на Рисунке 2 (реальный цикл Отто) и Рисунке 3 (идеальный цикл Отто). Компонент в любом двигателе, который использует этот цикл, будет иметь поршень для изменения объема и давления топливно-воздушной смеси (как показано на рисунке 1). Поршень получает движение от сгорания топлива (где это происходит, объясняется ниже) и электрического наддува при запуске двигателя.

Ниже описано, что происходит на каждом этапе фотоэлектрической диаграммы, когда сгорание рабочего тела — бензина и воздуха (кислорода), а иногда и электричества, изменяет движение поршня:

Реальный шаг цикла от 0 до 1 (идеальный цикл — зеленая линия): Называется фазой всасывания , поршень опускается вниз, чтобы позволить объем в камере увеличиваться, чтобы он мог «всасывать» «топливно-воздушная смесь.С точки зрения термодинамики это называется изобарическим процессом.


Процессы с 1 по 2: На этом этапе поршень будет вытянут вверх, чтобы он мог сжимать топливно-воздушную смесь, попавшую в камеру. Сжатие приводит к небольшому увеличению давления и температуры смеси, однако теплообмен не происходит. С точки зрения термодинамики это называется адиабатическим процессом. Когда цикл достигает точки 2, свеча зажигания встречает топливо, которое должно воспламениться.


Процессы 2–3: Здесь происходит возгорание из-за воспламенения топлива свечой зажигания. Сгорание газа завершается в точке 3, что приводит к образованию камеры с высоким давлением, которая имеет много тепла (тепловой энергии). С точки зрения термодинамики это называется изохорным процессом.

Процессы с 3 по 4: Тепловая энергия в камере в результате сгорания используется для работы с поршнем, которая толкает поршень вниз, увеличивая объем камеры.Это также известно как силовой сток , потому что это когда тепловая энергия превращается в движение, чтобы привести машину или транспортное средство в действие.


Фиолетовая линия (процесс с 4 по 1 и выхлоп , фаза ): В процессе с 4 по 1 выпускной клапан открывается, и все отходящее тепло выводится из камеры двигателя. Когда тепло покидает газ, молекулы теряют кинетическую энергию, вызывая снижение давления. [5] Затем происходит фаза выхлопа (этап от 0 до 1), когда оставшаяся в камере смесь сжимается поршнем для «выпуска» без изменения давления.

Для дальнейшего чтения

Список литературы

  1. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/d/dc/4StrokeEngine_Ortho_3D_Small.gif
  2. 2,0 2,1 Р. Вольфсон, Энергия, окружающая среда и климат. Нью-Йорк: W.W. Norton & Company, 2012, стр. 106.
  3. ↑ Actual and Ideal Otto Cycle — Nuclear Power », Nuclear Power, 2018. [Online]. Доступно: https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-cycles/otto-cycle-otto -двигатель / актуальный-и-идеальный-отто-цикл /.[Доступ: 22 июня 2018 г.].
  4. ↑ Wikimedia Commons [Online], доступно: https://en.wikipedia.org/wiki/Otto_cycle#/media/File:P-V_Otto_cycle.svg
  5. ↑ И. Динчер и К. Замфиреску, Современные системы производства электроэнергии. Лондон, Великобритания: Academic Press — это издание Elsevier, 2014, стр. 266.
.

Принципы работы четырехтактного бензинового двигателя

Четырехтактный двигатель (также известный как четырехтактный двигатель ) — это двигатель внутреннего сгорания, в котором поршень совершает четыре отдельных хода, которые составляют один термодинамический цикл. Под ходом понимается полный ход поршня по цилиндру в любом направлении. Четыре отдельных штриха называются:

.
  1. ВПУСК : этот ход поршня начинается в верхней мертвой точке.Поршень опускается от верхней части цилиндра к нижней части цилиндра, увеличивая объем цилиндра. Смесь топлива и воздуха нагнетается атмосферным (или более высоким) давлением в цилиндр через впускной канал.
  2. СЖАТИЕ : при закрытых впускных и выпускных клапанах поршень возвращается в верхнюю часть цилиндра, сжимая воздух или топливно-воздушную смесь в головку блока цилиндров.
  3. МОЩНОСТЬ : это начало второго оборота цикла.Пока поршень находится близко к верхней мертвой точке (ВМТ), смесь сжатого воздуха и топлива в бензиновом двигателе воспламеняется от свечи зажигания в бензиновых двигателях или воспламеняется из-за тепла, выделяемого при сжатии в дизельном двигателе. Возникающее в результате сгорания сжатой топливно-воздушной смеси давление заставляет поршень опускаться обратно в нижнюю мертвую точку (НМТ).
  4. ВЫПУСК : во время хода выпуска поршень снова возвращается в верхнюю мертвую точку, когда выпускной клапан открыт.В результате отработанная топливно-воздушная смесь вытесняется через выпускной (е) клапан (ы).

Принципы проектирования и инженерные принципы

Ограничения выходной мощности

Четырехтактный цикл
A: Впуск
B: Компрессия
C: Мощность
D: Выпуск

1 = ВМТ
2 = НМТ

Максимальная мощность, вырабатываемая двигателем, определяется максимальным количеством всасываемого воздуха.Количество мощности, вырабатываемой поршневым двигателем, зависит от его размера (объема цилиндра), двухтактной или четырехтактной конструкции, объемного КПД, потерь, соотношения воздух-топливо, теплотворной способности топлива. , содержание кислорода в воздухе и скорость (об / мин). Скорость в конечном итоге ограничена прочностью материала и смазкой. Клапаны, поршни и шатуны испытывают сильные ускоряющие силы. При высоких оборотах двигателя может произойти физическая поломка и дрожание поршневого кольца, что приведет к потере мощности или даже к разрушению двигателя.Флаттер поршневого кольца возникает, когда кольца колеблются вертикально внутри поршневых канавок, в которых они находятся. Флаттер кольца нарушает уплотнение между кольцом и стенкой цилиндра, что вызывает потерю давления и мощности в цилиндре. Если двигатель вращается слишком быстро, пружины клапанов не могут действовать достаточно быстро, чтобы закрыть клапаны. Это обычно называют «смещением клапана», и это может привести к контакту поршня с клапаном, что серьезно повредит двигатель. На высоких скоростях смазка поверхности раздела стенок поршневого цилиндра имеет тенденцию к разрушению.Это ограничивает скорость поршня промышленных двигателей примерно до 10 м / с.

Поток впускного / выпускного отверстия

Выходная мощность двигателя зависит от способности впуска (воздушно-топливной смеси) и выхлопных газов быстро перемещаться через отверстия клапана, обычно расположенные в головке блока цилиндров. Чтобы увеличить выходную мощность двигателя, неровности впускного и выпускного трактов, такие как дефекты литья, могут быть устранены, а с помощью стенда воздушного потока можно изменить радиусы поворотов порта клапана и конфигурацию седла клапана, чтобы уменьшить сопротивление.Этот процесс называется переносом, и его можно выполнить вручную или с помощью станка с ЧПУ.

Нагнетатель

Одним из способов увеличения мощности двигателя является нагнетание большего количества воздуха в цилиндр, чтобы можно было производить больше мощности за каждый рабочий ход. Это может быть сделано с помощью некоторого типа устройства сжатия воздуха, известного как нагнетатель, который может приводиться в действие коленчатым валом двигателя.

Наддув увеличивает пределы выходной мощности двигателя внутреннего сгорания относительно его рабочего объема.Чаще всего нагнетатель всегда работает, но существуют конструкции, которые позволяют отключать его или работать с различными скоростями (относительно частоты вращения двигателя). Недостаток наддува с механическим приводом состоит в том, что часть выходной мощности используется для привода нагнетателя, в то время как мощность тратится впустую в выхлопе высокого давления, так как воздух был сжат дважды, а затем получил больший потенциальный объем при сгорании, но только расширялся. в один этап.

Турбонаддув

Турбокомпрессор — это нагнетатель, который приводится в действие выхлопными газами двигателя с помощью турбины.Он состоит из двухкомпонентной высокоскоростной турбины в сборе, одна сторона которой сжимает всасываемый воздух, а другая сторона приводится в действие за счет выхода выхлопных газов.

На холостом ходу и на низких или средних оборотах турбина вырабатывает небольшую мощность из-за небольшого объема выхлопных газов, турбокомпрессор оказывает незначительное влияние, и двигатель работает почти без наддува. Когда требуется гораздо большая выходная мощность, частота вращения двигателя и открытие дроссельной заслонки увеличиваются до тех пор, пока выхлопные газы не станут достаточными, чтобы «раскрутить» турбину турбокомпрессора, чтобы начать сжатие во впускной коллектор гораздо большего количества воздуха, чем обычно.

Турбонаддув обеспечивает более эффективную работу двигателя, так как он приводится в действие давлением выхлопных газов, которое в противном случае (в основном) было бы потрачено впустую, но существует конструктивное ограничение, известное как турбо-задержка. Увеличенная мощность двигателя не доступна сразу из-за необходимости резко увеличить обороты двигателя, создать давление и раскрутить турбонагнетатель до того, как турбо начнет производить какое-либо полезное сжатие воздуха. Увеличенный объем впуска вызывает увеличение выхлопа и ускоряет вращение турбонагнетателя и так далее, пока не будет достигнута стабильная работа на высокой мощности.Другая трудность заключается в том, что более высокое давление выхлопных газов заставляет выхлопные газы передавать больше тепла механическим частям двигателя.

Передаточное отношение штока и поршня к ходу поршня

Отношение штока к ходу поршня — это отношение длины шатуна к длине хода поршня. Более длинный шток снижает боковое давление поршня на стенку цилиндра и силы напряжения, увеличивая срок службы двигателя. Это также увеличивает стоимость и высоту и вес двигателя.

«Прямоугольный двигатель» — это двигатель, диаметр цилиндра которого равен длине его хода.Двигатель, у которого диаметр канала больше, чем длина его хода, является двигателем с квадратным сечением, и, наоборот, двигатель с диаметром канала, который меньше его длины хода, является двигателем с квадратом.

Клапанный привод

Клапаны обычно приводятся в действие распределительным валом, вращающимся на половину скорости коленчатого вала. По всей длине он имеет ряд кулачков, каждый из которых предназначен для открытия клапана во время соответствующей части такта впуска или выпуска. Толкатель между клапаном и кулачком — это контактная поверхность, по которой кулачок скользит, открывая клапан.Во многих двигателях используется один или несколько распределительных валов «над» рядом (или каждым рядом) цилиндров, как показано на рисунке, на котором каждый кулачок непосредственно приводит в действие клапан через плоский толкатель. В двигателях других конструкций распределительный вал находится в картере, и в этом случае каждый кулачок контактирует с толкателем, который контактирует с коромыслом, открывающим клапан. Конструкция верхнего кулачка обычно допускает более высокие обороты двигателя, поскольку обеспечивает наиболее прямой путь между кулачком и клапаном.

Клапанный зазор

Клапанный зазор означает небольшой зазор между толкателем клапана и штоком клапана, который обеспечивает полное закрытие клапана.На двигателях с механической регулировкой клапанов чрезмерный зазор вызывает шум клапанного механизма. Слишком малый зазор клапана может привести к тому, что клапаны не закроются должным образом, что приведет к снижению производительности и, возможно, перегреву выпускных клапанов. Как правило, зазор необходимо регулировать каждые 20 000 миль (32 000 км) с помощью щупа.

В большинстве современных двигателей используются гидравлические подъемники для автоматической компенсации износа компонентов клапанного механизма. Грязное моторное масло может привести к поломке подъемника.

Энергетический баланс

Двигатели Отто имеют КПД около 30%; Другими словами, 30% энергии, генерируемой при сгорании, преобразуется в полезную энергию вращения на выходном валу двигателя, а остальная часть приходится на потери из-за отходящего тепла, трения и вспомогательного оборудования двигателя. Есть несколько способов восстановить часть энергии, потерянной в отходящем тепле. Использование турбонагнетателя в дизельных двигателях очень эффективно за счет повышения давления поступающего воздуха и, по сути, обеспечивает такое же повышение производительности, как и при увеличении рабочего объема.Компания Mack Truck несколько десятилетий назад разработала турбинную систему, которая преобразовывала отработанное тепло в кинетическую энергию, которую оно возвращало в трансмиссию двигателя. В 2005 году BMW объявила о разработке турбо-пароварки — двухступенчатой ​​системы рекуперации тепла, аналогичной системе Mack, которая восстанавливает 80% энергии выхлопных газов и повышает эффективность двигателя Отто на 15%. Напротив, шестицилиндровый двигатель может снизить расход топлива на целых 40%.

Современные двигатели часто намеренно строятся так, чтобы они были немного менее эффективными, чем они могли бы быть в противном случае.Это необходимо для контроля выбросов, таких как рециркуляция выхлопных газов и каталитические нейтрализаторы, уменьшающие смог и другие атмосферные загрязнители. Снижению эффективности можно противодействовать с помощью блока управления двигателем, использующего методы сжигания обедненной смеси.

В Соединенных Штатах, Корпоративная средняя экономия топлива требует, чтобы транспортные средства достигли средней скорости 35,5 миль на галлон (миль на галлон) по сравнению с текущим стандартом 25 миль на галлон. Поскольку автопроизводители стремятся соответствовать этим стандартам к 2016 году, следует рассмотреть новые способы разработки традиционного двигателя внутреннего сгорания (ДВС).Некоторые потенциальные решения для повышения эффективности использования топлива в соответствии с новыми требованиями включают запуск после того, как поршень находится дальше всего от коленчатого вала, известный как верхняя мертвая точка (ВМТ), и применение цикла Миллера. Вместе эта модернизация может значительно снизить расход топлива и выбросы NOx.

Исходное положение, такт впуска и такт сжатия.

Зажигание топлива, рабочего такта и такта выпуска.

Ссылки: Википедия

.ЧЕТЫРЕХТАКТНЫЙ ДВИГАТЕЛЬ

(ДИЗЕЛЬ) | authorSTREAM

Презентация в PowerPoint:

ИНСТИТУТ ИНЖЕНЕРИИ И ТЕХНОЛОГИИ SCM ОТДЕЛЕНИЕ АВТОМОБИЛЬНОГО ПРОИЗВОДСТВА

Презентация KULANAME в PowerPoint: 9000 CHRISS 180002

. DAS 18264 4. МАНИШ ШОУ 18277 5. РОНИТ ХАЗРА 18269 6. АРИНДАМ ДАС 18268 7. СУБХАСИС БХАТТАЧАРЬЯ 18247 8. БАПИ МОНДОЛ 18273 9. ПРИЯБРАТА ЧАНДРА 18265 10.SANJOY JANA 18278 11. KISHNA GHOSH 18262 12. RANTU JANA 18279 13. TIRTHANSHU MITRA 18272 ПРОЕКТ ПОД РУКОВОДСТВОМ — SUPARNA SARKAR CREATOR

ЧЕТЫРЕХТАКТНЫЙ ЦИКЛ РАБОТА С ДВИГАТЕЛЕМ (ДИЗЕЛЬНЫЙ ДВИГАТЕЛЬ

CYCLE 9000) (ДИЗЕЛЬНЫЙ ДВИГАТЕЛЬ

)

FROCY :

Дизельный цикл Принцип работы четырехтактных (дизельных) двигателей Используемые основные компоненты Подробный вид компонентов Преимущества Недостатки СОДЕРЖАНИЕ

ДИЗЕЛЬНЫЙ ЦИКЛ:

ДИЗЕЛЬНЫЙ ЦИКЛ Дизельный цикл — это термодинамический цикл, который приблизительно соответствует давлению и объему камеры сгорания. дизельного двигателя, изобретенного Рудольфом Дизелем в 1897 году.Предполагается, что в течение первой части фазы «сгорания» давление постоянно. RUDOLPH DIESEL

Принцип работы четырехтактного (дизельного) двигателя:

Принцип работы четырехтактного (дизельного) двигателя Ниже приведены четыре такта — такт впуска [1] такт сжатия [2] такт мощности [3] такт выпуска [ 4]

Презентация в PowerPoint:

Ход впуска Поршень опускается от ВМТ до НМТ, увеличивая объем цилиндра.Воздух нагнетается в цилиндр через впускной канал.

PowerPoint Presentation:

Когда оба клапана закрыты, поршень возвращается в ВМТ, сжимая воздух в камере сгорания головки блока цилиндров. Температура повышается до 350-400 градусов. ХОД СЖАТИЯ

PowerPoint Presentation:

Пока поршень находится близко к ВМТ, сжатое топливо, впрыскиваемое в дизельный двигатель, воспламеняется из-за тепла, выделяемого в воздухе во время такта сжатия.СИЛОВОЙ ХОД

PowerPoint Presentation:

Здесь поршень снова возвращается в верхнюю мертвую точку, когда выпускной клапан открыт. Весь сгоревший газ удаляется из камеры выпускным клапаном. ВЫХЛОПНЫЙ ХОД

ИСПОЛЬЗУЕМЫЕ ОСНОВНЫЕ КОМПОНЕНТЫ:

ИСПОЛЬЗУЕМЫЕ БАЗОВЫЕ КОМПОНЕНТЫ Коленчатый вал Распределительный вал Головка цилиндра Поршень И многое другое…

ДЕТАЛЬНЫЙ ВИД КОМПОНЕНТОВ:

ПОДРОБНЫЙ ВИД НА КОМПОНЕНТЫ

дизель.Средство преобразования возвратно-поступательного движения во вращательное движение. Противовесы могут быть прикручены или приварены.

PowerPoint Presentation:

РАСПРЕДВАЛНИК Выполняет жизненно важную роль по открытию и закрытию впускных и выпускных клапанов. Обеспечьте своевременный впрыск топлива в цилиндр. Обычно по 3 кулачка на каждый цилиндр — 2 внешних кулачка для выпускных и впускных клапанов  1 центральный кулачок для впрыска топлива.

PowerPoint Presentation:

ГОЛОВКА ЦИЛИНДРА CH удерживается на гильзах цилиндров с помощью 7 прижимных шпилек.Подвергается высоким ударным нагрузкам и температуре сгорания на нижней поверхности. Сложное литье, где охлаждающие каналы заполнены сердцевиной для удержания воды. Предусмотрено пространство для прохода приточного воздуха и выхлопных газов. Пространство для форсунок, направляющих и седла клапана.

PowerPoint Presentation:

4. ПОРШЕНЬ Сжимает воздух до необходимого давления и температуры. Принимает тягу расширяющихся газов и передает усилие через шатун.С помощью поршневых колец предотвращает утечку газа из камеры сгорания.

PowerPoint Presentation:

НЕКОТОРЫЕ ДРУГИЕ ЧАСТИ ПОРШНЕВЫЕ КОЛЬЦА Герметизируйте камеру сгорания. Предотвращайте попадание воздуха и высокотемпературных дымовых газов. СОЕДИНИТЕЛЬНАЯ ШТОФКА Соединяет поршень и коленчатый вал. Средство преобразования возвратно-поступательного движения во вращательное движение. ЛАЙНЕРЫ Образует стенку камеры сгорания. Направляет движение поршня.

ПРЕИМУЩЕСТВА:

ПРЕИМУЩЕСТВА Более эффективный.Более надежный. Более прочный. Выпустить меньше вредных паров. Легко заряжается. Производят минимум окиси углерода. Легко принимает синтетическое топливо. МОЖЕТ ПРИНЯТЬ СИНТЕТИЧЕСКОЕ ТОПЛИВО БЕЗ ВРЕДНЫХ ВЫБРОСОВ

НЕДОСТАТКИ:

НЕДОСТАТКИ Дороже. Иногда обслуживание может быть более дорогостоящим. Запчасти обычно дороже. Стоимость дизельного топлива на насосе выше. Способствуют парниковому эффекту. Вообще более шумный. ДОРОГОЙ НЕМНОГО ШУМНЫЙ

КРАТКОЕ ОПИСАНИЕ:

КРАТКОЕ ОПИСАНИЕ Дизельный двигатель полагается на воспламенение от сжатия.Степень сжатия ч / б составляет 16: 1 и 25: 1. Темп. увеличивается от 700 c до 900 c. Поршень приближается к ВМТ, топливо впрыскивается. Возгорание происходит мгновенно, вызывая быстрое повышение температуры и давления в цилиндре. Поршень с большой силой движется вниз, давя на шатун и поворачивая коленчатый вал. Затем удаляются выхлопные газы.

Заключение:

Заключение Из приведенного выше обсуждения мы узнали принцип, этапы и дальнейшие разработки, которые могут быть выполнены при работе четырехтактного двигателя (дизельного двигателя).Но мы должны сделать синтез и анализ нашей концепции по этому проекту, который еще не завершен


.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *